Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 108(2): 284-294, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33421400

ABSTRACT

Mastocytosis is a rare myeloid neoplasm characterized by uncontrolled expansion of mast cells, driven in >80% of affected individuals by acquisition of the KIT D816V mutation. To explore the hypothesis that inherited variation predisposes to mastocytosis, we performed a two-stage genome-wide association study, analyzing 1,035 individuals with KIT D816V positive disease and 17,960 healthy control individuals from five European populations. After quality control, we tested 592,007 SNPs at stage 1 and 75 SNPs at stage 2 for association by using logistic regression and performed a fixed effects meta-analysis to combine evidence across the two stages. From the meta-analysis, we identified three intergenic SNPs associated with mastocytosis that achieved genome-wide significance without heterogeneity between cohorts: rs4616402 (pmeta = 1.37 × 10-15, OR = 1.52), rs4662380 (pmeta = 2.11 × 10-12, OR = 1.46), and rs13077541 (pmeta = 2.10 × 10-9, OR = 1.33). Expression quantitative trait analyses demonstrated that rs4616402 is associated with the expression of CEBPA (peQTL = 2.3 × 10-14), a gene encoding a transcription factor known to play a critical role in myelopoiesis. The role of the other two SNPs is less clear: rs4662380 is associated with expression of the long non-coding RNA gene TEX41 (peQTL = 2.55 × 10-11), whereas rs13077541 is associated with the expression of TBL1XR1, which encodes transducin (ß)-like 1 X-linked receptor 1 (peQTL = 5.70 × 10-8). In individuals with available data and non-advanced disease, rs4616402 was associated with age at presentation (p = 0.009; beta = 4.41; n = 422). Additional focused analysis identified suggestive associations between mastocytosis and genetic variation at TERT, TPSAB1/TPSB2, and IL13. These findings demonstrate that multiple germline variants predispose to KIT D816V positive mastocytosis and provide novel avenues for functional investigation.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Mastocytosis/genetics , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins c-kit/genetics , Amino Acid Transport System y+/genetics , CCAAT-Enhancer-Binding Proteins/genetics , DNA, Intergenic , Female , Humans , Interleukin-13/genetics , Introns , Male , RNA, Long Noncoding/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Repressor Proteins/genetics , Telomerase/genetics , Tryptases/genetics
2.
PLoS Genet ; 16(10): e1008718, 2020 10.
Article in English | MEDLINE | ID: mdl-33045005

ABSTRACT

The genetic background of childhood body mass index (BMI), and the extent to which the well-known associations of childhood BMI with adult diseases are explained by shared genetic factors, are largely unknown. We performed a genome-wide association study meta-analysis of BMI in 61,111 children aged between 2 and 10 years. Twenty-five independent loci reached genome-wide significance in the combined discovery and replication analyses. Two of these, located near NEDD4L and SLC45A3, have not previously been reported in relation to either childhood or adult BMI. Positive genetic correlations of childhood BMI with birth weight and adult BMI, waist-to-hip ratio, diastolic blood pressure and type 2 diabetes were detected (Rg ranging from 0.11 to 0.76, P-values <0.002). A negative genetic correlation of childhood BMI with age at menarche was observed. Our results suggest that the biological processes underlying childhood BMI largely, but not completely, overlap with those underlying adult BMI. The well-known observational associations of BMI in childhood with cardio-metabolic diseases in adulthood may reflect partial genetic overlap, but in light of previous evidence, it is also likely that they are explained through phenotypic continuity of BMI from childhood into adulthood.


Subject(s)
Cardiovascular Diseases/genetics , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Monosaccharide Transport Proteins/genetics , Nedd4 Ubiquitin Protein Ligases/genetics , Adolescent , Adult , Blood Pressure , Body Mass Index , Cardiometabolic Risk Factors , Cardiovascular Diseases/pathology , Child , Child, Preschool , Diabetes Mellitus, Type 2/pathology , Female , Genome-Wide Association Study/methods , Humans , Male , Menarche/genetics , Mendelian Randomization Analysis , Waist-Hip Ratio
3.
Diabetologia ; 64(8): 1795-1804, 2021 08.
Article in English | MEDLINE | ID: mdl-33912980

ABSTRACT

AIMS/HYPOTHESIS: The common muscle-specific TBC1D4 p.Arg684Ter loss-of-function variant defines a subtype of non-autoimmune diabetes in Arctic populations. Homozygous carriers are characterised by elevated postprandial glucose and insulin levels. Because 3.8% of the Greenlandic population are homozygous carriers, it is important to explore possibilities for precision medicine. We aimed to investigate whether physical activity attenuates the effect of this variant on 2 h plasma glucose levels after an oral glucose load. METHODS: In a Greenlandic population cohort (n = 2655), 2 h plasma glucose levels were obtained after an OGTT, physical activity was estimated as physical activity energy expenditure and TBC1D4 genotype was determined. We performed TBC1D4-physical activity interaction analysis, applying a linear mixed model to correct for genetic admixture and relatedness. RESULTS: Physical activity was inversely associated with 2 h plasma glucose levels (ß[main effect of physical activity] -0.0033 [mmol/l] / [kJ kg-1 day-1], p = 6.5 × 10-5), and significantly more so among homozygous carriers of the TBC1D4 risk variant compared with heterozygous carriers and non-carriers (ß[interaction] -0.015 [mmol/l] / [kJ kg-1 day-1], p = 0.0085). The estimated effect size suggests that 1 h of vigorous physical activity per day (compared with resting) reduces 2 h plasma glucose levels by an additional ~0.7 mmol/l in homozygous carriers of the risk variant. CONCLUSIONS/INTERPRETATION: Physical activity improves glucose homeostasis particularly in homozygous TBC1D4 risk variant carriers via a skeletal muscle TBC1 domain family member 4-independent pathway. This provides a rationale to implement physical activity as lifestyle precision medicine in Arctic populations. DATA REPOSITORY: The Greenlandic Cardio-Metabochip data for the Inuit Health in Transition study has been deposited at the European Genome-phenome Archive ( https://www.ebi.ac.uk/ega/dacs/EGAC00001000736 ) under accession EGAD00010001428.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/physiopathology , Exercise/physiology , GTPase-Activating Proteins/genetics , Hyperglycemia/prevention & control , Loss of Function Mutation/genetics , Postprandial Period/physiology , Adult , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Female , Gene-Environment Interaction , Genetic Predisposition to Disease , Genotyping Techniques , Glucose Tolerance Test , Greenland/epidemiology , Humans , Hyperglycemia/genetics , Insulin/blood , Inuit/genetics , Life Style , Male , Middle Aged
4.
Int J Obes (Lond) ; 45(9): 2006-2015, 2021 09.
Article in English | MEDLINE | ID: mdl-34050253

ABSTRACT

OBJECTIVES: Genetic predisposition and maternal body mass index (BMI) are risk factors for childhood adiposity, defined by either BMI or overweight. We aimed to investigate whether childhood-specific genetic risk scores (GRSs) for adiposity-related traits are associated with childhood adiposity independent of maternal BMI, or whether the associations are modified by maternal BMI. METHODS: We constructed a weighted 26-SNP child BMI-GRS and a weighted 17-SNP child obesity-GRS in overall 1674 genotyped children within the Danish National Birth Cohort. We applied a case-cohort (N = 1261) and exposure-based cohort (N = 912) sampling design. Using logistic regression models we estimated associations of the GRSs and child overweight at age 7 years and examined if the GRSs influence child adiposity independent of maternal BMI (per standard deviation units). RESULTS: In the case-cohort design analysis, maternal BMI and the child GRSs were associated with increased odds for childhood overweight [OR for maternal BMI: 2.01 (95% CI: 1.86; 2.17), OR for child BMI-GRS: 1.56 (95% CI: 1.47; 1.66), and OR for child obesity-GRS 1.46 (95% CI: 1.37; 1.54)]. Adjustment for maternal BMI did not change the results, and there were no significant interactions between the GRSs and maternal BMI. However, in the exposure-based cohort design analysis, significant interactions between the child GRSs and maternal BMI on child overweight were observed, suggesting 0.85-0.87-fold attenuation on ORs of child overweight at higher values of maternal BMI and child GRS. CONCLUSION: GRSs for childhood adiposity are strongly associated with childhood adiposity even when adjusted for maternal BMI, suggesting that the child-specific GRSs and maternal BMI contribute to childhood overweight independent of each other. However, high maternal BMI may attenuate the effects of child GRSs in children.


Subject(s)
Body Mass Index , Mothers/classification , Pediatric Obesity/diagnosis , Risk Factors , Adult , Child , Cohort Studies , Correlation of Data , Denmark/epidemiology , Female , Follow-Up Studies , Genetic Predisposition to Disease/epidemiology , Humans , Logistic Models , Male , Mothers/statistics & numerical data , Pediatric Obesity/epidemiology , Pediatric Obesity/physiopathology
5.
Int J Obes (Lond) ; 45(1): 66-76, 2021 01.
Article in English | MEDLINE | ID: mdl-32921795

ABSTRACT

OBJECTIVES: To determine the prevalence of Melanocortin-4 Receptor (MC4R) mutations in a cohort of children and adolescents with overweight or obesity and to determine whether treatment responses differed between carriers and noncarriers. METHODS: Using target region capture sequencing, an MC4R mutation screen was performed in 1261 Danish children and adolescents enrolled at a tertiary multidisciplinary childhood obesity treatment center. Measurements of anthropometrics, blood pressure, fasting blood biochemistry including lipid and hormone levels, and dual-energy X-ray absorptiometry were performed at baseline and throughout treatment. RESULTS: Of 1209 children and adolescents that met all criteria to be included in the described analyses, 30 (2.5%) carried damaging or unresolved MC4R mutations. At baseline, mutation carriers exhibited higher concentrations of plasma thyroid-stimulating hormone (p = 0.003), and lower concentrations of plasma thyroxine (p = 0.010) compared to noncarriers. After a median of 1 year of treatment (range 0.5-4.0 years), body mass index (BMI) standard deviation score (SDS) was reduced in noncarriers but not in carriers, and this difference in treatment response was statistically significant (p = 0.005). Furthermore, HDL cholesterol was reduced in carriers, a response significantly different from that of noncarriers (p = 0.017). CONCLUSION: Among Danish children and adolescents with overweight or obesity entering a tertiary lifestyle intervention, 2.5% carried damaging or unresolved MC4R mutations. In contrast to noncarriers, carriers of damaging or unresolved MC4R mutations failed to reduce their BMI SDS during obesity treatment, indicating a need for personalized treatment based on the MC4R genotype.


Subject(s)
Pediatric Obesity , Receptor, Melanocortin, Type 4/genetics , Adolescent , Adult , Child , Child, Preschool , Cross-Sectional Studies , Denmark , Humans , Life Style , Mutation/genetics , Pediatric Obesity/blood , Pediatric Obesity/epidemiology , Pediatric Obesity/genetics , Pediatric Obesity/therapy , Thyrotropin/blood , Thyroxine/blood , Young Adult
6.
Eur J Nutr ; 60(1): 425-434, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32367254

ABSTRACT

PURPOSE: We studied the effects of a physical activity and dietary intervention on plasma lipids in a general population of children. We also investigated how lifestyle changes contributed to the intervention effects. METHODS: We carried out a 2-year controlled, non-randomized lifestyle intervention study among 504 mainly prepubertal children aged 6-9 years at baseline. We assigned 306 children to the intervention group and 198 children to the control group. We assessed plasma concentrations of total, LDL, HDL, and VLDL cholesterol, triglycerides, HDL triglycerides, and VLDL triglycerides. We evaluated the consumption of foods using 4-day food records and physical activity using a movement and heart rate sensor. We analyzed data using linear mixed-effect models adjusted for age at baseline, sex, and pubertal stage at both time points. Furthermore, specific lifestyle variables were entered in these models. RESULTS: Plasma LDL cholesterol decreased in the intervention group but did not change in the control group ( - 0.05 vs. 0.00 mmol/L, regression coefficient (ß) = - 0.0385, p = 0.040 for group*time interaction). This effect was mainly explained by the changes in the consumption of high-fat vegetable oil-based spreads (ß = - 0.0203, + 47% change in ß) and butter-based spreads (ß = - 0.0294, + 30% change in ß), moderate-to-vigorous physical activity (ß = - 0.0268, + 30% change in ß), light physical activity (ß = - 0.0274, + 29% change in ß) and sedentary time (ß = - 0.0270, + 30% change in ß). The intervention had no effect on other plasma lipids. CONCLUSION: Lifestyle intervention resulted a small decrease in plasma LDL cholesterol concentration in children. The effect was explained by changes in quality and quantity of dietary fat and physical activity. CLINICAL TRIAL REGISTRY NUMBER: NCT01803776, ClinicalTrials.gov.


Subject(s)
Dietary Fats , Exercise , Child , Cholesterol, HDL , Cholesterol, LDL , Humans , Sedentary Behavior , Triglycerides
7.
Diabetologia ; 63(7): 1324-1332, 2020 07.
Article in English | MEDLINE | ID: mdl-32291466

ABSTRACT

AIMS/HYPOTHESIS: We aimed to investigate whether the impact of obesity and unfavourable lifestyle on type 2 diabetes risk is accentuated by genetic predisposition. METHODS: We examined the joint association of genetic predisposition, obesity and unfavourable lifestyle with incident type 2 diabetes using a case-cohort study nested within the Diet, Cancer and Health cohort in Denmark. The study sample included 4729 individuals who developed type 2 diabetes during a median 14.7 years of follow-up, and a randomly selected cohort sample of 5402 individuals. Genetic predisposition was quantified using a genetic risk score (GRS) comprising 193 known type 2 diabetes-associated loci (excluding known BMI loci) and stratified into low (quintile 1), intermediate and high (quintile 5) genetic risk groups. Lifestyle was assessed by a lifestyle score composed of smoking, alcohol consumption, physical activity and diet. We used Prentice-weighted Cox proportional-hazards models to test the associations of the GRS, obesity and lifestyle score with incident type 2 diabetes, as well as the interactions of the GRS with obesity and unfavourable lifestyle in relation to incident type 2 diabetes. RESULTS: Obesity (BMI ≥ 30 kg/m2) and unfavourable lifestyle were associated with higher risk for incident type 2 diabetes regardless of genetic predisposition (p > 0.05 for GRS-obesity and GRS-lifestyle interaction). The effect of obesity on type 2 diabetes risk (HR 5.81 [95% CI 5.16, 6.55]) was high, whereas the effects of high genetic risk (HR 2.00 [95% CI 1.76, 2.27]) and unfavourable lifestyle (HR 1.18 [95% CI 1.06, 1.30]) were relatively modest. Even among individuals with low GRS and favourable lifestyle, obesity was associated with a >8-fold risk of type 2 diabetes compared with normal-weight individuals in the same GRS and lifestyle stratum. CONCLUSIONS/INTERPRETATION: Having normal body weight is crucial in the prevention of type 2 diabetes, regardless of genetic predisposition.


Subject(s)
Diabetes Mellitus, Type 2/epidemiology , Life Style , Obesity/epidemiology , Alcohol Drinking/genetics , Alcohol Drinking/physiopathology , Body Weight/genetics , Body Weight/physiology , Cohort Studies , Diabetes Mellitus, Type 2/genetics , Exercise , Genetic Predisposition to Disease/genetics , Humans , Obesity/genetics , Risk Factors , Smoking/genetics , Smoking/physiopathology
8.
Diabetologia ; 63(11): 2270-2281, 2020 11.
Article in English | MEDLINE | ID: mdl-32816094

ABSTRACT

AIMS/HYPOTHESIS: We studied for the first time the long-term effects of a combined physical activity and dietary intervention on insulin resistance and fasting plasma glucose in a general population of predominantly normal-weight children. METHODS: We carried out a 2 year non-randomised controlled trial in a population sample of 504 children aged 6-9 years at baseline. The children were allocated to a combined physical activity and dietary intervention group (306 children at baseline, 261 children at 2-year follow-up) or a control group (198 children, 177 children) without blinding. We measured fasting insulin and fasting glucose, calculated HOMA-IR, assessed physical activity and sedentary time by combined heart rate and body movement monitoring, assessed dietary factors by a 4 day food record, used the Finnish Children Healthy Eating Index (FCHEI) as a measure of overall diet quality, and measured body fat percentage (BF%) and lean body mass by dual-energy x-ray absorptiometry. The intervention effects on insulin, glucose and HOMA-IR were analysed using the intention-to-treat principle and linear mixed-effects models after adjustment for sex, age at baseline, and pubertal status at baseline and 2 year follow-up. The measures of physical activity, sedentary time, diet and body composition at baseline and 2 year follow-up were entered one-by-one as covariates into the models to study whether changes in these variables might partly explain the observed intervention effects. RESULTS: Compared with the control group, fasting insulin increased 4.65 pmol/l less (absolute change +8.96 vs +13.61 pmol/l) and HOMA-IR increased 0.18 units less (+0.31 vs +0.49 units) over 2 years in the combined physical activity and dietary intervention group. The intervention effects on fasting insulin (regression coefficient ß for intervention effect -0.33 [95% CI -0.62, -0.04], p = 0.026) and HOMA-IR (ß for intervention effect -0.084 [95% CI -0.156, -0.012], p = 0.023) were statistically significant after adjustment for sex, age at baseline, and pubertal status at baseline and 2 year follow-up. The intervention had no effect on fasting glucose, BF% or lean body mass. Changes in total physical activity energy expenditure, light physical activity, moderate-to-vigorous physical activity, total sedentary time, the reported consumption of high-fat (≥60%) vegetable oil-based spreads, and FCHEI, but not a change in BF% or lean body mass, partly explained the intervention effects on fasting insulin and HOMA-IR. CONCLUSIONS/INTERPRETATION: The combined physical activity and dietary intervention attenuated the increase in insulin resistance over 2 years in a general population of predominantly normal-weight children. This beneficial effect was partly mediated by changes in physical activity, sedentary time and diet but not changes in body composition. TRIAL REGISTRATION: ClinicalTrials.gov NCT01803776 Graphical abstract.


Subject(s)
Insulin Resistance/physiology , Blood Glucose/metabolism , Body Composition/physiology , Body Mass Index , Body Size/physiology , Child , Exercise/physiology , Fasting/blood , Female , Humans , Insulin/metabolism , Male
9.
Int J Obes (Lond) ; 44(11): 2291-2302, 2020 11.
Article in English | MEDLINE | ID: mdl-32327722

ABSTRACT

BACKGROUND: Bariatric surgery leads to a substantial weight loss (WL), however, a subset of patients undergoing surgery fails to achieve adequate WL. The reason for the individual variation in WL remains unexplained. Using an exploratory cross-disciplinary approach, we aimed to identify preoperative and early postoperative factors explaining the variation in WL after bariatric surgery. METHODS: Sixty-one subjects were recruited. Eighteen subjects did not receive surgery and three subjects dropped out, leaving a total sample of 40 subjects. Physiological, social, and psychological data were collected before and 6 months after surgery. All variables were analyzed in combination using a least absolute shrinkage and selection operator (LASSO) regression to explain the variation in WL 18 months after Roux-en-Y gastric bypass (n = 30) and sleeve gastrectomy (n = 10). RESULTS: Mean WL was 31% (range: 10-52%). The following preoperative factors predicted 59% of the variation in WL: type of surgery (14%), diabetes status (12%), economic resources (9%), sex (7%), binge eating disorder (7%), degree of depression (5%), household type (3%), and physical activity (1%). Including information on early responses after surgery increased the ability to predict WL to 78% and was explained by early WL (47%), changes in energy density of food consumed from a buffet meal (9%), changes in glicentin (5%), degree of depression (5%), sex (5%), type of surgery (2%), economic resources (2%), and changes in drive for thinness (1%). CONCLUSIONS: Using a cross-disciplinary approach, a substantial part of the individual variation in WL was explained by a combination of basic patient characteristics, psychological profile, and social conditions as well as physiological, psychological and behavioral responses to surgery. These results suggest that patient characteristics collected in a cross-disciplinary approach may help determine predictors for less successful WL after bariatric surgery. If verified in larger cohorts this may form the basis for individualized postoperative support to optimize WL outcome.


Subject(s)
Bariatric Surgery , Weight Loss , Adult , Denmark , Female , Forecasting , Gastrectomy , Gastric Bypass , Humans , Male , Mental Health , Middle Aged , Obesity, Morbid/surgery , Prospective Studies , Socioeconomic Factors , Treatment Outcome
10.
Int J Obes (Lond) ; 43(10): 2007-2016, 2019 10.
Article in English | MEDLINE | ID: mdl-31332278

ABSTRACT

BACKGROUND: Most obese children show cardiometabolic impairments, such as insulin resistance, dyslipidemia, and hypertension. Yet some obese children retain a normal cardiometabolic profile. The mechanisms underlying this variability remain largely unknown. We examined whether genetic loci associated with increased insulin sensitivity and relatively higher fat storage on the hip than on the waist in adults are associated with a normal cardiometabolic profile despite higher adiposity in children. METHODS: We constructed a genetic score using variants previously linked to increased insulin sensitivity and/or decreased waist-hip ratio adjusted for body mass index (BMI), and examined the associations of this genetic score with adiposity and cardiometabolic impairments in a meta-analysis of six cohorts, including 7391 European children aged 3-18 years. RESULTS: The genetic score was significantly associated with increased degree of obesity (higher BMI-SDS beta = 0.009 SD/allele, SE = 0.003, P = 0.003; higher body fat mass beta = 0.009, SE = 0.004, P = 0.031), yet improved body fat distribution (lower WHRadjBMI beta = -0.014 SD/allele, SE = 0.006, P = 0.016), and favorable concentrations of blood lipids (higher HDL cholesterol: beta = 0.010 SD/allele, SE = 0.003, P = 0.002; lower triglycerides: beta = -0.011 SD/allele, SE = 0.003, P = 0.001) adjusted for age, sex, and puberty. No differences were detected between prepubertal and pubertal/postpubertal children. The genetic score predicted a normal cardiometabolic profile, defined by the presence of normal glucose and lipid concentrations, among obese children (OR = 1.07 CI 95% 1.01-1.13, P = 0.012, n = 536). CONCLUSIONS: Genetic predisposition to higher body fat yet lower cardiometabolic risk exerts its influence before puberty.


Subject(s)
Cardiovascular Diseases/epidemiology , Genetic Predisposition to Disease/epidemiology , Metabolic Diseases/epidemiology , Pediatric Obesity/epidemiology , Adipose Tissue , Adolescent , Body Mass Index , Cardiovascular Diseases/genetics , Cardiovascular Diseases/physiopathology , Child , Child, Preschool , Denmark/epidemiology , Female , Finland/epidemiology , Humans , Longitudinal Studies , Male , Metabolic Diseases/genetics , Metabolic Diseases/physiopathology , Pediatric Obesity/genetics , Pediatric Obesity/physiopathology , Waist Circumference , Waist-Hip Ratio , White People
11.
J Nutr ; 149(5): 708-715, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31050749

ABSTRACT

BACKGROUND: Dietary intake of polyunsaturated fatty acids (PUFAs), e.g., linoleic acid and n-3 (ω-3) long-chain PUFAs, has been shown in adults to affect plasma cholesterol and triglycerides (TGs), respectively. Little is known about the effects of PUFAs on plasma lipids in early life. OBJECTIVE: The aim of this study was to explore the associations between plasma concentrations of total, LDL, and HDL cholesterol and TGs in infants and 2 single nucleotide polymorphisms (SNPs) in the fatty acid desaturase genes (FADS) oppositely associated with docosahexaenoic acid (rs1535 and rs174448) and potential effect modification by a functional peroxisome proliferator-activated receptor-γ2 gene variant (PPARG2 Pro12Ala). METHODS: In 9-mo-old infants (n = 561) from 3 Danish cohorts, we analyzed associations between plasma lipids, erythrocyte PUFAs, and FADS SNPs, and interactions with PPARG2 Pro12Ala genotype, by multiple linear regression. We also examined potential effect modification by breastfeeding, as 46% of the infants were still being breastfed. RESULTS: Minor allele carriage of rs174448 was associated with lower total cholesterol (difference: -0.22 mmol/L; 95% CI: -0.37, -0.06 mmol/L; P = 0.006) and LDL cholesterol (difference: -0.15 mmol/L; 95% CI: -0.29, -0.01 mmol/L; P = 0.035), but no associations were observed with TGs or for rs1535. Minor allele carriage of both FADS SNPs was associated with 1 SD lower HDL cholesterol, but only in currently breastfed infants (rs174448 × breastfeeding, P = 0.080; rs1535 × breastfeeding, P = 0.030) and PPARG2 minor allele carriers (rs174448 × PPARG2, P = 0.001; rs1535 × PPARG2, P = 0.004). Erythrocyte arachidonic acid and eicosapentaenoic acid were inversely associated with LDL cholesterol [estimated effect (ß): -0.3 mmol/L; 95% CI: -0.06, -0.00 mmol/L per percentage of fatty acids (FA%); P = 0.035] and TGs (ß: -0.23 mmol/L; 95% CI: -0.41, -0.05 mmol/L per FA%; P = 0.015), respectively. CONCLUSIONS: The observed associations with FADS variants indicate that PUFAs are involved in plasma lipid regulation in 9-mo-old infants. Observed FADS SNP differences and interactions with breastfeeding and PPARG2 warrant additional studies to explore the effects of individual FADS SNPs on PUFA status and potential genetic modification of dietary PUFA effects.


Subject(s)
Dietary Fats, Unsaturated/pharmacology , Fatty Acid Desaturases/genetics , Fatty Acids, Unsaturated/pharmacology , Genotype , Lipids/blood , PPAR gamma/genetics , Polymorphism, Single Nucleotide , Alleles , Breast Feeding , Cholesterol/blood , Cohort Studies , Denmark , Diet , Dietary Fats, Unsaturated/blood , Erythrocytes/metabolism , Fatty Acids, Unsaturated/blood , Female , Humans , Infant , Infant Nutritional Physiological Phenomena , Male , Triglycerides/blood
12.
Scand J Med Sci Sports ; 29(1): 113-123, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30276872

ABSTRACT

BACKGROUND: There are few prospective studies on the associations of changes in objectively measured vigorous physical activity (VPA∆ ), moderate-to-vigorous physical activity (MVPA∆ ), light physical activity (LPA∆ ), and sedentary time (ST∆ ) with changes in cardiometabolic risk factors (∆ ) in children. We therefore investigated these relationships among children. METHODS: The participants were a population sample of 258 children aged 6-8 years followed for 2 years. We assessed PA and ST by a combined heart rate and movement sensor; computed continuous age- and sex-adjusted z-scores for waist circumference, blood pressure, and fasting insulin, glucose, triglycerides, and high-density lipoprotein (HDL) cholesterol; and constructed a cardiometabolic risk score (CRS) of these risk factors. Data were analyzed using linear regression models adjusted for age, sex, the explanatory and outcome variables at baseline, and puberty. RESULTS: VPA∆ associated inversely with CRS∆ (ß = -0.209, P = 0.001), body fat percentage (BF%)∆ (ß = -0.244, P = 0.001), insulin∆ (ß = -0.220, P = 0.001), and triglycerides∆ (ß = -0.164, P = 0.012) and directly with HDL cholesterol∆ (ß = 0.159, P = 0.023). MVPA∆ associated inversely with CRS∆ (ß = -0.178, P = 0.012), BF%∆ (ß = -0.298, P = <0.001), and insulin∆ (ß = -0.213, P = 0.006) and directly with HDL cholesterol∆ (ß = 0.184, P = 0.022). LPA∆ only associated negatively with CRS∆ (ß = -0.163, P = 0.032). ST∆ associated directly with CRS∆ (ß = 0.218, P = 0.003), BF%∆ (ß = 0.212, P = 0.016), and insulin∆ (ß = 0.159, P = 0.049). CONCLUSIONS: Increased VPA and MVPA and decreased ST were associated with reduced overall cardiometabolic risk and major individual risk factors. Change in LPA had weaker associations with changes in these cardiometabolic risk factors. Our findings suggest that increasing at least moderate-intensity PA and decreasing ST decrease cardiometabolic risk in children.


Subject(s)
Cardiovascular Diseases/epidemiology , Exercise , Metabolic Diseases/epidemiology , Sedentary Behavior , Anthropometry , Blood Glucose , Blood Pressure , Child , Cross-Sectional Studies , Female , Finland , Heart Rate , Humans , Insulin/blood , Lipids/blood , Longitudinal Studies , Male , Prospective Studies , Risk Factors , Waist Circumference
13.
Diabetologia ; 61(8): 1769-1779, 2018 08.
Article in English | MEDLINE | ID: mdl-29855666

ABSTRACT

AIMS/HYPOTHESIS: A genetic risk score (GRS) consisting of 53 insulin resistance variants (GRS53) was recently demonstrated to associate with insulin resistance in adults. We speculated that the GRS53 might already associate with insulin resistance during childhood, and we therefore aimed to investigate this in populations of Danish children and adolescents. Furthermore, we aimed to address whether the GRS associates with components of the metabolic syndrome and altered body composition in children and adolescents. METHODS: We examined a total of 689 children and adolescents who were overweight or obese and 675 children and adolescents from a population-based study. Anthropometric data, dual-energy x-ray absorptiometry scans, BP, fasting plasma glucose, fasting serum insulin and fasting plasma lipid measurements were obtained, and HOMA-IR was calculated. The GRS53 was examined for association with metabolic traits in children by linear regressions using an additive genetic model. RESULTS: In overweight/obese children and adolescents, the GRS53 associated with higher HOMA-IR (ß = 0.109 ± 0.050 (SE); p = 2.73 × 10-2), fasting plasma glucose (ß = 0.010 ± 0.005 mmol/l; p = 2.51 × 10-2) and systolic BP SD score (ß = 0.026 ± 0.012; p = 3.32 × 10-2) as well as lower HDL-cholesterol (ß = -0.008 ± 0.003 mmol/l; p = 1.23 × 10-3), total fat-mass percentage (ß = -0.143 ± 0.054%; p = 9.15 × 10-3) and fat-mass percentage in the legs (ß = -0.197 ± 0.055%; p = 4.09 × 10-4). In the population-based sample of children, the GRS53 only associated with lower HDL-cholesterol concentrations (ß = -0.007 ± 0.003 mmol/l; p = 1.79 × 10-2). CONCLUSIONS/INTERPRETATION: An adult-based GRS comprising 53 insulin resistance susceptibility SNPs associates with insulin resistance, markers of the metabolic syndrome and altered fat distribution in a sample of Danish children and adolescents who were overweight or obese.


Subject(s)
Genetic Predisposition to Disease , Insulin Resistance , Overweight/genetics , Pediatric Obesity/genetics , Adolescent , Adult , Anthropometry , Body Composition , Child , Cholesterol, HDL/metabolism , Denmark , Diabetes Mellitus, Type 2 , Genotype , Humans , Linear Models , Metabolic Syndrome/metabolism , Middle Aged , Phenotype , Risk
14.
Br J Nutr ; 117(2): 278-286, 2017 01.
Article in English | MEDLINE | ID: mdl-28162103

ABSTRACT

DHA from diet or endogenous synthesis has been proposed to affect infant development, however, results are inconclusive. In this study, we aim to verify previously observed fatty acid desaturase gene cluster (FADS) SNP-specific associations with erythrocyte DHA status in 9-month-old children and sex-specific association with developmental outcomes. The study was performed in 166 children (55 % boys) of obese mothers. Erythrocyte fatty acid composition was analysed in blood-samples obtained at 9 months of age, and developmental outcomes assessed by the Ages and Stages Questionnaire at 3 years. Erythrocyte DHA level ranged from 4·4 to 9·9 % of fatty acids, but did not show any association with FADS SNP or other potential determinants. Regression analysis showed associations between erythrocyte DHA and scores for personal-social skills (ß 1·8 (95 % CI 0·3, 3·3), P=0·019) and problem solving (ß 3·4 (95 % CI 1·2, 5·6), P=0·003). A tendency was observed for an association in opposite direction between minor alleles (G-variant) of rs1535 and rs174575 and personal-social skills (P=0·062 and 0·068, respectively), which became significant when the SNP were combined based on their previously observed effect on erythrocyte DHA at 9 months of age (ß 2·6 (95 % CI 0·01, 5·1), P=0·011). Sex-SNP interaction was indicated for rs174575 genotype on fine motor scores (P=0·016), due to higher scores among minor allele carrying girls (P=0·043), whereas no effect was seen among boys. In conclusion, DHA-increasing FADS SNP and erythrocyte DHA status were consistently associated with improved personal-social skills in this small cohort of children of obese mothers irrespective of sex, but the sample was too small to verify potential sex-specific effects.


Subject(s)
Breast Feeding , Child Development , Docosahexaenoic Acids/blood , Fatty Acid Desaturases/genetics , Maternal Nutritional Physiological Phenomena , Obesity , Polymorphism, Single Nucleotide , Adult , Alleles , Diet , Erythrocytes , Female , Genotype , Humans , Infant , Lactation , Male , Mothers , Nutritional Status/genetics , Obesity/enzymology , Obesity/genetics
15.
Nat Genet ; 56(2): 245-257, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38082205

ABSTRACT

Cardiac blood flow is a critical determinant of human health. However, the definition of its genetic architecture is limited by the technical challenge of capturing dynamic flow volumes from cardiac imaging at scale. We present DeepFlow, a deep-learning system to extract cardiac flow and volumes from phase-contrast cardiac magnetic resonance imaging. A mixed-linear model applied to 37,653 individuals from the UK Biobank reveals genome-wide significant associations across cardiac dynamic flow volumes spanning from aortic forward velocity to aortic regurgitation fraction. Mendelian randomization reveals a causal role for aortic root size in aortic valve regurgitation. Among the most significant contributing variants, localizing genes (near ELN, PRDM6 and ADAMTS7) are implicated in connective tissue and blood pressure pathways. Here we show that DeepFlow cardiac flow phenotyping at scale, combined with genotyping data, reinforces the contribution of connective tissue genes, blood pressure and root size to aortic valve function.


Subject(s)
Aorta , Aortic Valve Insufficiency , Humans , Blood Flow Velocity/physiology , Magnetic Resonance Imaging/methods , Aortic Valve
16.
Diabetes ; 73(7): 1058-1071, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38608276

ABSTRACT

The Rab-GTPase-activating protein (RabGAP) TBC1D4 (AS160) represents a key component in the regulation of glucose transport into skeletal muscle and white adipose tissue (WAT) and is therefore crucial during the development of insulin resistance and type 2 diabetes. Increased daily activity has been shown to be associated with improved postprandial hyperglycemia in allele carriers of a loss-of-function variant in the human TBC1D4 gene. Using conventional Tbc1d4-deficient mice (D4KO) fed a high-fat diet, we show that moderate endurance exercise training leads to substantially improved glucose and insulin tolerance and enhanced expression levels of markers for mitochondrial activity and browning in WAT from D4KO animals. Importantly, in vivo and ex vivo analyses of glucose uptake revealed increased glucose clearance in interscapular brown adipose tissue and WAT from trained D4KO mice. Thus, chronic exercise is able to overcome the genetically induced insulin resistance caused by Tbc1d4 depletion. Gene variants in TBC1D4 may be relevant in future precision medicine as determinants of exercise response.


Subject(s)
Adipose Tissue, White , GTPase-Activating Proteins , Insulin Resistance , Mice, Knockout , Physical Conditioning, Animal , Insulin Resistance/genetics , Insulin Resistance/physiology , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Animals , Mice , Physical Conditioning, Animal/physiology , Adipose Tissue, White/metabolism , Diet, High-Fat , Male , Adipose Tissue, Brown/metabolism , Muscle, Skeletal/metabolism , Glucose/metabolism , Mice, Inbred C57BL
17.
Genome Biol ; 25(1): 22, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38229171

ABSTRACT

BACKGROUND: Pubertal growth patterns correlate with future health outcomes. However, the genetic mechanisms mediating growth trajectories remain largely unknown. Here, we modeled longitudinal height growth with Super-Imposition by Translation And Rotation (SITAR) growth curve analysis on ~ 56,000 trans-ancestry samples with repeated height measurements from age 5 years to adulthood. We performed genetic analysis on six phenotypes representing the magnitude, timing, and intensity of the pubertal growth spurt. To investigate the lifelong impact of genetic variants associated with pubertal growth trajectories, we performed genetic correlation analyses and phenome-wide association studies in the Penn Medicine BioBank and the UK Biobank. RESULTS: Large-scale growth modeling enables an unprecedented view of adolescent growth across contemporary and 20th-century pediatric cohorts. We identify 26 genome-wide significant loci and leverage trans-ancestry data to perform fine-mapping. Our data reveals genetic relationships between pediatric height growth and health across the life course, with different growth trajectories correlated with different outcomes. For instance, a faster tempo of pubertal growth correlates with higher bone mineral density, HOMA-IR, fasting insulin, type 2 diabetes, and lung cancer, whereas being taller at early puberty, taller across puberty, and having quicker pubertal growth were associated with higher risk for atrial fibrillation. CONCLUSION: We report novel genetic associations with the tempo of pubertal growth and find that genetic determinants of growth are correlated with reproductive, glycemic, respiratory, and cardiac traits in adulthood. These results aid in identifying specific growth trajectories impacting lifelong health and show that there may not be a single "optimal" pubertal growth pattern.


Subject(s)
Diabetes Mellitus, Type 2 , Genome-Wide Association Study , Adult , Adolescent , Humans , Child , Child, Preschool , Puberty/genetics , Phenotype , Body Height/genetics , Outcome Assessment, Health Care , Longitudinal Studies
18.
Sci Rep ; 13(1): 19638, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37949941

ABSTRACT

The fetal insulin hypothesis proposes that low birthweight and type 2 diabetes (T2D) in adulthood may be two phenotypes of the same genotype. In this study we aimed to explore this theory further by testing the effects of GWAS-identified genetic variants related to insulin release and sensitivity on fetal growth and blood flow from week 20 of gestation to birth and on placental weight at birth. We calculated genetic risk scores (GRS) of first phase insulin release (FPIR), fasting insulin (FI), combined insulin resistance and dyslipidaemia (IR + DLD) and insulin sensitivity (IS) in a study population of 665 genotyped newborns. Two-dimensional ultrasound measurements with estimation of fetal weight and blood flow were carried out at week 20, 25, and 32 of gestation in all 665 pregnancies. Birthweight and placental weight were registered at birth. Associations between the GRSs and fetal growth, blood flow and placental weight were investigated using linear mixed models. The FPIR GRS was directly associated with fetal growth from week 20 to birth, and both the FI GRS, IR + DLD GRS, and IS GRS were associated with placental weight at birth. Our findings indicate that insulin-related genetic variants might primarily affect fetal growth via the placenta.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Pregnancy , Infant, Newborn , Female , Insulin , Placenta/physiology , Birth Weight/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/epidemiology , Prospective Studies , Fetal Development/genetics , Insulin Resistance/genetics , Fetal Weight
20.
Sci Rep ; 12(1): 3135, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35210505

ABSTRACT

High maternal body mass index (BMI) and smoking during pregnancy are risk factors for child overweight. Maternal smoking tends to reduce her BMI and the association of smoking with child overweight may be confounded by or interacting with maternal genetic predisposition to adiposity. In the Danish National Birth Cohort, we investigated whether smoking during pregnancy is associated with child BMI/overweight independent of pre-pregnancy BMI and maternal genetic predisposition to adiposity estimated as total, transmitted and non-transmitted genetic risk scores (GRSs) based on 941 common genetic variants associated with BMI. Smoking during pregnancy was associated with higher child BMI and higher odds of child overweight in a dose-response relationship. The odds ratio (95% CI) for smoking 11 + cigarettes in third trimester versus no smoking was 2.42 (1.30; 4.50), irrespective of maternal BMI and maternal GRSs (total, transmitted or non-transmitted). There were no statistically significant interactions between maternal GRSs and smoking (all p-values for interactions > 0.05). In conclusion, in this study, smoking during pregnancy exhibits a dose-response association with increased child BMI/overweight, independent of maternal pre-pregnancy BMI, maternal transmitted, and non-transmitted genetic predisposition to adiposity. Avoidance of smoking during pregnancy may help prevent childhood obesity irrespective of the mother-child genetic predisposition.


Subject(s)
Body Mass Index , Genetic Predisposition to Disease , Overweight/genetics , Prenatal Exposure Delayed Effects/genetics , Smoking , Adolescent , Adult , Child , Child, Preschool , Female , Follow-Up Studies , Genome-Wide Association Study , Humans , Infant , Infant, Newborn , Male , Pregnancy , Retrospective Studies , Smoking/adverse effects , Smoking/genetics
SELECTION OF CITATIONS
SEARCH DETAIL