Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Mol Phylogenet Evol ; 188: 107905, 2023 11.
Article in English | MEDLINE | ID: mdl-37595933

ABSTRACT

Selecting the best model of sequence evolution for a multiple-sequence-alignment (MSA) constitutes the first step of phylogenetic tree reconstruction. Common approaches for inferring nucleotide models typically apply maximum likelihood (ML) methods, with discrimination between models determined by one of several information criteria. This requires tree reconstruction and optimisation which can be computationally expensive. We demonstrate that neural networks can be used to perform model selection, without the need to reconstruct trees, optimise parameters, or calculate likelihoods. We introduce ModelRevelator, a model selection tool underpinned by two deep neural networks. The first neural network, NNmodelfind, recommends one of six commonly used models of sequence evolution, ranging in complexity from Jukes and Cantor to General Time Reversible. The second, NNalphafind, recommends whether or not a Γ-distributed rate heterogeneous model should be incorporated, and if so, provides an estimate of the shape parameter, ɑ. Users can simply input an MSA into ModelRevelator, and swiftly receive output recommending the evolutionary model, inclusive of the presence or absence of rate heterogeneity, and an estimate of ɑ. We show that ModelRevelator performs comparably with likelihood-based methods and the recently published machine learning method ModelTeller over a wide range of parameter settings, with significant potential savings in computational effort. Further, we show that this performance is not restricted to the alignments on which the networks were trained, but is maintained even on unseen empirical data. We expect that ModelRevelator will provide a valuable alternative for phylogeneticists, especially where traditional methods of model selection are computationally prohibitive.


Subject(s)
Deep Learning , Likelihood Functions , Phylogeny , Nucleotides , Sequence Alignment
3.
Bioessays ; 42(4): e1900222, 2020 04.
Article in English | MEDLINE | ID: mdl-31997382

ABSTRACT

The recent discovery and structure determination of a novel ubiquitin-like dimerization domain in protein kinase D (PKD) has significant implications for its activation. PKD is a serine/threonine kinase activated by the lipid second messenger diacylglycerol (DAG). It is an essential and highly conserved protein that is implicated in plasma membrane directed trafficking processes from the trans-Golgi network. However, many open questions surround its mechanism of activation, its localization, and its role in the biogenesis of cargo transport carriers. In reviewing this field, the focus is primarily on the mechanisms that control the activation of PKD at precise locations in the cell. In light of the new structural findings, the understanding of the mechanisms underlying PKD activation is critically evaluated, with particular emphasis on the role of dimerization in PKD autophosphorylation, and the provenance and recognition of the DAG that activates PKD.


Subject(s)
Diglycerides/metabolism , Dimerization , Protein Kinase C/chemistry , Protein Kinase C/metabolism , Signal Transduction , Animals , Catalytic Domain , Cell Membrane/metabolism , Enzyme Activation , Humans , Phosphorylation , Phylogeny , Protein Binding , Protein Domains , Protein Kinase C/genetics , Protein Processing, Post-Translational , trans-Golgi Network/metabolism
4.
Mol Biol Evol ; 37(12): 3632-3641, 2020 12 16.
Article in English | MEDLINE | ID: mdl-32637998

ABSTRACT

Maximum likelihood and maximum parsimony are two key methods for phylogenetic tree reconstruction. Under certain conditions, each of these two methods can perform more or less efficiently, resulting in unresolved or disputed phylogenies. We show that a neural network can distinguish between four-taxon alignments that were evolved under conditions susceptible to either long-branch attraction or long-branch repulsion. When likelihood and parsimony methods are discordant, the neural network can provide insight as to which tree reconstruction method is best suited to the alignment. When applied to the contentious case of Strepsiptera evolution, our method shows robust support for the current scientific view, that is, it places Strepsiptera with beetles, distant from flies.


Subject(s)
Genetic Techniques , Neural Networks, Computer , Phylogeny , Animals , Coleoptera/genetics
5.
Mol Biol Evol ; 37(5): 1530-1534, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32011700

ABSTRACT

IQ-TREE (http://www.iqtree.org, last accessed February 6, 2020) is a user-friendly and widely used software package for phylogenetic inference using maximum likelihood. Since the release of version 1 in 2014, we have continuously expanded IQ-TREE to integrate a plethora of new models of sequence evolution and efficient computational approaches of phylogenetic inference to deal with genomic data. Here, we describe notable features of IQ-TREE version 2 and highlight the key advantages over other software.


Subject(s)
Evolution, Molecular , Genomics , Models, Genetic , Phylogeny , Software
6.
Nature ; 515(7525): 112-5, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25156256

ABSTRACT

In bilaterians, three orthogonal body axes define the animal form, with distinct anterior-posterior, dorsal-ventral and left-right asymmetries. The key signalling factors are Wnt family proteins for the anterior-posterior axis, Bmp family proteins for the dorsal-ventral axis and Nodal for the left-right axis. Cnidarians, the sister group to bilaterians, are characterized by one oral-aboral body axis, which exhibits a distinct biradiality of unknown molecular nature. Here we analysed the biradial growth pattern in the radially symmetrical cnidarian polyp Hydra, and we report evidence of Nodal in a pre-bilaterian clade. We identified a Nodal-related gene (Ndr) in Hydra magnipapillata, and this gene is essential for setting up an axial asymmetry along the main body axis. This asymmetry defines a lateral signalling centre, inducing a new body axis of a budding polyp orthogonal to the mother polyp's axis. Ndr is expressed exclusively in the lateral bud anlage and induces Pitx, which encodes an evolutionarily conserved transcription factor that functions downstream of Nodal. Reminiscent of its function in vertebrates, Nodal acts downstream of ß-Catenin signalling. Our data support an evolutionary scenario in which a 'core-signalling cassette' consisting of ß-Catenin, Nodal and Pitx pre-dated the cnidarian-bilaterian split. We presume that this cassette was co-opted for various modes of axial patterning: for example, for lateral branching in cnidarians and left-right patterning in bilaterians.


Subject(s)
Body Patterning , Hydra/embryology , Hydra/genetics , Nodal Protein/genetics , Nodal Protein/metabolism , Signal Transduction , Animals , Body Patterning/genetics , Feedback, Physiological , Gene Expression Regulation, Developmental , Hydra/metabolism , Paired Box Transcription Factors/metabolism , Signal Transduction/genetics , beta Catenin/metabolism
7.
Nucleic Acids Res ; 45(7): 3752-3766, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28025392

ABSTRACT

The conserved INO80 chromatin remodeling complex is involved in regulation of DNA damage repair, replication and transcription. It is commonly recruited to the transcription start region and contributes to the establishment of promoter-proximal nucleosomes. We find a substantial influence of INO80 on nucleosome dynamics and gene expression during stress induced transcription. Transcription induced by osmotic stress leads to genome-wide remodeling of promoter proximal nucleosomes. INO80 function is required for timely return of evicted nucleosomes to the 5΄ end of induced genes. Reduced INO80 function in Arp8-deficient cells leads to correlated prolonged transcription and nucleosome eviction. INO80 and the related complex SWR1 regulate incorporation of the H2A.Z isoform at promoter proximal nucleosomes. However, H2A.Z seems not to influence osmotic stress induced gene regulation. Furthermore, we show that high rates of transcription promote INO80 recruitment to promoter regions, suggesting a connection between active transcription and promoter proximal nucleosome remodeling. In addition, we find that absence of INO80 enhances bidirectional promoter activity at highly induced genes and expression of a number of stress induced transcripts. We suggest that INO80 has a direct repressive role via promoter proximal nucleosome remodeling to limit high levels of transcription in yeast.


Subject(s)
Gene Expression Regulation, Fungal , Nucleosomes/metabolism , Promoter Regions, Genetic , Repressor Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Chromatin Assembly and Disassembly , Histones/physiology , Osmotic Pressure , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcriptional Activation
9.
Mol Biol Evol ; 33(3): 726-37, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26601937

ABSTRACT

The evolution of reptiles, birds, and mammals was associated with the origin of unique integumentary structures. Studies on lizards, chicken, and humans have suggested that the evolution of major structural proteins of the outermost, cornified layers of the epidermis was driven by the diversification of a gene cluster called Epidermal Differentiation Complex (EDC). Turtles have evolved unique defense mechanisms that depend on mechanically resilient modifications of the epidermis. To investigate whether the evolution of the integument in these reptiles was associated with specific adaptations of the sequences and expression patterns of EDC-related genes, we utilized newly available genome sequences to determine the epidermal differentiation gene complement of turtles. The EDC of the western painted turtle (Chrysemys picta bellii) comprises more than 100 genes, including at least 48 genes that encode proteins referred to as beta-keratins or corneous beta-proteins. Several EDC proteins have evolved cysteine/proline contents beyond 50% of total amino acid residues. Comparative genomics suggests that distinct subfamilies of EDC genes have been expanded and partly translocated to loci outside of the EDC in turtles. Gene expression analysis in the European pond turtle (Emys orbicularis) showed that EDC genes are differentially expressed in the skin of the various body sites and that a subset of beta-keratin genes within the EDC as well as those located outside of the EDC are expressed predominantly in the shell. Our findings give strong support to the hypothesis that the evolutionary innovation of the turtle shell involved specific molecular adaptations of epidermal differentiation.


Subject(s)
Animal Shells , Biological Evolution , Epidermis , Genome , Genomics , Proteins/genetics , Turtles/genetics , Amino Acid Sequence , Animals , Conserved Sequence , Epidermis/metabolism , Evolution, Molecular , Gene Duplication , Gene Expression Regulation , Genomics/methods , Multigene Family , Phylogeny , Repetitive Sequences, Nucleic Acid , Translocation, Genetic , Turtles/classification
10.
Mol Biol Evol ; 32(1): 268-74, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25371430

ABSTRACT

Large phylogenomics data sets require fast tree inference methods, especially for maximum-likelihood (ML) phylogenies. Fast programs exist, but due to inherent heuristics to find optimal trees, it is not clear whether the best tree is found. Thus, there is need for additional approaches that employ different search strategies to find ML trees and that are at the same time as fast as currently available ML programs. We show that a combination of hill-climbing approaches and a stochastic perturbation method can be time-efficiently implemented. If we allow the same CPU time as RAxML and PhyML, then our software IQ-TREE found higher likelihoods between 62.2% and 87.1% of the studied alignments, thus efficiently exploring the tree-space. If we use the IQ-TREE stopping rule, RAxML and PhyML are faster in 75.7% and 47.1% of the DNA alignments and 42.2% and 100% of the protein alignments, respectively. However, the range of obtaining higher likelihoods with IQ-TREE improves to 73.3-97.1%. IQ-TREE is freely available at http://www.cibiv.at/software/iqtree.


Subject(s)
Algorithms , Computational Biology/methods , Likelihood Functions , Genome , Phylogeny , Sequence Analysis, DNA , Software , Time Factors
12.
Genetics ; 225(1)2023 08 31.
Article in English | MEDLINE | ID: mdl-37467473

ABSTRACT

Efficient repair of DNA lesions is essential for the faithful transmission of genetic information between somatic cells and for genome integrity across generations. Plants have multiple, partially redundant, and overlapping DNA repair pathways, probably due to the less constricted germline and the inevitable exposure to light including higher energy wavelengths. Many proteins involved in DNA repair and their mode of actions are well described. In contrast, a role for DNA damage-associated RNA components, evident from many other organisms, is less well understood. Here, we have challenged young Arabidopsis thaliana plants with two different types of genotoxic stress and performed de novo assembly and transcriptome analysis. We identified three long noncoding RNAs (lncRNAs) that are lowly or not expressed under regular conditions but up-regulated or induced by DNA damage. We generated CRISPR/Cas deletion mutants and found that the absence of the lncRNAs impairs the recovery capacity of the plants from genotoxic stress. The genetic loci are highly conserved among world-wide distributed Arabidopsis accessions and within related species in the Brassicaceae group. Together, these results suggest that the lncRNAs have a conserved function in connection with DNA damage and provide a basis for mechanistic analysis of their role.


Subject(s)
Arabidopsis Proteins , Arabidopsis , RNA, Long Noncoding , Arabidopsis/genetics , Arabidopsis/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , DNA Damage , DNA Repair/genetics , Plants/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
13.
Nat Ecol Evol ; 6(12): 1921-1939, 2022 12.
Article in English | MEDLINE | ID: mdl-36396969

ABSTRACT

Transcription factors are crucial drivers of cellular differentiation during animal development and often share ancient evolutionary origins. The T-box transcription factor Brachyury plays a pivotal role as an early mesoderm determinant and neural repressor in vertebrates; yet, the ancestral function and key evolutionary transitions of the role of this transcription factor remain obscure. Here, we present a genome-wide target-gene screen using chromatin immunoprecipitation sequencing in the sea anemone Nematostella vectensis, an early branching non-bilaterian, and the sea urchin Strongylocentrotus purpuratus, a representative of the sister lineage of chordates. Our analysis reveals an ancestral gene regulatory feedback loop connecting Brachyury, FoxA and canonical Wnt signalling involved in axial patterning that predates the cnidarian-bilaterian split about 700 million years ago. Surprisingly, we also found that part of the gene regulatory network controlling the fate of neuromesodermal progenitors in vertebrates was already present in the common ancestor of cnidarians and bilaterians. However, while several endodermal and neuronal Brachyury target genes are ancestrally shared, hardly any of the key mesodermal downstream targets in vertebrates are found in the sea anemone or the sea urchin. Our study suggests that a limited number of target genes involved in mesoderm formation were newly acquired in the vertebrate lineage, leading to a dramatic shift in the function of this ancestral developmental regulator.


Subject(s)
Mesoderm , Sea Anemones , Animals , Feedback , Transcription Factors , Sea Anemones/genetics
14.
Dev Biol ; 347(1): 24-39, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20707997

ABSTRACT

Regeneration is widespread throughout the animal kingdom, but our molecular understanding of this process in adult animals remains poorly understood. Wnt/ß-catenin signaling plays crucial roles throughout animal life from early development to adulthood. In intact and regenerating planarians, the regulation of Wnt/ß-catenin signaling functions to maintain and specify anterior/posterior (A/P) identity. Here, we explore the expression kinetics and RNAi phenotypes for secreted members of the Wnt signaling pathway in the planarian Schmidtea mediterranea. Smed-wnt and sFRP expression during regeneration is surprisingly dynamic and reveals fundamental aspects of planarian biology that have been previously unappreciated. We show that after amputation, a wounding response precedes rapid re-organization of the A/P axis. Furthermore, cells throughout the body plan can mount this response and reassess their new A/P location in the complete absence of stem cells. While initial stages of the amputation response are stem cell independent, tissue remodeling and the integration of a new A/P address with anatomy are stem cell dependent. We also show that WNT5 functions in a reciprocal manner with SLIT to pattern the planarian mediolateral axis, while WNT11-2 patterns the posterior midline. Moreover, we perform an extensive phylogenetic analysis on the Smed-wnt genes using a method that combines and integrates both sequence and structural alignments, enabling us to place all nine genes into Wnt subfamilies for the first time.


Subject(s)
Planarians/physiology , Regeneration/physiology , Signal Transduction , Wnt Proteins/metabolism , Amputation, Surgical , Animals , Body Patterning/genetics , Frizzled Receptors/genetics , Frizzled Receptors/metabolism , Gene Expression Regulation, Developmental , Humans , Models, Biological , Nerve Tissue Proteins/metabolism , Phylogeny , Planarians/embryology , Planarians/genetics , Solubility , Stem Cells/cytology , Stem Cells/metabolism , Tail , Wnt Proteins/genetics
15.
Nature ; 433(7022): 156-60, 2005 Jan 13.
Article in English | MEDLINE | ID: mdl-15650739

ABSTRACT

The Wnt gene family encodes secreted signalling molecules that control cell fate in animal development and human diseases. Despite its significance, the evolution of this metazoan-specific protein family is unclear. In vertebrates, twelve Wnt subfamilies were defined, of which only six have counterparts in Ecdysozoa (for example, Drosophila and Caenorhabditis). Here, we report the isolation of twelve Wnt genes from the sea anemone Nematostella vectensis, a species representing the basal group within cnidarians. Cnidarians are diploblastic animals and the sister-group to bilaterian metazoans. Phylogenetic analyses of N. vectensis Wnt genes reveal a thus far unpredicted ancestral diversity within the Wnt family. Cnidarians and bilaterians have at least eleven of the twelve known Wnt gene subfamilies in common; five subfamilies appear to be lost in the protostome lineage. Expression patterns of Wnt genes during N. vectensis embryogenesis indicate distinct roles of Wnts in gastrulation, resulting in serial overlapping expression domains along the primary axis of the planula larva. This unexpectedly complex inventory of Wnt family signalling factors evolved in early multi-cellular animals about 650 million years (Myr) ago, predating the Cambrian explosion by at least 100 Myr (refs 5, 8). It emphasizes the crucial function of Wnt genes in the diversification of eumetazoan body plans.


Subject(s)
Evolution, Molecular , Intercellular Signaling Peptides and Proteins/genetics , Multigene Family/genetics , Sea Anemones/genetics , Animals , Bayes Theorem , Cloning, Molecular , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Intercellular Signaling Peptides and Proteins/metabolism , Molecular Sequence Data , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sea Anemones/embryology , Sequence Alignment , Wnt Proteins
16.
Dev Biol ; 330(1): 186-99, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19217898

ABSTRACT

Wnt genes and beta-catenin signaling are involved in axial patterning processes in vertebrate embryogenesis in setting up the Spemann-Mangold organizer in amphibian embryos. An organizer with a similar function is present in the hypostome of an adult Hydra polyp. Previously, a Hydra ortholog of Wnt3 (HyWnt3), which is expressed in the hypostome, has been described. Here, ten additional Hydra Wnt genes have been identified. Of these, six (HyWnt1, -7, -9/10a, -9/10c, -11, and -16) are expressed in the adult hypostome. And, as is HyWnt3, these six Wnt genes are also expressed when a new head organizer is formed during head regeneration and bud formation. The kinetics of Wnt gene expressions during head regeneration suggests that a cascade of consecutive Wnt activation accompanies regeneration, and HyWnt3 begins this cascade. Recombinant HyWnt3 protein induced body column tissue to undergo head formation. It also increased the head formation capacity in the head regeneration-deficient mutant strain reg-16 to that of wild-type strains. In addition our data reveal striking similarities in the molecular basis of the organizer in Hydra and axis polarization in chordates (e.g. Spemann's organizer) as well as it's role in regeneration suggesting a conserved function of Wnt signaling in setting up this ancient metazoan signaling center.


Subject(s)
Hydra/physiology , Regeneration/physiology , Wnt Proteins/metabolism , Animals , Body Patterning/physiology , Embryo, Nonmammalian/metabolism , Evolution, Molecular , Hydra/embryology , Phylogeny , Sequence Alignment , Signal Transduction , Wnt Proteins/genetics , beta Catenin/genetics , beta Catenin/metabolism
17.
Mol Ecol ; 18(6): 1225-38, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19226321

ABSTRACT

Until recently, cave bears were believed to have only inhabited Europe. However, recent morphological evidence suggests that cave bears' geographic range extended as far east as Transbaikalia, Eastern Siberia. These Asian cave bears were morphologically distinct from European cave bears. However, how they related to European lineages remains unclear, stressing the need to assess the phylogenetic and phylogeographic relationship between Asian cave bears and their European relatives. In this work, we address this issue using a 227 base-pair fragment of the mitochondrial control region obtained from nine fossil bone samples from eight sites from the Urals, Caucasus, Altai Mountains, Ukraine and Yana River region in Eastern Siberia. Results of the phylogenetic analyses indicate that (i) the cave bear from the Yana River is most closely related to cave bears from the Caucasus region; (ii) the Caucasus/Yana group of bears is genetically very distinct from both European cave bears and brown bears, suggesting that these bears could represent an independent species; and (iii) the Western European cave bear lineage reached at least temporarily to the Altai Mountains, 7000 km east of their known centre of distribution. These results suggest that the diversity of cave bears was greater than previously believed, and that they could survive in a much wider range of ecological conditions than previously assumed. They also agree with recent studies on other extinct and extant species, such as wolves, hyenas and steppe bison, which have also revealed higher genetic and ecological diversity in Pleistocene populations than previously known.


Subject(s)
Evolution, Molecular , Fossils , Phylogeny , Ursidae/genetics , Animals , DNA, Mitochondrial/genetics , Europe , Geography , Sequence Alignment , Sequence Analysis, DNA , Siberia , Ukraine
18.
Front Microbiol ; 10: 1571, 2019.
Article in English | MEDLINE | ID: mdl-31379764

ABSTRACT

Climate change is causing arctic regions to warm disproportionally faster than those at lower latitudes, leading to alterations in carbon and nitrogen cycling, and potentially higher greenhouse gas emissions. It is thus increasingly important to better characterize the microorganisms driving arctic biogeochemical processes and their potential responses to changing conditions. Here, we describe a novel thaumarchaeon enriched from an arctic soil, Candidatus Nitrosocosmicus arcticus strain Kfb, which has been maintained for seven years in stable laboratory enrichment cultures as an aerobic ammonia oxidizer, with ammonium or urea as substrates. Genomic analyses show that this organism harbors all genes involved in ammonia oxidation and in carbon fixation via the 3-hydroxypropionate/4-hydroxybutyrate cycle, characteristic of all AOA, as well as the capability for urea utilization and potentially also for heterotrophic metabolism, similar to other AOA. Ca. N. arcticus oxidizes ammonia optimally between 20 and 28°C, well above average temperatures in its native high arctic environment (-13-4°C). Ammonia oxidation rates were nevertheless much lower than those of most cultivated mesophilic AOA (20-45°C). Intriguingly, we repeatedly observed apparent faster growth rates (based on marker gene counts) at lower temperatures (4-8°C) but without detectable nitrite production. Together with potential metabolisms predicted from its genome content, these observations indicate that Ca. N. arcticus is not a strict chemolithotrophic ammonia oxidizer and add to cumulating evidence for a greater metabolic and physiological versatility of AOA. The physiology of Ca. N. arcticus suggests that increasing temperatures might drastically affect nitrification in arctic soils by stimulating archaeal ammonia oxidation.

19.
BMC Evol Biol ; 8: 118, 2008 Apr 25.
Article in English | MEDLINE | ID: mdl-18439266

ABSTRACT

BACKGROUND: Anomalous gene trees (AGTs) are gene trees with a topology different from a species tree that are more probable to observe than congruent gene trees. In this paper we propose a rooted triple approach to finding the correct species tree in the presence of AGTs. RESULTS: Based on simulated data we show that our method outperforms the extended majority rule consensus strategy, while still resolving the species tree. Applying both methods to a metazoan data set of 216 genes, we tested whether AGTs substantially interfere with the reconstruction of the metazoan phylogeny. CONCLUSION: Evidence of AGTs was not found in this data set, suggesting that erroneously reconstructed gene trees are the most significant challenge in the reconstruction of phylogenetic relationships among species with current data. The new method does however rule out the erroneous reconstruction of deep or poorly resolved splits in the presence of lineage sorting.


Subject(s)
Computational Biology/methods , Evolution, Molecular , Genetic Speciation , Models, Genetic , Phylogeny , Animals , Likelihood Functions
SELECTION OF CITATIONS
SEARCH DETAIL