Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal
Affiliation country
Publication year range
1.
Blood ; 142(17): 1463-1477, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37441848

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with high morbidity and mortality. Excessive neutrophil infiltration into the pulmonary airspace is the main cause for the acute inflammation and lung injury. Platelets have been implicated in the pathogenesis of ALI/ARDS, but the underlying mechanisms are not fully understood. Here, we show that the immunoreceptor tyrosine-based activation motif-coupled immunoglobulin-like platelet receptor, glycoprotein VI (GPVI), plays a key role in the early phase of pulmonary thrombo-inflammation in a model of lipopolysaccharide (LPS)-induced ALI in mice. In wild-type (WT) control mice, intranasal LPS application triggered severe pulmonary and blood neutrophilia, hypothermia, and increased blood lactate levels. In contrast, GPVI-deficient mice as well as anti-GPVI-treated WT mice were markedly protected from pulmonary and systemic compromises and showed no increased pulmonary bleeding. High-resolution multicolor microscopy of lung sections and intravital confocal microcopy of the ventilated lung revealed that anti-GPVI treatment resulted in less stable platelet interactions with neutrophils and overall reduced platelet-neutrophil complex (PNC) formation. Anti-GPVI treatment also reduced neutrophil crawling and adhesion on endothelial cells, resulting in reduced neutrophil transmigration and alveolar infiltrates. Remarkably, neutrophil activation was also diminished in anti-GPVI-treated animals, associated with strongly reduced formation of PNC clusters and neutrophil extracellular traps (NETs) compared with that in control mice. These results establish GPVI as a key mediator of neutrophil recruitment, PNC formation, and NET formation (ie, NETosis) in experimental ALI. Thus, GPVI inhibition might be a promising strategy to reduce the acute pulmonary inflammation that causes ALI/ARDS.


Subject(s)
Acute Lung Injury , Pneumonia , Respiratory Distress Syndrome , Animals , Mice , Acute Lung Injury/pathology , Endothelial Cells/pathology , Inflammation/pathology , Lipopolysaccharides/adverse effects , Lung/pathology , Neutrophil Infiltration , Neutrophils/pathology , Pneumonia/pathology , Respiratory Distress Syndrome/pathology
2.
Blood ; 135(14): 1146-1160, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32040544

ABSTRACT

Increasing evidence suggests that platelets play a predominant role in colon and breast cancer metastasis, but the underlying molecular mechanisms remain elusive. Glycoprotein VI (GPVI) is a platelet-specific receptor for collagen and fibrin that triggers platelet activation through immunoreceptor tyrosine-based activation motif (ITAM) signaling and thereby regulates diverse functions, including platelet adhesion, aggregation, and procoagulant activity. GPVI has been proposed as a safe antithrombotic target, because its inhibition is protective in models of arterial thrombosis, with only minor effects on hemostasis. In this study, the genetic deficiency of platelet GPVI in mice decreased experimental and spontaneous metastasis of colon and breast cancer cells. Similar results were obtained with mice lacking the spleen-tyrosine kinase Syk in platelets, an essential component of the ITAM-signaling cascade. In vitro and in vivo analyses supported that mouse, as well as human GPVI, had platelet adhesion to colon and breast cancer cells. Using a CRISPR/Cas9-based gene knockout approach, we identified galectin-3 as the major counterreceptor of GPVI on tumor cells. In vivo studies demonstrated that the interplay between platelet GPVI and tumor cell-expressed galectin-3 uses ITAM-signaling components in platelets and favors the extravasation of tumor cells. Finally, we showed that JAQ1 F(ab')2-mediated inhibition of GPVI efficiently impairs platelet-tumor cell interaction and tumor metastasis. Our study revealed a new mechanism by which platelets promote the metastasis of colon and breast cancer cells and suggests that GPVI represents a promising target for antimetastatic therapies.


Subject(s)
Blood Platelets/pathology , Breast Neoplasms/pathology , Colonic Neoplasms/pathology , Galectin 3/metabolism , Platelet Membrane Glycoproteins/metabolism , Animals , Blood Platelets/metabolism , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Colonic Neoplasms/metabolism , Female , Humans , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasm Metastasis/pathology , Platelet Activation , Platelet Membrane Glycoproteins/genetics , Protein Interaction Maps
SELECTION OF CITATIONS
SEARCH DETAIL