Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell ; 186(25): 5587-5605.e27, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38029745

ABSTRACT

The number one cause of human fetal death are defects in heart development. Because the human embryonic heart is inaccessible and the impacts of mutations, drugs, and environmental factors on the specialized functions of different heart compartments are not captured by in vitro models, determining the underlying causes is difficult. Here, we established a human cardioid platform that recapitulates the development of all major embryonic heart compartments, including right and left ventricles, atria, outflow tract, and atrioventricular canal. By leveraging 2D and 3D differentiation, we efficiently generated progenitor subsets with distinct first, anterior, and posterior second heart field identities. This advance enabled the reproducible generation of cardioids with compartment-specific in vivo-like gene expression profiles, morphologies, and functions. We used this platform to unravel the ontogeny of signal and contraction propagation between interacting heart chambers and dissect how mutations, teratogens, and drugs cause compartment-specific defects in the developing human heart.


Subject(s)
Heart Diseases , Heart Ventricles , Heart , Humans , Transcriptome/genetics , Cell Line , Gene Expression Regulation, Developmental , Heart Diseases/genetics , Heart Diseases/metabolism
2.
Cell ; 184(12): 3299-3317.e22, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34019794

ABSTRACT

Organoids capable of forming tissue-like structures have transformed our ability to model human development and disease. With the notable exception of the human heart, lineage-specific self-organizing organoids have been reported for all major organs. Here, we established self-organizing cardioids from human pluripotent stem cells that intrinsically specify, pattern, and morph into chamber-like structures containing a cavity. Cardioid complexity can be controlled by signaling that instructs the separation of cardiomyocyte and endothelial layers and by directing epicardial spreading, inward migration, and differentiation. We find that cavity morphogenesis is governed by a mesodermal WNT-BMP signaling axis and requires its target HAND1, a transcription factor linked to developmental heart chamber defects. Upon cryoinjury, cardioids initiated a cell-type-dependent accumulation of extracellular matrix, an early hallmark of both regeneration and heart disease. Thus, human cardioids represent a powerful platform to mechanistically dissect self-organization, congenital heart defects and serve as a foundation for future translational research.


Subject(s)
Heart/embryology , Organogenesis , Organoids/embryology , Activins/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Bone Morphogenetic Proteins/metabolism , Calcium/metabolism , Cell Line , Cell Lineage , Chickens , Endothelial Cells/cytology , Extracellular Matrix Proteins/metabolism , Female , Fibroblasts/cytology , Homeobox Protein Nkx-2.5/metabolism , Humans , Male , Mesoderm/embryology , Models, Biological , Myocardium/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Wnt Proteins/metabolism
3.
Genetics ; 210(2): 435-443, 2018 10.
Article in English | MEDLINE | ID: mdl-30143594

ABSTRACT

Sponges (Porifera) represent one of the most basally branching animal clades with key relevance for evolutionary studies, stem cell biology, and development. Despite a long history of sponges as experimental model systems, however, functional molecular studies are still very difficult to perform in these animals. Here, we report the establishment of transgenic technology as a basic and versatile experimental tool for sponge research. We demonstrate that slice explants of the demosponge Suberites domuncula regenerate functional sponge tissue and can be cultured for extended periods of time, providing easy experimental access under controlled conditions. We further show that an engineered expression construct driving the enhanced green fluorescence protein (egfp) gene under control of the Suberites domuncula ß-actin locus can be transfected into such tissue cultures, and that faithfully spliced transcripts are produced from such transfected DNA. Finally, by combining fluorescence-activated cell sorting (FACS) with quantitative PCR, we validate that transfected cells can be specifically reisolated from tissue based on their fluorescence. Although the number of detected enhanced green fluorescent protein (EGFP)-expressing cells is still limited, our approach represents the first successful introduction and expression of exogenous DNA in a sponge. These results represent a significant advance for the use of transgenic technology in a cornerstone phylum, for instance for the use in lineage tracing experiments.


Subject(s)
Suberites/genetics , Transfection/methods , Actins/genetics , Actins/metabolism , Animals , Animals, Genetically Modified , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL