Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 175(7): 1917-1930.e13, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30550789

ABSTRACT

Ebola virus (EBOV) infection often results in fatal illness in humans, yet little is known about how EBOV usurps host pathways during infection. To address this, we used affinity tag-purification mass spectrometry (AP-MS) to generate an EBOV-host protein-protein interaction (PPI) map. We uncovered 194 high-confidence EBOV-human PPIs, including one between the viral transcription regulator VP30 and the host ubiquitin ligase RBBP6. Domain mapping identified a 23 amino acid region within RBBP6 that binds to VP30. A crystal structure of the VP30-RBBP6 peptide complex revealed that RBBP6 mimics the viral nucleoprotein (NP) binding to the same interface of VP30. Knockdown of endogenous RBBP6 stimulated viral transcription and increased EBOV replication, whereas overexpression of either RBBP6 or the peptide strongly inhibited both. These results demonstrate the therapeutic potential of biologics that target this interface and identify additional PPIs that may be leveraged for novel therapeutic strategies.


Subject(s)
Carrier Proteins , DNA-Binding Proteins , Ebolavirus/physiology , Hemorrhagic Fever, Ebola/metabolism , Transcription Factors , Viral Proteins , Virus Replication/physiology , Carrier Proteins/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Crystallography, X-Ray , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HEK293 Cells , HeLa Cells , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/pathology , Humans , Protein Interaction Mapping , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
2.
Immunity ; 54(8): 1625-1627, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34380059

ABSTRACT

The impact of cellular apoptosis in controlling M. tuberculosis during tuberculosis (TB) infection remains unresolved. In this issue of Immunity, Stutz et al. provide compelling evidence that apoptosis controls M. tuberculosis infection in vivo and compounds that induce apoptosis limit M. tuberculosis growth in mice.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Apoptosis , Mice
3.
J Immunol ; 212(5): 765-770, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38251918

ABSTRACT

AIM2 (absent in melanoma 2), an inflammasome component, mediates IL-1ß release in murine macrophages and cell lines. AIM2 and IL-1ß contribute to murine control of Mycobacterium tuberculosis (M.tb) infection, but AIM2's impact in human macrophages, the primary niche for M.tb, remains unclear. We show that M.tb, Mycobacterium bovis bacillus Calmette-Guérin (BCG), and M. smegmatis induce AIM2 expression in primary human macrophages. M.tb-induced AIM2 expression is peroxisome proliferator-activated receptor γ (PPARγ)-dependent and M.tb ESX-1-independent, whereas BCG- and M. smegmatis-induced AIM2 expression is PPARγ-independent. PPARγ and NLRP3, but not AIM2, are important for IL-1ß release in response to M.tb, and NLRP3 colocalizes with M.tb. This is in contrast to the role for AIM2 in inflammasome activation in mice and peritoneal macrophages. Altogether, we show that mycobacteria induce AIM2 expression in primary human macrophages, but AIM2 does not contribute to IL-1ß release during M.tb infection, providing further evidence that AIM2 expression and function are regulated in a cell- and/or species-specific manner.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Animals , Humans , Mice , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Macrophages/metabolism , Mycobacterium tuberculosis/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , PPAR gamma/metabolism , Tuberculosis/metabolism
4.
Annu Rev Genet ; 51: 241-263, 2017 11 27.
Article in English | MEDLINE | ID: mdl-28853921

ABSTRACT

Much progress has been made in the identification of specific human gene variants that contribute to enhanced susceptibility or resistance to viral diseases. Herein we review multiple discoveries made with genome-wide or candidate gene approaches that have revealed significant insights into virus-host interactions. Genetic factors that have been identified include genes encoding virus receptors, receptor-modifying enzymes, and a wide variety of innate and adaptive immunity-related proteins. We discuss a range of pathogenic viruses, including influenza virus, respiratory syncytial virus, human immunodeficiency virus, human T cell leukemia virus, human papilloma virus, hepatitis B and C viruses, herpes simplex virus, norovirus, rotavirus, parvovirus, and Epstein-Barr virus. Understanding the genetic underpinnings that affect infectious disease outcomes should allow tailored treatment and prevention approaches in the future.


Subject(s)
Adaptive Immunity , Gene Expression Regulation/immunology , Genetic Predisposition to Disease , Host-Pathogen Interactions/genetics , Immunity, Innate , Virus Diseases/genetics , Cytokines/genetics , Cytokines/immunology , Genome-Wide Association Study , Host-Pathogen Interactions/immunology , Human Genetics , Humans , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/immunology , Receptors, KIR/genetics , Receptors, KIR/immunology , Receptors, Virus/genetics , Receptors, Virus/immunology , Signal Transduction , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/genetics , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/immunology , Virus Diseases/immunology , Virus Diseases/pathology , Virus Diseases/virology
5.
PLoS Pathog ; 19(3): e1011297, 2023 03.
Article in English | MEDLINE | ID: mdl-37000865

ABSTRACT

Macrophages are a first line of defense against pathogens. However, certain invading microbes modify macrophage responses to promote their own survival and growth. Mycobacterium tuberculosis (M.tb) is a human-adapted intracellular pathogen that exploits macrophages as an intracellular niche. It was previously reported that M.tb rapidly activates cAMP Response Element Binding Protein (CREB), a transcription factor that regulates diverse cellular responses in macrophages. However, the mechanism(s) underlying CREB activation and its downstream roles in human macrophage responses to M.tb are largely unknown. Herein we determined that M.tb-induced CREB activation is dependent on signaling through MAPK p38 in human monocyte-derived macrophages (MDMs). Using a CREB-specific inhibitor, we determined that M.tb-induced CREB activation leads to expression of immediate early genes including COX2, MCL-1, CCL8 and c-FOS, as well as inhibition of NF-kB p65 nuclear localization. These early CREB-mediated signaling events predicted that CREB inhibition would lead to enhanced macrophage control of M.tb growth, which we observed over days in culture. CREB inhibition also led to phosphorylation of RIPK3 and MLKL, hallmarks of necroptosis. However, this was unaccompanied by cell death at the time points tested. Instead, bacterial control corresponded with increased colocalization of M.tb with the late endosome/lysosome marker LAMP-1. Increased phagolysosomal fusion detected during CREB inhibition was dependent on RIPK3-induced pMLKL, indicating that M.tb-induced CREB signaling limits phagolysosomal fusion through inhibition of the necroptotic signaling pathway. Altogether, our data show that M.tb induces CREB activation in human macrophages early post-infection to create an environment conducive to bacterial growth. Targeting certain aspects of the CREB-induced signaling pathway may represent an innovative approach for development of host-directed therapeutics to combat TB.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Macrophages , Mycobacterium tuberculosis , Tuberculosis , Humans , Cyclic AMP Response Element-Binding Protein/metabolism , Macrophages/metabolism , Mycobacterium tuberculosis/genetics , Necroptosis , NF-kappa B/metabolism , Phagosomes/metabolism , Signal Transduction , Tuberculosis/metabolism , Tuberculosis/microbiology
6.
J Infect Dis ; 228(Suppl 7): S522-S535, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37723997

ABSTRACT

Ebola virus (EBOV) disease is marked by rapid virus replication and spread. EBOV enters the cell by macropinocytosis and replicates in the cytoplasm, and nascent virions egress from the cell surface to infect neighboring cells. Here, we show that EBOV uses an alternate route to disseminate: tunneling nanotubes (TNTs). TNTs, an actin-based long-range intercellular communication system, allows for direct exchange of cytosolic constituents between cells. Using live, scanning electron, and high-resolution quantitative 3-dimensional microscopy, we show that EBOV infection of primary human cells results in the enhanced formation of TNTs containing viral nucleocapsids. TNTs promote the intercellular transfer of nucleocapsids in the absence of live virus, and virus could replicate in cells devoid of entry factors after initial stall. Our studies suggest an alternate model of EBOV dissemination within the host, laying the groundwork for further investigations into the pathogenesis of filoviruses and, importantly, stimulating new areas of antiviral design.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Nanotubes , Humans , Cell Communication
7.
J Biol Chem ; 298(5): 101849, 2022 05.
Article in English | MEDLINE | ID: mdl-35314194

ABSTRACT

The pathogen Mycobacterium tuberculosis (M.tb) resides in human macrophages, wherein it exploits host lipids for survival. However, little is known about the interaction between M.tb and macrophage plasmalogens, a subclass of glycerophospholipids with a vinyl ether bond at the sn-1 position of the glycerol backbone. Lysoplasmalogens, produced from plasmalogens by hydrolysis at the sn-2 carbon by phospholipase A2, are potentially toxic but can be broken down by host lysoplasmalogenase, an integral membrane protein of the YhhN family that hydrolyzes the vinyl ether bond to release a fatty aldehyde and glycerophospho-ethanolamine or glycerophospho-choline. Curiously, M.tb encodes its own YhhN protein (MtbYhhN), despite having no endogenous plasmalogens. To understand the purpose of this protein, the gene for MtbYhhN (Rv1401) was cloned and expressed in Mycobacterium smegmatis (M.smeg). We found the partially purified protein exhibited abundant lysoplasmalogenase activity specific for lysoplasmenylethanolamine or lysoplasmenylcholine (pLPC) (Vmax∼15.5 µmol/min/mg; Km∼83 µM). Based on cell density, we determined that lysoplasmenylethanolamine, pLPC, lysophosphatidylcholine, and lysophosphatidylethanolamine were not toxic to M.smeg cells, but pLPC and LPC were highly toxic to M.smeg spheroplasts, which are cell wall-deficient mycobacterial forms. Importantly, spheroplasts prepared from M.smeg cells overexpressing MtbYhhN were protected from membrane disruption/lysis by pLPC, which was rapidly depleted from the media. Finally, we found that overexpression of full-length MtbYhhN in M.smeg increased its survival within human macrophages by 2.6-fold compared to vector controls. These data support the hypothesis that MtbYhhN protein confers a growth advantage for mycobacteria in macrophages by cleaving toxic host pLPC into potentially energy-producing products.


Subject(s)
Hydrolases , Membrane Proteins , Mycobacterium tuberculosis , Humans , Hydrolases/genetics , Hydrolases/metabolism , Lysophosphatidylcholines , Lysophospholipids , Macrophages/microbiology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mycobacterium smegmatis , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Plasmalogens/metabolism
8.
Proc Natl Acad Sci U S A ; 121(44): e2418528121, 2024 Oct 29.
Article in English | MEDLINE | ID: mdl-39432798
9.
Int J Mol Sci ; 23(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35055170

ABSTRACT

Tuberculosis (TB) infection, caused by the airborne pathogen Mycobacterium tuberculosis (M.tb), resulted in almost 1.4 million deaths in 2019, and the number of deaths is predicted to increase by 20% over the next 5 years due to the COVID-19 pandemic. Upon reaching the alveolar space, M.tb comes into close contact with the lung mucosa before and after its encounter with host alveolar compartment cells. Our previous studies show that homeostatic, innate soluble components of the alveolar lining fluid (ALF) can quickly alter the cell envelope surface of M.tb upon contact, defining subsequent M.tb-host cell interactions and infection outcomes in vitro and in vivo. We also demonstrated that ALF from 60+ year old elders (E-ALF) vs. healthy 18- to 45-year-old adults (A-ALF) is dysfunctional, with loss of homeostatic capacity and impaired innate soluble responses linked to high local oxidative stress. In this study, a targeted transcriptional assay shows that M.tb exposure to human ALF alters the expression of its cell envelope genes. Specifically, our results indicate that A-ALF-exposed M.tb upregulates cell envelope genes associated with lipid, carbohydrate, and amino acid metabolism, as well as genes associated with redox homeostasis and transcriptional regulators. Conversely, M.tb exposure to E-ALF shows a lesser transcriptional response, with most of the M.tb genes unchanged or downregulated. Overall, this study indicates that M.tb responds and adapts to the lung alveolar environment upon contact, and that the host ALF status, determined by factors such as age, might play an important role in determining infection outcome.


Subject(s)
Bacterial Capsules/genetics , Bacterial Capsules/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Adolescent , Adult , Age Factors , Aged , Bronchoalveolar Lavage Fluid , Cellular Structures , Female , Gene Expression Regulation, Bacterial , Humans , Lipopolysaccharides/biosynthesis , Lipopolysaccharides/genetics , Male , Mannosides/biosynthesis , Mannosides/genetics , Mannosyltransferases/biosynthesis , Mannosyltransferases/genetics , Middle Aged , Young Adult
10.
Eur Respir J ; 57(3)2021 03.
Article in English | MEDLINE | ID: mdl-32943400

ABSTRACT

INTRODUCTION: Sarcoidosis and tuberculosis are granulomatous pulmonary diseases characterised by heightened immune reactivity to Mycobacterium tuberculosis antigens. We hypothesised that an unsupervised analysis comparing the molecular characteristics of granulomas formed in response to M. tuberculosis antigens in patients with sarcoidosis or latent tuberculosis infection (LTBI) would provide novel insights into the pathogenesis of sarcoidosis. METHODS: A genomic analysis identified differentially expressed genes in granuloma-like cell aggregates formed by sarcoidosis (n=12) or LTBI patients (n=5) in an established in vitro human granuloma model wherein peripheral blood mononuclear cells were exposed to M. tuberculosis antigens (beads coated with purified protein derivative) and cultured for 7 days. Pathway analysis of differentially expressed genes identified canonical pathways, most notably antigen processing and presentation via phagolysosomes, as a prominent pathway in sarcoidosis granuloma formation. The phagolysosomal pathway promoted mechanistic target of rapamycin complex 1 (mTORc1)/STAT3 signal transduction. Thus, granuloma formation and related immune mediators were evaluated in the absence or presence of various pre-treatments known to prevent phagolysosome formation (chloroquine) or phagosome acidification (bafilomycin A1) or directly inhibit mTORc1 activation (rapamycin). RESULTS: In keeping with genomic analyses indicating enhanced phagolysosomal activation and predicted mTORc1 signalling, it was determined that sarcoidosis granuloma formation and related inflammatory mediator release was dependent upon phagolysosome assembly and acidification and mTORc1/S6/STAT3 signal transduction. CONCLUSIONS: Sarcoidosis granulomas exhibit enhanced and sustained intracellular antigen processing and presentation capacities, and related phagolysosome assembly and acidification are required to support mTORc1 signalling to promote sarcoidosis granuloma formation.


Subject(s)
Leukocytes, Mononuclear , Sarcoidosis , Granuloma , Humans , Phagosomes , Signal Transduction , TOR Serine-Threonine Kinases
11.
PLoS Pathog ; 15(3): e1007585, 2019 03.
Article in English | MEDLINE | ID: mdl-30897154

ABSTRACT

Nuclear receptors (NRs) are ligand-activated transcription factors that are expressed in a variety of cells, including macrophages. For decades, NRs have been therapeutic targets because their activity can be pharmacologically modulated by specific ligands and small molecule inhibitors. NRs regulate a variety of processes, including those intersecting metabolic and immune functions, and have been studied in regard to various autoimmune diseases. However, the complex roles of NRs in host response to infection are only recently being investigated. The NRs peroxisome proliferator-activated receptor γ (PPARγ) and liver X receptors (LXRs) have been most studied in the context of infectious diseases; however, recent work has also linked xenobiotic pregnane X receptors (PXRs), vitamin D receptor (VDR), REV-ERBα, the nuclear receptor 4A (NR4A) family, farnesoid X receptors (FXRs), and estrogen-related receptors (ERRs) to macrophage responses to pathogens. Pharmacological inhibition or antagonism of certain NRs can greatly influence overall disease outcome, and NRs that are protective against some diseases can lead to susceptibility to others. Targeting NRs as a novel host-directed treatment approach to infectious diseases appears to be a viable option, considering that these transcription factors play a pivotal role in macrophage lipid metabolism, cholesterol efflux, inflammatory responses, apoptosis, and production of antimicrobial byproducts. In the current review, we discuss recent findings concerning the role of NRs in infectious diseases with an emphasis on PPARγ and LXR, the two most studied. We also highlight newer work on the activity of emerging NRs during infection.


Subject(s)
Macrophages/metabolism , Receptors, Cytoplasmic and Nuclear/physiology , Animals , Bacteria , Communicable Diseases/metabolism , Communicable Diseases/microbiology , Fungi , Gene Expression Regulation/genetics , Humans , Ligands , Liver X Receptors/metabolism , PPAR gamma/metabolism , Receptors, Calcitriol , Receptors, Cytoplasmic and Nuclear/metabolism , Structure-Activity Relationship , Transcription Factors , Viruses
12.
Immunity ; 37(1): 35-47, 2012 Jul 27.
Article in English | MEDLINE | ID: mdl-22658523

ABSTRACT

Inflammasomes are multiprotein complexes that include members of the NLR (nucleotide-binding domain leucine-rich repeat containing) family and caspase-1. Once bacterial molecules are sensed within the macrophage, the inflammasome is assembled, mediating the activation of caspase-1. Caspase-11 mediates caspase-1 activation in response to lipopolysaccharide and bacterial toxins, and yet its role during bacterial infection is unknown. Here, we demonstrated that caspase-11 was dispensable for caspase-1 activation in response to Legionella, Salmonella, Francisella, and Listeria. We also determined that active mouse caspase-11 was required for restriction of L. pneumophila infection. Similarly, human caspase-4 and caspase-5, homologs of mouse caspase-11, cooperated to restrict L. pneumophila infection in human macrophages. Caspase-11 promoted the fusion of the L. pneumophila vacuole with lysosomes by modulating actin polymerization through cofilin. However, caspase-11 was dispensable for the fusion of lysosomes with phagosomes containing nonpathogenic bacteria, uncovering a fundamental difference in the trafficking of phagosomes according to their cargo.


Subject(s)
Actins/metabolism , Bacteria/immunology , Caspases/metabolism , Lysosomes/metabolism , Phagosomes/metabolism , Protein Multimerization , Actin Depolymerizing Factors/metabolism , Animals , Bacteria/growth & development , Bacterial Infections/immunology , Bacterial Infections/metabolism , Caspase 1/deficiency , Caspase 1/genetics , Caspase 1/metabolism , Caspases/deficiency , Caspases/genetics , Caspases, Initiator , Humans , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Phagosomes/microbiology , Phosphorylation
13.
J Immunol ; 203(8): 2252-2264, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31511357

ABSTRACT

The elderly population is more susceptible to pulmonary infections, including tuberculosis. In this article, we characterize the impact of aging on the phenotype of mouse alveolar macrophages (AMs) and their response to Mycobacterium tuberculosis. Uninfected AMs were isolated from bronchoalveolar lavage of young (3 mo) and old (18 mo) C57BL/6 mice. AMs from old mice expressed higher mRNA levels of CCL2, IFN-ß, IL-10, IL-12p40, TNF-α, and MIF than young mice, and old mice contained higher levels of CCL2, IL-1ß, IFN-ß, and MIF in their alveolar lining fluid. We identified two distinct AM subpopulations, a major CD11c+ CD11b- population and a minor CD11c+ CD11b+ population; the latter was significantly increased in old mice (4-fold). Expression of CD206, TLR2, CD16/CD32, MHC class II, and CD86 was higher in CD11c+ CD11b+ AMs, and these cells expressed monocytic markers Ly6C, CX3CR1, and CD115, suggesting monocytic origin. Sorted CD11c+ CD11b+ AMs from old mice expressed higher mRNA levels of CCL2, IL-1ß, and IL-6, whereas CD11c+ CD11b- AMs expressed higher mRNA levels of immune-regulatory cytokines IFN-ß and IL-10. CD11c+ CD11b+ AMs phagocytosed significantly more M. tuberculosis, which expressed higher RNA levels of genes required for M. tuberculosis survival. Our studies identify two distinct AM populations in old mice: a resident population and an increased CD11c+ CD11b+ AM subpopulation expressing monocytic markers, a unique inflammatory signature, and enhanced M. tuberculosis phagocytosis and survival when compared with resident CD11c+ CD11b- AMs, which are more immune regulatory in nature.


Subject(s)
Inflammation/immunology , Macrophages, Alveolar/immunology , Tuberculosis/immunology , Animals , Cytokines/immunology , Female , Inflammation/pathology , Macrophages, Alveolar/pathology , Mice , Mice, Inbred C57BL , Tuberculosis/pathology
14.
J Immunol ; 202(6): 1747-1754, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30710047

ABSTRACT

Immunonutrition as a therapeutic approach is rapidly gaining interest in the fight against infection. Targeting l-arginine metabolism is intriguing, considering this amino acid is the substrate for antimicrobial NO production by macrophages. The importance of l-arginine during infection is supported by the finding that inhibiting its synthesis from its precursor l-citrulline blunts host defense. During the first few weeks following pulmonary mycobacterial infection, we found a drastic increase in l-citrulline in the lung, even though serum concentrations were unaltered. This correlated with increased gene expression of the l-citrulline-generating (i.e., iNOS) and l-citrulline-using (i.e., Ass1) enzymes in key myeloid populations. Eliminating l-arginine synthesis from l-citrulline in myeloid cells via conditional deletion of either Ass1 or Asl resulted in increased Mycobacterium bovis bacillus Calmette-Guérin and Mycobacterium tuberculosis H37Rv burden in the lungs compared with controls. Our data illustrate the necessity of l-citrulline metabolism for myeloid defense against mycobacterial infection and highlight the potential for host-directed therapy against mycobacterial disease targeting this nutrient and/or its metabolic pathway.


Subject(s)
Arginine/metabolism , Citrulline/metabolism , Mycobacterium Infections/immunology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Animals , Arginine/immunology , Citrulline/immunology , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mycobacterium Infections/metabolism , Respiratory Tract Infections/immunology , Respiratory Tract Infections/metabolism
15.
PLoS Pathog ; 14(6): e1007100, 2018 06.
Article in English | MEDLINE | ID: mdl-29928066

ABSTRACT

Peroxisome proliferator-activated receptor (PPAR)γ is a global transcriptional regulator associated with anti-inflammatory actions. It is highly expressed in alveolar macrophages (AMs), which are unable to clear the intracellular pathogen Mycobacterium tuberculosis (M.tb). Although M.tb infection induces PPARγ in human macrophages, which contributes to M.tb growth, the mechanisms underlying this are largely unknown. We undertook NanoString gene expression analysis to identify novel PPARγ effectors that condition macrophages to be more susceptible to M.tb infection. This revealed several genes that are differentially regulated in response to PPARγ silencing during M.tb infection, including the Bcl-2 family members Bax (pro-apoptotic) and Mcl-1 (pro-survival). Apoptosis is an important defense mechanism that prevents the growth of intracellular microbes, including M.tb, but is limited by virulent M.tb. This suggested that M.tb differentially regulates Mcl-1 and Bax expression through PPARγ to limit apoptosis. In support of this, gene and protein expression analysis revealed that Mcl-1 expression is driven by PPARγ during M.tb infection in human macrophages. Further, 15-lipoxygenase (15-LOX) is critical for PPARγ activity and Mcl-1 expression. We also determined that PPARγ and 15-LOX regulate macrophage apoptosis during M.tb infection, and that pre-clinical therapeutics that inhibit Mcl-1 activity significantly limit M.tb intracellular growth in both human macrophages and an in vitro TB granuloma model. In conclusion, identification of the novel PPARγ effector Mcl-1 has determined PPARγ and 15-LOX are critical regulators of apoptosis during M.tb infection and new potential targets for host-directed therapy for M.tb.


Subject(s)
Apoptosis , Gene Expression Regulation , Macrophages, Alveolar/pathology , Mycobacterium tuberculosis/physiology , PPAR gamma/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Tuberculosis/pathology , Cells, Cultured , Humans , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/microbiology , PPAR gamma/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Signal Transduction , Tuberculosis/metabolism , Tuberculosis/microbiology
16.
J Infect Dis ; 219(12): 1858-1866, 2019 05 24.
Article in English | MEDLINE | ID: mdl-30929010

ABSTRACT

Despite intensive research efforts, several fundamental disease processes for tuberculosis (TB) remain poorly understood. A central enigma is that host immunity is necessary to control disease yet promotes transmission by causing lung immunopathology. Our inability to distinguish these processes makes it challenging to design rational novel interventions. Elucidating basic immune mechanisms likely requires both in vivo and in vitro analyses, since Mycobacterium tuberculosis is a highly specialized human pathogen. The classic immune response is the TB granuloma organized in three dimensions within extracellular matrix. Several groups are developing cell culture granuloma models. In January 2018, NIAID convened a workshop, entitled "3-D Human in vitro TB Granuloma Model" to advance the field. Here, we summarize the arguments for developing advanced TB cell culture models and critically review those currently available. We discuss how integrating complementary approaches, specifically organoids and mathematical modeling, can maximize progress, and conclude by discussing future challenges and opportunities.


Subject(s)
Granuloma/immunology , Tuberculosis/immunology , Animals , Granuloma/microbiology , Humans , Models, Theoretical , Mycobacterium tuberculosis/immunology , Organoids/immunology , Organoids/microbiology , Tuberculosis/microbiology
17.
J Infect Dis ; 220(3): 514-523, 2019 07 02.
Article in English | MEDLINE | ID: mdl-30923818

ABSTRACT

As we age, there is an increased risk for the development of tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) infection. Few studies consider that age-associated changes in the alveolar lining fluid (ALF) may increase susceptibility by altering soluble mediators of innate immunity. We assessed the impact of adult or elderly human ALF during Mtb infection in vitro and in vivo. We identified amplification of pro-oxidative and proinflammatory pathways in elderly ALF and decreased binding capability of surfactant-associated surfactant protein A (SP-A) and surfactant protein D (SP-D) to Mtb. Human macrophages infected with elderly ALF-exposed Mtb had reduced control and fewer phagosome-lysosome fusion events, which was reversed when elderly ALF was replenished with functional SP-A/SP-D. In vivo, exposure to elderly ALF exacerbated Mtb infection in young mice. Our studies demonstrate how the pulmonary environment changes as we age and suggest that Mtb may benefit from declining host defenses in the lung mucosa of the elderly.


Subject(s)
Lung/immunology , Lung/microbiology , Respiratory Mucosa/immunology , Respiratory Mucosa/microbiology , Tuberculosis/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Immunity, Innate/immunology , Inflammation/immunology , Inflammation/microbiology , Lysosomes/immunology , Lysosomes/microbiology , Macrophages/immunology , Macrophages/microbiology , Male , Middle Aged , Mycobacterium tuberculosis/immunology , Phagosomes/immunology , Phagosomes/microbiology , Pulmonary Surfactant-Associated Protein A/immunology , Pulmonary Surfactant-Associated Protein D/immunology , Tuberculosis/microbiology , Young Adult
18.
Am J Respir Cell Mol Biol ; 60(1): 84-95, 2019 01.
Article in English | MEDLINE | ID: mdl-30134122

ABSTRACT

The mechanisms underlying abnormal granuloma formation in patients with sarcoidosis are complex and remain poorly understood. A novel in vitro human granuloma model was used to determine the molecular mechanisms of granuloma genesis in patients with sarcoidosis in response to putative disease-causing mycobacterial antigens. Peripheral blood mononuclear cells (PBMCs) from patients with active sarcoidosis and from normal, disease-free control subjects were incubated for 7 days with purified protein derivative-coated polystyrene beads. Molecular responses, as reflected by differential expression of genes, extracellular cytokine patterns, and cell surface receptor expression, were analyzed. Unbiased systems biology approaches were used to identify signaling pathways engaged during granuloma formation. Model findings were compared with human lung and mediastinal lymph node gene expression profiles. Compared with identically treated PBMCs of control subjects (n = 5), purified protein derivative-treated sarcoidosis PBMCs (n = 6) were distinguished by the formation of cellular aggregates resembling granulomas. Ingenuity Pathway Analysis of differential expression gene patterns identified molecular pathways that are primarily regulated by IL-13, which promotes alternatively activated (M2) macrophage polarization. M2 polarization was further demonstrated by immunohistochemistry performed on the in vitro sarcoidosis granuloma-like structures. IL-13-regulated gene pathways were confirmed in human sarcoidosis lung and mediastinal lymph node tissues. The in vitro human sarcoidosis granuloma model provides novel insights into early granuloma formation, particularly IL-13 regulation of molecular networks that regulate M2 macrophage polarization. M2 macrophages are predisposed to aggregation and multinucleated giant cell formation, which are characteristic features of sarcoidosis granulomas. Clinical trial registered with www.clinicaltrials.gov (NCT01857401).


Subject(s)
Gene Expression Regulation , Granuloma/immunology , Interleukin-13/metabolism , Leukocytes, Mononuclear/immunology , Lung/immunology , Macrophages/immunology , Sarcoidosis, Pulmonary/immunology , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Granuloma/genetics , Granuloma/metabolism , Granuloma/pathology , Humans , In Vitro Techniques , Interleukin-13/genetics , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Lung/metabolism , Lung/pathology , Macrophages/metabolism , Macrophages/pathology , Sarcoidosis, Pulmonary/genetics , Sarcoidosis, Pulmonary/metabolism , Sarcoidosis, Pulmonary/pathology , Transcriptome
19.
J Immunol ; 198(5): 1985-1994, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28093527

ABSTRACT

Macrophage intracellular pathogen killing is defective in cystic fibrosis (CF), despite abundant production of reactive oxygen species (ROS) in lung tissue. Burkholderia species can cause serious infection in CF and themselves affect key oxidase components in murine non-CF cells. However, it is unknown whether human CF macrophages have an independent defect in the oxidative burst and whether Burkholderia contributes to this defect in terms of assembly of the NADPH oxidase complex and subsequent ROS production. In this article, we analyze CF and non-CF human monocyte-derived macrophages (MDMs) for ROS production, NADPH assembly capacity, protein kinase C expression, and calcium release in response to PMA and CF pathogens. CF MDMs demonstrate a nearly 60% reduction in superoxide production after PMA stimulation compared with non-CF MDMs. Although CF MDMs generally have increased total NADPH component protein expression, they demonstrate decreased expression of the calcium-dependent protein kinase C conventional subclass α/ß leading to reduced phosphorylation of NADPH oxidase components p47 phox and p40 phox in comparison with non-CF MDMs. Ingestion of B. cenocepacia independently contributes to and worsens the overall oxidative burst deficits in CF MDMs compared with non-CF MDMs. Together, these results provide evidence for inherent deficits in the CF macrophage oxidative burst caused by decreased phosphorylation of NADPH oxidase cytosolic components that are augmented by Burkholderia These findings implicate a critical role for defective macrophage oxidative responses in persistent bacterial infections in CF and create new opportunities for boosting the macrophage immune response to limit infection.


Subject(s)
Burkholderia Infections/immunology , Burkholderia cenocepacia/immunology , Cystic Fibrosis/immunology , Macrophages/immunology , NADPH Oxidases/metabolism , Protein Kinase C/metabolism , Respiratory Burst , Animals , Calcium/metabolism , Cells, Cultured , Down-Regulation , Humans , Mice , Phosphorylation , Reactive Oxygen Species/metabolism
20.
Article in English | MEDLINE | ID: mdl-29311080

ABSTRACT

Mycobacterium abscessus has emerged as an important pathogen in people with chronic inflammatory lung diseases such as cystic fibrosis, and recent reports suggest that it may be transmissible by fomites. M. abscessus exhibits two major colony morphology variants: a smooth morphotype (MaSm ) and a rough morphotype (MaRg ). Biofilm formation, prolonged intracellular survival, and colony variant diversity can each contribute to the persistence of M. abscessus and other bacterial pathogens in chronic pulmonary diseases. A prevailing paradigm of chronic M. abscessus infection is that MaSm is a noninvasive, biofilm-forming, persistent phenotype and MaRg an invasive phenotype that is unable to form biofilms. We show that MaRg is hyperaggregative and forms biofilm-like aggregates, which, like MaSm biofilm aggregates, are significantly more tolerant than planktonic variants to acidic pHs, hydrogen peroxide (H2O2), and treatment with amikacin or azithromycin. We further show that both variants are recalcitrant to antibiotic treatment inside human macrophage-like cells and that MaRg is more refractory than MaSm to azithromycin. Our results indicate that biofilm-like aggregation and protracted intracellular survival may each contribute to the persistence of this problematic pathogen in the face of antimicrobial agents regardless of morphotype. Biofilms of each M. abscessus variant are rapidly killed, however, by acetic acid, which may help to prevent local fomite transmission.


Subject(s)
Acetic Acid/pharmacology , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Mycobacterium abscessus/drug effects , Azithromycin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL