Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Glob Chang Biol ; 30(1): e17140, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273497

ABSTRACT

Growing evidence suggests that liana competition with trees is threatening the global carbon sink by slowing the recovery of forests following disturbance. A recent theory based on local and regional evidence further proposes that the competitive success of lianas over trees is driven by interactions between forest disturbance and climate. We present the first global assessment of liana-tree relative performance in response to forest disturbance and climate drivers. Using an unprecedented dataset, we analysed 651 vegetation samples representing 26,538 lianas and 82,802 trees from 556 unique locations worldwide, derived from 83 publications. Results show that lianas perform better relative to trees (increasing liana-to-tree ratio) when forests are disturbed, under warmer temperatures and lower precipitation and towards the tropical lowlands. We also found that lianas can be a critical factor hindering forest recovery in disturbed forests experiencing liana-favourable climates, as chronosequence data show that high competitive success of lianas over trees can persist for decades following disturbances, especially when the annual mean temperature exceeds 27.8°C, precipitation is less than 1614 mm and climatic water deficit is more than 829 mm. These findings reveal that degraded tropical forests with environmental conditions favouring lianas are disproportionately more vulnerable to liana dominance and thus can potentially stall succession, with important implications for the global carbon sink, and hence should be the highest priority to consider for restoration management.


Des preuves de plus en plus nombreuses suggèrent que la competition entre lianes et les arbres menace le puits de carbone mondial en ralentissant la récupération des forêts après une perturbation. Une théorie récente, fondée sur des observations locales et régionales, propose en outre que le succès compétitif des lianes sur les arbres est dû aux interactions entre la perturbation forestière et le climat. Nous présentons la première évaluation mondiale de la performance relative des lianes par rapport aux arbres en réponse aux perturbations forestières et aux facteurs climatiques. En utilisant un ensemble de données sans précédent, nous avons analysé 651 échantillons de végétation représentant 26,538 lianes et 82,802 arbres, issus de 556 emplacements uniques dans le monde entier, tirés de 83 publications. Les résultats montrent que les lianes ont de meilleure performances par rapport aux arbres (augmentation du ratio liane-arbre) lorsque les forêts sont perturbées, sous des zones chaudes aves précipitations faibles, et vers les basses altitudes tropicales. Nous avons également constaté que les lianes peuvent être un facteur critique entravant la récupération des forêts dans les forêts perturbées connaissant des climats favorables aux lianes, car les données de chronoséquence montrent que le succès compétitif élevé des lianes sur les arbres peut persister pendant des décennies après les perturbations, surtout lorsque la température annuelle moyenne dépasse 27.8°C, que les précipitations sont inférieures à 1614 mm et que le déficit hydrique climatique est supérieur à 829 mm. Ces découvertes révèlent que les forêts tropicales dégradées avec des conditions environnementales favorables aux lianes sont disproportionnellement plus vulnérables à la dominance des lianes, et peuvent ainsi potentiellement entraver la succession, avec d'importantes implications pour le puits de carbone mondial et devraient donc être la plus haute priorité à considérer pour la gestion de la restauration.


Subject(s)
Trees , Tropical Climate , Trees/physiology , Forests , Carbon Sequestration , Water
2.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article in English | MEDLINE | ID: mdl-33876750

ABSTRACT

The latitudinal gradient in species richness, with more species in the tropics and richness declining with latitude, is widely known and has been assumed to be stable over recent centuries. We analyzed data on 48,661 marine animal species since 1955, accounting for sampling variation, to assess whether the global latitudinal gradient in species richness is being impacted by climate change. We confirm recent studies that show a slight dip in species richness at the equator. Moreover, richness across latitudinal bands was sensitive to temperature, reaching a plateau or declining above a mean annual sea surface temperature of 20 °C for most taxa. In response, since the 1970s, species richness has declined at the equator relative to an increase at midlatitudes and has shifted north in the northern hemisphere, particularly among pelagic species. This pattern is consistent with the hypothesis that climate change is impacting the latitudinal gradient in marine biodiversity at a global scale. The intensification of the dip in species richness at the equator, especially for pelagic species, suggests that it is already too warm there for some species to survive.


Subject(s)
Aquatic Organisms/physiology , Biodiversity , Global Warming , Biomass
3.
Ecol Appl ; 33(4): e2852, 2023 06.
Article in English | MEDLINE | ID: mdl-36946332

ABSTRACT

Climate change is already having profound effects on biodiversity, but climate change adaptation has yet to be fully incorporated into area-based management tools used to conserve biodiversity, such as protected areas. One main obstacle is the lack of consensus regarding how impacts of climate change can be included in spatial conservation plans. We propose a climate-smart framework that prioritizes the protection of climate refugia-areas of low climate exposure and high biodiversity retention-using climate metrics. We explore four aspects of climate-smart conservation planning: (1) climate model ensembles; (2) multiple emission scenarios; (3) climate metrics; and (4) approaches to identifying climate refugia. We illustrate this framework in the Western Pacific Ocean, but it is equally applicable to terrestrial systems. We found that all aspects of climate-smart conservation planning considered affected the configuration of spatial plans. The choice of climate metrics and approaches to identifying refugia have large effects in the resulting climate-smart spatial plans, whereas the choice of climate models and emission scenarios have smaller effects. As the configuration of spatial plans depended on climate metrics used, a spatial plan based on a single measure of climate change (e.g., warming) will not necessarily be robust against other measures of climate change (e.g., ocean acidification). We therefore recommend using climate metrics most relevant for the biodiversity and region considered based on a single or multiple climate drivers. To include the uncertainty associated with different climate futures, we recommend using multiple climate models (i.e., an ensemble) and emission scenarios. Finally, we show that the approaches we used to identify climate refugia feature trade-offs between: (1) the degree to which they are climate-smart, and (2) their efficiency in meeting conservation targets. Hence, the choice of approach will depend on the relative value that stakeholders place on climate adaptation. By using this framework, protected areas can be designed with improved longevity and thus safeguard biodiversity against current and future climate change. We hope that the proposed climate-smart framework helps transition conservation planning toward climate-smart approaches.


Subject(s)
Conservation of Natural Resources , Seawater , Conservation of Natural Resources/methods , Hydrogen-Ion Concentration , Biodiversity , Uncertainty , Climate Change , Ecosystem
4.
J Anim Ecol ; 90(3): 615-627, 2021 03.
Article in English | MEDLINE | ID: mdl-33232514

ABSTRACT

Climate change is altering the latitudinal distributions of species, with their capacity to keep pace with a shifting climate depending on the stochastic expression of population growth rates, and the influence of compensatory density feedback on age-specific survival rates. We use population-abundance time series at the leading edge of an expanding species' range to quantify the contribution of stochastic environmental drivers and density feedbacks to the dynamics of life stage-specific population growth. Using a tropical, range-shifting Indo-Pacific damselfish (Abudefduf vaigiensis) as a model organism, we applied variants of the phenomenological Gompertz-logistic model to a 14-year dataset to quantify the relative importance of density feedback and stochastic environmental drivers on the separate and aggregated population growth rates of settler and juvenile life stages. The top-ranked models indicated that density feedback negatively affected the growth of tropical settlers and juveniles. Rates of settlement were negatively linked to temperatures experienced by parents at potential source populations in the tropics, but their subsequent survival and that of juveniles increased with the temperatures experienced at the temperate sink. Including these stochastic effects doubled the deviance explained by the models, corroborating an important role of temperature. By incorporating sea-surface temperature projections for the remainder of this century into these models, we anticipate improved conditions for the population growth of juvenile coral-reef fishes, but not for settlers in temperate ecosystems. Previous research has highlighted the association between temperature and the redistribution of species. Our analyses reveal the contrasting roles of different life stages in the dynamics of range-shifting species responding to climate change, as they transition from vagrancy to residency in their novel ranges.


Subject(s)
Anthozoa , Ecosystem , Animals , Climate Change , Coral Reefs , Fishes , Oceans and Seas
5.
Parasitol Res ; 120(7): 2493-2503, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34115215

ABSTRACT

Recent anecdotal reports from seafood processors in eastern Australia have described an increased occurrence of post-mortem myoliquefaction ('jellymeat') in broadbill swordfish Xiphias gladius, and macroscopic cysts throughout the musculature of yellowfin tuna Thunnus albacares. A genus of parasitic cnidarians, Kudoa (Myxosporea, Multivalvulida), species of which are known to occur in economically important wild-caught fish species globally, can cause similar quality-deterioration issues. However, Kudoa sp. epizootiology within commercially harvested, high-value fish caught within Australia is poorly understood, despite the parasite's economic importance. To determine the causative agent responsible for the observed quality deterioration in swordfish and yellowfin tuna, muscle-tissue samples from seafood processors in Mooloolaba, Australia, collected from October 2019-February 2020, were examined for parasitic infection. Kudoid myxospores were identified from both hosts and were subquadrate in shape, with four equal-sized polar capsules. The SSU rDNA sequences from both fish shared > 99% identity to Kudoa species. Kudoa musculoliquefaciens was isolated from 87.1% of swordfish sampled, suggesting that it is a widespread parasite in swordfish from the southwest Pacific Ocean. This study provides the first molecular and morphological characterisation of Kudoa thunni in yellowfin tuna and K. musculoliquefaciens in swordfish harvested from the waters of eastern Australia, expanding the geographical distribution of K. thunni and K. musculoliquefaciens to include the Coral and Tasman Seas. We demonstrate that not all infected swordfish progress to jellymeat, show the usefulness of molecular tools for reliably identifying infection by Kudoa spp., and add to the overall knowledge of kudoid epizootiology in wild-caught fish.


Subject(s)
Fishes/parasitology , Myxozoa/classification , Tuna/parasitology , Animals , Australia , DNA, Ribosomal/genetics , Fish Diseases/epidemiology , Fish Diseases/parasitology , Muscles/parasitology , Myxozoa/anatomy & histology , Myxozoa/genetics , Pacific Ocean , Parasitic Diseases, Animal/epidemiology , Parasitic Diseases, Animal/parasitology , Phylogeny , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/genetics , Seafood/parasitology , Species Specificity
6.
Glob Chang Biol ; 26(10): 5564-5573, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32530107

ABSTRACT

Climate change is redistributing marine and terrestrial species globally. Life-history traits mediate the ability of species to cope with novel environmental conditions, and can be used to gauge the potential redistribution of taxa facing the challenges of a changing climate. However, it is unclear whether the same traits are important across different stages of range shifts (arrival, population increase, persistence). To test which life-history traits most mediate the process of range extension, we used a 16-year dataset of 35 range-extending coral-reef fish species and quantified the importance of various traits on the arrival time (earliness) and degree of persistence (prevalence and patchiness) at higher latitudes. We show that traits predisposing species to shift their range more rapidly (large body size, broad latitudinal range, long dispersal duration) did not drive the early stages of redistribution. Instead, we found that as diet breadth increased, the initial arrival and establishment (prevalence and patchiness) of climate migrant species in temperate locations occurred earlier. While the initial incursion of range-shifting species depends on traits associated with dispersal potential, subsequent establishment hinges more on a species' ability to exploit novel food resources locally. These results highlight that generalist species that can best adapt to novel food sources might be most successful in a future ocean.


Subject(s)
Anthozoa , Climate Change , Animals , Coral Reefs , Diet , Fishes
7.
Nature ; 569(7754): 50-51, 2019 05.
Article in English | MEDLINE | ID: mdl-31036966

Subject(s)
Climate Change , Climate , Animals
8.
Nature ; 507(7493): 492-5, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24509712

ABSTRACT

The reorganization of patterns of species diversity driven by anthropogenic climate change, and the consequences for humans, are not yet fully understood or appreciated. Nevertheless, changes in climate conditions are useful for predicting shifts in species distributions at global and local scales. Here we use the velocity of climate change to derive spatial trajectories for climatic niches from 1960 to 2009 (ref. 7) and from 2006 to 2100, and use the properties of these trajectories to infer changes in species distributions. Coastlines act as barriers and locally cooler areas act as attractors for trajectories, creating source and sink areas for local climatic conditions. Climate source areas indicate where locally novel conditions are not connected to areas where similar climates previously occurred, and are thereby inaccessible to climate migrants tracking isotherms: 16% of global surface area for 1960 to 2009, and 34% of ocean for the 'business as usual' climate scenario (representative concentration pathway (RCP) 8.5) representing continued use of fossil fuels without mitigation. Climate sink areas are where climate conditions locally disappear, potentially blocking the movement of climate migrants. Sink areas comprise 1.0% of ocean area and 3.6% of land and are prevalent on coasts and high ground. Using this approach to infer shifts in species distributions gives global and regional maps of the expected direction and rate of shifts of climate migrants, and suggests areas of potential loss of species richness.


Subject(s)
Animal Migration , Climate Change , Climate , Ecosystem , Geographic Mapping , Geography , Animals , Australia , Biodiversity , Models, Theoretical , Population Dynamics , Seawater , Temperature , Time Factors , Uncertainty
9.
Glob Chang Biol ; 22(4): 1548-60, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26661135

ABSTRACT

Climate change is shifting species' distribution and phenology. Ecological traits, such as mobility or reproductive mode, explain variation in observed rates of shift for some taxa. However, estimates of relationships between traits and climate responses could be influenced by how responses are measured. We compiled a global data set of 651 published marine species' responses to climate change, from 47 papers on distribution shifts and 32 papers on phenology change. We assessed the relative importance of two classes of predictors of the rate of change, ecological traits of the responding taxa and methodological approaches for quantifying biological responses. Methodological differences explained 22% of the variation in range shifts, more than the 7.8% of the variation explained by ecological traits. For phenology change, methodological approaches accounted for 4% of the variation in measurements, whereas 8% of the variation was explained by ecological traits. Our ability to predict responses from traits was hindered by poor representation of species from the tropics, where temperature isotherms are moving most rapidly. Thus, the mean rate of distribution change may be underestimated by this and other global syntheses. Our analyses indicate that methodological approaches should be explicitly considered when designing, analysing and comparing results among studies. To improve climate impact studies, we recommend that (1) reanalyses of existing time series state how the existing data sets may limit the inferences about possible climate responses; (2) qualitative comparisons of species' responses across different studies be limited to studies with similar methodological approaches; (3) meta-analyses of climate responses include methodological attributes as covariates; and (4) that new time series be designed to include the detection of early warnings of change or ecologically relevant change. Greater consideration of methodological attributes will improve the accuracy of analyses that seek to quantify the role of climate change in species' distribution and phenology changes.


Subject(s)
Climate Change , Ecology/methods , Aquatic Organisms , Models, Theoretical , Population Dynamics , Seasons
10.
J Anim Ecol ; 85(2): 437-44, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26476209

ABSTRACT

Connectivity is a pivotal feature of landscapes that affects the structure of populations and the functioning of ecosystems. It is also a key consideration in conservation planning. But the potential functional effects of landscape connectivity are rarely evaluated in a conservation context. The removal of algae by herbivorous fish is a key ecological function on coral reefs that promotes coral growth and recruitment. Many reef herbivores are harvested and some use other habitats (like mangroves) as nurseries or feeding areas. Thus, the effects of habitat connectivity and marine reserves can jointly promote herbivore populations on coral reefs, thereby influencing reef health. We used a coral reef seascape in eastern Australia to test whether seascape connectivity and reserves influence herbivory. We measured herbivore abundance and rates of herbivory (on turf algae and macroalgae) on reefs that differed in both their level of connectivity to adjacent mangrove habitats and their level of protection from fishing. Reserves enhanced the biomass of herbivorous fish on coral reefs in all seascape settings and promoted consumption of turf algae. Consumption of turf algae was correlated with the biomass of surgeonfish that are exploited outside reserves. By contrast, both reserve status and connectivity influenced herbivory on macroalgae. Consumption of macroalgae was greatest on fished reefs that were far from mangroves and was not strongly correlated with any fish species. Our findings demonstrate that landscape connectivity and reserve status can jointly affect the functioning of ecosystems. Moreover, we show that reserve and connectivity effects can differ markedly depending on resource type (in this case turf algae vs. macroalgae). The effectiveness of conservation initiatives will therefore depend on our ability to understand how these multiple interactive effects structure the distribution of ecological functions. These findings have wider implications for the spatial conservation of heterogeneous environments and strengthen the case that the impact of conservation on ecosystem functioning is contingent on how reserves are positioned in landscapes.


Subject(s)
Conservation of Natural Resources , Coral Reefs , Fishes/physiology , Herbivory , Animals , Anthozoa , Food Chain , Microalgae/growth & development , Queensland , Seaweed/growth & development
11.
Ecology ; 96(10): 2715-25, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26649392

ABSTRACT

Species composition is expected to alter ecological function in assemblages if species traits differ strongly. Such effects are often large and persistent for nonnative carnivores invading islands. Alternatively, high similarity in traits within assemblages creates a degree of functional redundancy in ecosystems. Here we tested whether species turnover results in functional ecological equivalence or complementarity, and whether invasive carnivores on islands significantly alter such ecological function. The model system consisted of vertebrate scavengers (dominated by raptors) foraging on animal carcasses on ocean beaches on two Australian islands, one with and one without invasive red foxes (Vulpes vulpes). Partitioning of scavenging events among species, carcass removal rates, and detection speeds were quantified using camera traps baited with fish carcasses at the dune-beach interface. Complete segregation of temporal foraging niches between mammals (nocturnal) and birds (diurnal) reflects complementarity in carrion utilization. Conversely, functional redundancy exists within the bird guild where several species of raptors dominate carrion removal in a broadly similar way. As predicted, effects of red foxes were large. They substantially changed the nature and rate of the scavenging process in the system: (1) foxes consumed over half (55%) of all carrion available at night, compared with negligible mammalian foraging at night on the fox-free island, and (2) significant shifts in the composition of the scavenger assemblages consuming beach-cast carrion are the consequence of fox invasion at one island. Arguably, in the absence of other mammalian apex predators, the addition of red foxes creates a new dimension of functional complementarity in beach food webs. However, this functional complementarity added by foxes is neither benign nor neutral, as marine carrion subsidies to coastal red fox populations are likely to facilitate their persistence as exotic carnivores.


Subject(s)
Birds/physiology , Food Chain , Foxes , Introduced Species , Predatory Behavior/physiology , Animals , Australia , Islands , Rats , Swine
12.
J Environ Manage ; 152: 201-9, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25684567

ABSTRACT

Oceans, particularly coastal areas, are getting busier and within this increasingly human-dominated seascape, marine biodiversity continues to decline. Attempts to maintain and restore marine biodiversity are becoming more spatial, principally through the designation of marine protected areas (MPAs). MPAs compete for space with other uses, and the emergence of new industries, such as marine renewable energy generation, will increase competition for space. Decision makers require guidance on how to zone the ocean to conserve biodiversity, mitigate conflict and accommodate multiple uses. Here we used empirical data and freely available planning software to identified priority areas for multiple ocean zones, which incorporate goals for biodiversity conservation, two types of renewable energy, and three types of fishing. We developed an approached to evaluate trade-offs between industries and we investigated the impacts of co-locating some fishing activities within renewable energy sites. We observed non-linear trade-offs between industries. We also found that different subsectors within those industries experienced very different trade-off curves. Incorporating co-location resulted in significant reductions in cost to the fishing industry, including fisheries that were not co-located. Co-location also altered the optimal location of renewable energy zones with planning solutions. Our findings have broad implications for ocean zoning and marine spatial planning. In particular, they highlight the need to include industry subsectors when assessing trade-offs and they stress the importance of considering co-location opportunities from the outset. Our research reinforces the need for multi-industry ocean-zoning and demonstrates how it can be undertaken within the framework of strategic conservation planning.


Subject(s)
Conservation of Natural Resources/methods , Fisheries/methods , Oceans and Seas , Renewable Energy , Northern Ireland
13.
Glob Chang Biol ; 20(8): 2383-92, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25121188

ABSTRACT

Sandy ocean beaches are iconic assets that provide irreplaceable ecosystem services to society. Despite their great socioeconomic importance, beaches as ecosystems are severely under-represented in the literature on climate-change ecology. Here, we redress this imbalance by examining whether beach biota have been observed to respond to recent climate change in ways that are consistent with expectations under climate change. We base our assessments on evidence coming from case studies on beach invertebrates in South America and on sea turtles globally. Surprisingly, we find that observational evidence for climate-change responses in beach biota is more convincing for invertebrates than for highly charismatic turtles. This asymmetry is paradoxical given the better theoretical understanding of the mechanisms by which turtles are likely to respond to changes in climate. Regardless of this disparity, knowledge of the unique attributes of beach systems can complement our detection of climate-change impacts on sandy-shore invertebrates to add rigor to studies of climate-change ecology for sandy beaches. To this end, we combine theory from beach ecology and climate-change ecology to put forward a suite of predictive hypotheses regarding climate impacts on beaches and to suggest ways that these can be tested. Addressing these hypotheses could significantly advance both beach and climate-change ecology, thereby progressing understanding of how future climate change will impact coastal ecosystems more generally.


Subject(s)
Bathing Beaches , Climate Change , Animals , Biota , Ecosystem , Invertebrates , Nesting Behavior , South America , Turtles
14.
Ecol Appl ; 24(8): 2002-12, 2014.
Article in English | MEDLINE | ID: mdl-29185668

ABSTRACT

The conservation management of southern Africa's elephants focuses on identifying and mitigating the extent and intensity of impacts on biological diversity. However, variation in the intensity of elephant effects between elements of biodiversity is seldom explored, which limits our ability to interpret the scale of the impacts. Our study quantifies >50 years of impacts in the succulent thickets of the Addo Elephant National Park, South Africa, contrasting hypotheses for the resilience of the canopy shrubs (a key functional guild) to elephants with those that argue the opposite. We also assess the impacts between elements of the community, ranging from community composition and structure to the structure of individual canopy species. We show the vulnerability of the canopy shrubs to transformation as the accumulated influences of elephants alter community composition and structure. The pattern of transformation is similar to that caused by domestic herbivores, which leads us to predict that elephants will eventually bring about landscape-level degradation and a significant loss of biodiversity. While we expected the canopy species to show similar declining trends in structure, providing insight into the response of the community as a whole, we demonstrate an uneven distribution of impacts between constituent elements; most of the canopy dominants exhibited little change, resisting removal. This implies that these canopy dominants might not be useful indicators of community change in thickets, a pattern that is likely repeated among the canopy trees of savanna systems. Our findings suggest that predicting elephant impacts, and finding solutions to the so-called "elephant problem," require a broader and more integrated understanding of the mechanisms driving the changes between elements of biodiversity at various spatial and temporal scales.


Subject(s)
Biodiversity , Elephants/physiology , Environmental Monitoring/methods , Animals , Conservation of Natural Resources/methods , South Africa , Time Factors
15.
J Environ Manage ; 144: 322-35, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25014753

ABSTRACT

Complexity is increasingly the hallmark in environmental management practices of sandy shorelines. This arises primarily from meeting growing public demands (e.g., real estate, recreation) whilst reconciling economic demands with expectations of coastal users who have modern conservation ethics. Ideally, shoreline management is underpinned by empirical data, but selecting ecologically-meaningful metrics to accurately measure the condition of systems, and the ecological effects of human activities, is a complex task. Here we construct a framework for metric selection, considering six categories of issues that authorities commonly address: erosion; habitat loss; recreation; fishing; pollution (litter and chemical contaminants); and wildlife conservation. Possible metrics were scored in terms of their ability to reflect environmental change, and against criteria that are widely used for judging the performance of ecological indicators (i.e., sensitivity, practicability, costs, and public appeal). From this analysis, four types of broadly applicable metrics that also performed very well against the indicator criteria emerged: 1.) traits of bird populations and assemblages (e.g., abundance, diversity, distributions, habitat use); 2.) breeding/reproductive performance sensu lato (especially relevant for birds and turtles nesting on beaches and in dunes, but equally applicable to invertebrates and plants); 3.) population parameters and distributions of vertebrates associated primarily with dunes and the supralittoral beach zone (traditionally focused on birds and turtles, but expandable to mammals); 4.) compound measurements of the abundance/cover/biomass of biota (plants, invertebrates, vertebrates) at both the population and assemblage level. Local constraints (i.e., the absence of birds in highly degraded urban settings or lack of dunes on bluff-backed beaches) and particular issues may require alternatives. Metrics - if selected and applied correctly - provide empirical evidence of environmental condition and change, but often do not reflect deeper environmental values per se. Yet, values remain poorly articulated for many beach systems; this calls for a comprehensive identification of environmental values and the development of targeted programs to conserve these values on sandy shorelines globally.


Subject(s)
Bathing Beaches , Conservation of Natural Resources/methods , Ecosystem , Environmental Monitoring/methods , Models, Biological
16.
Sci Total Environ ; 951: 175832, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39197762

ABSTRACT

Responses of organisms to climate warming are variable and complex. Effects on species distributions are already evident and mean global surface ocean temperatures are likely to warm by up to 4.1 °C by 2100, substantially impacting the physiology and distributions of ectotherms. The largest marine ectotherm, the whale shark Rhincodon typus, broadly prefers sea surface temperatures (SST) ranging from 23 to 30 °C. Whole-species distribution models have projected a poleward range shift under future scenarios of climate change, but these models do not consider intraspecific variation or phenotypic plasticity in thermal limits when modelling species responses, and the impact of climate warming on the energetic requirements of whale sharks is unknown. Using a dataset of 111 whale shark movement tracks from aggregation sites in five countries across the Indian Ocean and the latest Earth-system modelling produced from Coupled Model Intercomparison Project Phase 6 for the Intergovernmental Panel on Climate Change, we examined how SST and total zooplankton biomass, their main food source, may change in the future, and what this means for the energetic balance and extent of suitable habitat for whale sharks. Earth System Models, under three Shared Socioeconomic Pathways (SSPs; SSP1-2.6, SSP3-7.0 and SSP5-8.5), project that by 2100 mean SST in four regions where whale shark aggregations are found will increase by up to 4.9 °C relative to the present, while zooplankton biomass will decrease. This reduction in zooplankton is projected to be accompanied by an increase in the energetic requirements of whale sharks because warmer water temperatures will increase their metabolic rate. We found marked differences in projected changes in the extent of suitable habitat when comparing a whole-species distribution model to one including regional variation. This suggests that the conventional approach of combining data from different regions within a species' distribution could underestimate the amount of local adaptation in populations, although parameterising local models could also suffer from having insufficient data and lead to model mis-specification or highly uncertain estimates. Our study highlights the need for further research into whale shark thermal tolerances and energetics, the complexities involved in projecting species responses to climate change, and the potential importance of considering intraspecific variation when building species distribution models.


Subject(s)
Climate Change , Ecosystem , Sharks , Animals , Sharks/physiology , Indian Ocean , Temperature
17.
Ecol Lett ; 16 Suppl 1: 58-71, 2013 May.
Article in English | MEDLINE | ID: mdl-23679010

ABSTRACT

There is increasing pressure from policymakers for ecologists to generate more detailed 'attribution' analyses aimed at quantitatively estimating relative contributions of different driving forces, including anthropogenic climate change (ACC), to observed biological changes. Here, we argue that this approach is not productive for ecological studies. Global meta-analyses of diverse species, regions and ecosystems have already given us 'very high confidence' [sensu Intergovernmental Panel on Climate Change (IPCC)] that ACC has impacted wild species in a general sense. Further, for well-studied species or systems, synthesis of experiments and models with long-term observations has given us similarly high confidence that they have been impacted by regional climate change (regardless of its cause). However, the role of greenhouse gases in driving these impacts has not been estimated quantitatively. Should this be an ecological research priority? We argue that development of quantitative ecological models for this purpose faces several impediments, particularly the existence of strong, non-additive interactions among different external factors. However, even with current understanding of impacts of global warming, there are myriad climate change adaptation options already developed in the literature that could be, and in fact are being, implemented now.


Subject(s)
Climate Change , Ecology , Research/trends , Adaptation, Physiological , Animals , Butterflies/physiology , Ecology/methods , Global Warming , Greenhouse Effect , Models, Theoretical , Research Design
18.
Trends Ecol Evol ; 38(9): 843-858, 2023 09.
Article in English | MEDLINE | ID: mdl-37179171

ABSTRACT

For each assessment cycle of the Intergovernmental Panel on Climate Change (IPCC), researchers in the life sciences are called upon to provide evidence to policymakers planning for a changing future. This research increasingly relies on highly technical and complex outputs from climate models. The strengths and weaknesses of these data may not be fully appreciated beyond the climate modelling community; therefore, uninformed use of raw or preprocessed climate data could lead to overconfident or spurious conclusions. We provide an accessible introduction to climate model outputs that is intended to empower the life science community to robustly address questions about human and natural systems in a changing world.


Subject(s)
Climate Change , Climate Models , Humans , Forecasting
19.
Biol Lett ; 8(6): 907-9, 2012 Dec 23.
Article in English | MEDLINE | ID: mdl-22791706

ABSTRACT

A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC) process, and to strengthen research into ecological impacts of climate change.


Subject(s)
Climate Change , Ecosystem , Marine Biology/methods , Marine Biology/trends , Data Collection , Data Interpretation, Statistical , Geography , Oceanography/methods , Oceans and Seas , Time Factors
20.
Sci Rep ; 11(1): 13566, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34193910

ABSTRACT

Collecting quantitative information on animal behaviours is difficult, especially from cryptic species or species that alter natural behaviours under observation. Using harness-mounted tri-axial accelerometers free-roaming domestic cats (Felis Catus) we developed a methodology that can precisely classify finer-scale behaviours. We further tested the effect of a prey-protector device designed to reduce prey capture. We aligned accelerometer traces collected at 50 Hz with video files (60 fps) and labelled 12 individual behaviours, then trained a supervised machine-learning algorithm using Kohonen super self-organising maps (SOM). The SOM was able to predict individual behaviours with a ~ 99.6% overall accuracy, which was slightly better than for random forest estimates using the same dataset (98.9%). There was a significant effect of sample size, with precision and sensitivity decreasing rapidly below 2000 1-s observations. We were also able to detect a behaviour specific reduction in the predictability when cats were fitted with the prey-protector device indicating it altered biomechanical gait. Our results can be applied in movement ecology, zoology and conservation, where habitat specific movement performance between predators or prey may be critical to managing species of conservation significance, or in veterinary and agricultural fields, where early detection of movement pathologies can improve animal welfare.


Subject(s)
Accelerometry , Behavior, Animal/physiology , Ecosystem , Supervised Machine Learning , Animals , Cats , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL