Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 109(9): 1563-1571, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36055208

ABSTRACT

The vision of the American Society of Human Genetics (ASHG) is that people everywhere will realize the benefits of human genetics and genomics. Implicit in that vision is the importance of ensuring that the benefits of human genetics and genomics research are realized in ways that minimize harms and maximize benefits, a goal that can only be achieved through focused efforts to address health inequities and increase the representation of underrepresented communities in genetics and genomics research. This guidance is intended to advance community engagement as an approach that can be used across the research lifecycle. Community engagement uniquely offers researchers in human genetics and genomics an opportunity to pursue that vision successfully, including by addressing underrepresentation in genomics research.


Subject(s)
Genomics , Research Personnel , Humans , United States
2.
Am J Med Genet A ; 194(6): e63540, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38243407

ABSTRACT

Coffin-Siris Syndrome (CSS, MIM 135900) is now a well-described genetic condition caused by pathogenic variants in the Bromocriptine activating factor (BAF) complex, including ARID1B, ARID1A, ARID2, SMARCA4, SMARCE1, SMARCB1, SOX11, SMARCC2, DPF2, and more recently, BICRA. Individuals with CSS have a spectrum of various medical challenges, most often evident at birth, including feeding difficulties, hypotonia, organ-system anomalies, and learning and developmental differences. The classic finding of fifth digit hypo- or aplasia is seen variably. ARID2, previously described, is one of the less frequently observed gene changes in CSS. Although individuals with ARID2 have been reported to have classic features of CSS including hypertrichosis, coarse facial features, short stature, and fifth digit anomalies, as with many of the other CSS genes, there appears to be a spectrum of phenotypes. We report here a cohort of 17 individuals with ARID2 variants from the Coffin-Siris/BAF clinical registry and detail their medical challenges as well as developmental progress. Feeding difficulties, hypotonia, and short stature occur often, and hip dysplasia appears to occur more often than with other genes, however more severe medical challenges such as significant brain and cardiac malformations are rarer. Individuals appear to have mild to moderate intellectual impairment and may carry additional diagnoses such as ADHD. Further phenotypic description of this gene will aid clinicians caring for individuals with this rarer form of CSS.


Subject(s)
Abnormalities, Multiple , Face/abnormalities , Hand Deformities, Congenital , Intellectual Disability , Micrognathism , Neck , Neck/abnormalities , Phenotype , Transcription Factors , Humans , Micrognathism/genetics , Micrognathism/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Neck/pathology , Hand Deformities, Congenital/genetics , Hand Deformities, Congenital/diagnosis , Male , Female , Transcription Factors/genetics , Abnormalities, Multiple/genetics , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/pathology , Child , Child, Preschool , Infant , Mutation/genetics , Adolescent , DNA-Binding Proteins/genetics , Genetic Predisposition to Disease
3.
Am J Med Genet A ; 188(6): 1808-1814, 2022 06.
Article in English | MEDLINE | ID: mdl-35253988

ABSTRACT

Pathogenic variants in USP9X, on X chromosome, have been implicated in syndromic intellectual disability (ID) in both males and females with distinct craniofacial features. We report a truncating variant, c.885_889delAAAAG, p.(Lys296Serfs*4), in the USP9X gene with incomplete penetrance in two nontwin female siblings with phenotypic resemblance to female-specific syndromic ID (MIM 300969, also known as MRX99F). To investigate the possible genetic etiology of the reduced penetrance, X-inactivation, RNA-Seq, and full quad exome analyses were attempted, but failed to identify a promising candidate modifier. While the penetrance of pathogenic variants in USP9X in female appears to be high (95%) and the variants frequently occur de novo, incomplete penetrance should be considered.


Subject(s)
Intellectual Disability , Ubiquitin Thiolesterase , Exome , Female , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Male , Penetrance , RNA-Seq , Ubiquitin Thiolesterase/genetics , Exome Sequencing
4.
Am J Med Genet A ; 188(9): 2718-2723, 2022 09.
Article in English | MEDLINE | ID: mdl-35796094

ABSTRACT

Coffin-Siris syndrome (CSS) is an autosomal dominant neurodevelopmental syndrome that can present with a variety of structural birth defects. Pathogenic variants in 12 genes have been shown to cause CSS. Most of these genes encode proteins that are a part of the mammalian switch/sucrose non-fermentable (mSWI/SNF; BAF) complex. An association between genes that cause CSS and congenital diaphragmatic hernia (CDH) has been suggested based on case reports and the analysis of CSS and CDH cohorts. Here, we describe an unpublished individual with CSS and CDH, and we report additional clinical information on four published cases. Data from these individuals, and a review of the literature, provide evidence that deleterious variants in ARID1B, ARID1A, SMARCB1, SMARCA4, SMARCE1, ARID2, DPF2, and SMARCC2, which are associated with CSS types 1-8, respectively, are associated with the development of CDH. This suggests that additional genetic testing to identify a separate cause of CDH in an individual with CSS may be unwarranted, and that comprehensive genetic testing for individuals with non-isolated CDH should include an evaluation of CSS-related genes. These data also suggest that the mSWI/SNF (BAF) complex may play an important role in diaphragm development.


Subject(s)
Abnormalities, Multiple , Hand Deformities, Congenital , Hernias, Diaphragmatic, Congenital , Intellectual Disability , Micrognathism , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Chromosomal Proteins, Non-Histone , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Face/abnormalities , Hand Deformities, Congenital/complications , Hand Deformities, Congenital/diagnosis , Hand Deformities, Congenital/genetics , Hernias, Diaphragmatic, Congenital/genetics , Hernias, Diaphragmatic, Congenital/pathology , Humans , Intellectual Disability/pathology , Micrognathism/genetics , Micrognathism/pathology , Neck/abnormalities , Nuclear Proteins/genetics , Transcription Factors/genetics
5.
Am J Med Genet A ; 188(3): 878-882, 2022 03.
Article in English | MEDLINE | ID: mdl-34881817

ABSTRACT

BAFopathies are a heterogenous group of neurodevelopmental disorders caused by mutations in genes encoding subunits of the BAF complex, and they exhibit a broad clinical phenotypic spectrum. Pathogenic heterozygous variants in SMARCC2 have been implicated in Coffin-Siris syndrome 8 (MIM 618362) with variable neurodevelopmental presentations. We report here two relatively severely affected patients with two different SMARCC2 variants: one has de novo pathogenic variant, c.1824_1826del, p.(Leu609del), in a suspected hotspot region through reanalysis of previously negative clinical exome data, and the other has a likely pathogenic loss-of-function variant, c.1094_1097delAGAA, p.(Lys365Thrfs*12) through exome analysis in an adopted subject. Regardless of variant type, both patients have severe developmental delays, severe speech delay, short stature, hypotonia, seizures, and craniofacial dysmorphisms, blurring previously speculated genotype-phenotype correlation on missense and loss-of-function variants. This report extends our understanding of the genotypic and phenotypic spectrums of the SMARCC2-related neurodevelopmental disorder.


Subject(s)
Abnormalities, Multiple , Intellectual Disability , Neurodevelopmental Disorders , Abnormalities, Multiple/genetics , DNA-Binding Proteins/genetics , Exome/genetics , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Mutation , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Phenotype , Transcription Factors/genetics
6.
Am J Med Genet A ; 188(9): 2750-2759, 2022 09.
Article in English | MEDLINE | ID: mdl-35543142

ABSTRACT

The pre-mRNA-processing factor 8, encoded by PRPF8, is a scaffolding component of a spliceosome complex involved in the removal of introns from mRNA precursors. Previously, heterozygous pathogenic variants in PRPF8 have been associated with autosomal dominant retinitis pigmentosa. More recently, PRPF8 was suggested as a candidate gene for autism spectrum disorder due to the enrichment of sequence variants in this gene in individuals with neurodevelopmental disorders. We report 14 individuals with various forms of neurodevelopmental conditions, found to have heterozygous, predominantly de novo, missense, and loss-of-function variants in PRPF8. These individuals have clinical features that may represent a new neurodevelopmental syndrome.


Subject(s)
Autism Spectrum Disorder , Neurodevelopmental Disorders , Retinitis Pigmentosa , Autism Spectrum Disorder/genetics , Heterozygote , Humans , Neurodevelopmental Disorders/genetics , RNA-Binding Proteins/genetics , Retinitis Pigmentosa/genetics
7.
Hum Mol Genet ; 28(17): 2937-2951, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31152168

ABSTRACT

KCNMA1 encodes the large-conductance Ca2+- and voltage-activated K+ (BK) potassium channel α-subunit, and pathogenic gain-of-function variants in this gene have been associated with a dominant form of generalized epilepsy and paroxysmal dyskinesia. Here, we genetically and functionally characterize eight novel loss-of-function (LoF) variants of KCNMA1. Genome or exome sequencing and the participation in the international Matchmaker Exchange effort allowed for the identification of novel KCNMA1 variants. Patch clamping was used to assess functionality of mutant BK channels. The KCNMA1 variants p.(Ser351Tyr), p.(Gly356Arg), p.(Gly375Arg), p.(Asn449fs) and p.(Ile663Val) abolished the BK current, whereas p.(Cys413Tyr) and p.(Pro805Leu) reduced the BK current amplitude and shifted the activation curves toward positive potentials. The p.(Asp984Asn) variant reduced the current amplitude without affecting kinetics. A phenotypic analysis of the patients carrying the recurrent p.(Gly375Arg) de novo missense LoF variant revealed a novel syndromic neurodevelopmental disorder associated with severe developmental delay, visceral and cardiac malformations, connective tissue presentations with arterial involvement, bone dysplasia and characteristic dysmorphic features. Patients with other LoF variants presented with neurological and developmental symptoms including developmental delay, intellectual disability, ataxia, axial hypotonia, cerebral atrophy and speech delay/apraxia/dysarthria. Therefore, LoF KCNMA1 variants are associated with a new syndrome characterized by a broad spectrum of neurological phenotypes and developmental disorders. LoF variants of KCNMA1 cause a new syndrome distinctly different from gain-of-function variants in the same gene.


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Loss of Function Mutation , Phenotype , Alleles , Amino Acid Substitution , Electrophysiological Phenomena , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Humans , Infant, Newborn , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/chemistry , Male , Mutation, Missense , Pedigree , Protein Domains , Protein Interaction Domains and Motifs
8.
Genet Med ; 23(5): 881-887, 2021 05.
Article in English | MEDLINE | ID: mdl-33473207

ABSTRACT

PURPOSE: Neurodevelopmental disorders (NDDs) encompass a spectrum of genetically heterogeneous disorders with features that commonly include developmental delay, intellectual disability, and autism spectrum disorders. We sought to delineate the molecular and phenotypic spectrum of a novel neurodevelopmental disorder caused by variants in the GNAI1 gene. METHODS: Through large cohort trio-based exome sequencing and international data-sharing, we identified 24 unrelated individuals with NDD phenotypes and a variant in GNAI1, which encodes the inhibitory Gαi1 subunit of heterotrimeric G-proteins. We collected detailed genotype and phenotype information for each affected individual. RESULTS: We identified 16 unique variants in GNAI1 in 24 affected individuals; 23 occurred de novo and 1 was inherited from a mosaic parent. Most affected individuals have a severe neurodevelopmental disorder. Core features include global developmental delay, intellectual disability, hypotonia, and epilepsy. CONCLUSION: This collaboration establishes GNAI1 variants as a cause of NDDs. GNAI1-related NDD is most often characterized by severe to profound delays, hypotonia, epilepsy that ranges from self-limiting to intractable, behavior problems, and variable mild dysmorphic features.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Child , Developmental Disabilities/genetics , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Muscle Hypotonia/diagnosis , Muscle Hypotonia/genetics , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Seizures/genetics , Exome Sequencing
9.
Genet Med ; 22(2): 389-397, 2020 02.
Article in English | MEDLINE | ID: mdl-31388190

ABSTRACT

PURPOSE: Sifrim-Hitz-Weiss syndrome (SIHIWES) is a recently described multisystemic neurodevelopmental disorder caused by de novo variants inCHD4. In this study, we investigated the clinical spectrum of the disorder, genotype-phenotype correlations, and the effect of different missense variants on CHD4 function. METHODS: We collected clinical and molecular data from 32 individuals with mostly de novo variants in CHD4, identified through next-generation sequencing. We performed adenosine triphosphate (ATP) hydrolysis and nucleosome remodeling assays on variants from five different CHD4 domains. RESULTS: The majority of participants had global developmental delay, mild to moderate intellectual disability, brain anomalies, congenital heart defects, and dysmorphic features. Macrocephaly was a frequent but not universal finding. Additional common abnormalities included hypogonadism in males, skeletal and limb anomalies, hearing impairment, and ophthalmic abnormalities. The majority of variants were nontruncating and affected the SNF2-like region of the protein. We did not identify genotype-phenotype correlations based on the type or location of variants. Alterations in ATP hydrolysis and chromatin remodeling activities were observed in variants from different domains. CONCLUSION: The CHD4-related syndrome is a multisystemic neurodevelopmental disorder. Missense substitutions in different protein domains alter CHD4 function in a variant-specific manner, but result in a similar phenotype in humans.


Subject(s)
Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Neurodevelopmental Disorders/genetics , Abnormalities, Multiple/genetics , Adolescent , Adult , Child , Child, Preschool , Chromatin Assembly and Disassembly/genetics , Developmental Disabilities/genetics , Female , Genetic Association Studies , Genotype , Hearing Loss/genetics , Heart Defects, Congenital/genetics , Humans , Infant , Infant, Newborn , Intellectual Disability/genetics , Male , Megalencephaly/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Musculoskeletal Abnormalities/genetics , Mutation, Missense/genetics , Phenotype , Syndrome , Transcription Factors/genetics
10.
Am J Med Genet A ; 182(10): 2253-2262, 2020 10.
Article in English | MEDLINE | ID: mdl-32851773

ABSTRACT

Coffin-Siris syndrome (CSS; OMIM #135900) is a rare, multisystem syndrome caused by pathogenic variants in genes encoding the BRG-1 associated factors complex (BAF). Individuals with CSS often present with feeding difficulties and failure to thrive during infancy, in addition to a number of variable congenital anomalies. Nutritional interventions are used to support growth in this population, and growth hormone therapy has been reported in a limited number of cases. The purpose of this study was to construct CSS-specific growth charts to better characterize the growth in this population. Anthropometric data were collected from 99 individuals enrolled in the CSS/BAF pathway international registry via a retrospective chart review. All measurements obtained after the first exposure to growth hormone therapy were excluded from this analysis. Sex-specific centiles (5th, 50th, and 95th) were estimated for height, weight, and head circumference from birth to age 10. Cubic smoothing splines were then fit to the centile estimates and superimposed on normative male and female growth curves for comparison. The CSS patients in this cohort exhibited normal growth parameters at birth. By age 10, the weight and head circumference of the CSS cohort began to approach normal parameters. Stature, however, remained shortened at 10 years of age.


Subject(s)
Abnormalities, Multiple/genetics , DNA Helicases/genetics , Face/abnormalities , Genetic Association Studies , Genetic Predisposition to Disease , Hand Deformities, Congenital/genetics , Intellectual Disability/genetics , Micrognathism/genetics , Neck/abnormalities , Nuclear Proteins/genetics , Transcription Factors/genetics , Child , Child, Preschool , Face/physiology , Female , Growth Charts , Humans , Infant , Infant, Newborn , Male , Neck/physiology
11.
Am J Med Genet A ; 182(9): 2058-2067, 2020 09.
Article in English | MEDLINE | ID: mdl-32686290

ABSTRACT

SMARCA4 encodes a central ATPase subunit in the BRG1-/BRM-associated factors (BAF) or polybromo-associated BAF (PBAF) complex in humans, which is responsible in part for chromatin remodeling and transcriptional regulation. Variants in this and other genes encoding BAF/PBAF complexes have been implicated in Coffin-Siris Syndrome, a multiple congenital anomaly syndrome classically characterized by learning and developmental differences, coarse facial features, hypertrichosis, and underdevelopment of the fifth digits/nails of the hands and feet. Individuals with SMARCA4 variants have been previously reported and appear to display a variable phenotype. We describe here a cohort of 15 unrelated individuals with SMARCA4 variants from the Coffin-Siris syndrome/BAF pathway disorders registry who further display variability in severity and degrees of learning impairment and health issues. Within this cohort, we also report two individuals with novel nonsense variants who appear to have a phenotype of milder learning/behavioral differences and no organ-system involvement.


Subject(s)
Abnormalities, Multiple/genetics , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Face/abnormalities , Genetic Predisposition to Disease , Hand Deformities, Congenital/genetics , Intellectual Disability/genetics , Micrognathism/genetics , Neck/abnormalities , Nuclear Proteins/genetics , Transcription Factors/genetics , Abnormalities, Multiple/epidemiology , Abnormalities, Multiple/pathology , Adolescent , Child , Child, Preschool , Chromosomal Proteins, Non-Histone/genetics , Codon, Nonsense/genetics , Face/pathology , Female , Genetic Association Studies , Hand Deformities, Congenital/epidemiology , Hand Deformities, Congenital/pathology , Humans , Infant , Intellectual Disability/epidemiology , Intellectual Disability/pathology , Male , Micrognathism/epidemiology , Micrognathism/pathology , Neck/pathology , Phenotype
12.
Am J Med Genet A ; 182(12): 2926-2938, 2020 12.
Article in English | MEDLINE | ID: mdl-33043588

ABSTRACT

Pathogenic variants in the homologous and highly conserved genes-CREBBP and EP300-are causal for Rubinstein-Taybi syndrome (RSTS). CREBBP and EP300 encode histone acetyltransferases (HAT) that act as transcriptional co-activators, and their haploinsufficiency causes the pathology characteristic of RSTS by interfering with global transcriptional regulation. Though generally a well-characterized syndrome, there is a clear phenotypic spectrum; rare associations have emerged with increasing diagnosis that is critical for comprehensive understanding of this rare syndrome. We present 12 unreported patients with RSTS found to have EP300 variants discovered through gene sequencing and chromosomal microarray. Our cohort highlights rare phenotypic features associated with EP300 variants, including imperforate anus, retained fetal finger pads, and spina bifida occulta. Our findings support the previously noted prevalence of pregnancy-related hypertension/preeclampsia seen with this disease. We additionally performed a meta-analysis on our newly reported 12 patients and 62 of the 90 previously reported patients. We demonstrated no statistically significant correlation between phenotype severity (within the domains of intellectual disability and major organ involvement, as defined in our Methods section) and variant location and type; this is in contrast to the conclusions of some smaller studies and highlights the importance of large patient cohorts in characterization of this rare disease.


Subject(s)
E1A-Associated p300 Protein/genetics , Mutation , Rubinstein-Taybi Syndrome/pathology , Adolescent , Child , Child, Preschool , Cohort Studies , Female , Genetic Association Studies , Humans , Infant , Male , Prognosis , Rubinstein-Taybi Syndrome/genetics
13.
Mol Genet Metab ; 124(2): 124-130, 2018 06.
Article in English | MEDLINE | ID: mdl-29735374

ABSTRACT

Mitochondrial DNA maintenance (mtDNA) defects have a wide range of causes, each with a set of phenotypes that overlap with many other neurological or muscular diseases. Clinicians face the challenge of narrowing down a long list of differential diagnosis when encountered with non-specific neuromuscular symptoms. Biallelic pathogenic variants in the Thymidine Kinase 2 (TK2) gene cause a myopathic form of mitochondrial DNA maintenance defect. Since the first description in 2001, there have been 71 patients reported with 42 unique pathogenic variants. Here we are reporting 11 new cases with 5 novel pathogenic variants. We describe and analyze a total of 82 cases with 47 unique TK2 pathogenic variants in effort to formulate a comprehensive molecular and clinical spectrum of TK2-related mtDNA maintenance disorders.


Subject(s)
DNA, Mitochondrial/genetics , Mitochondria/genetics , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Muscular Diseases/genetics , Muscular Diseases/pathology , Mutation , Thymidine Kinase/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Prognosis , Young Adult
14.
Am J Med Genet A ; 176(11): 2250-2258, 2018 11.
Article in English | MEDLINE | ID: mdl-30276971

ABSTRACT

Coffin-Siris syndrome (CSS; MIM 135900) is a multisystem congenital anomaly syndrome caused by mutations in the genes in the Brg-1 associated factors (BAF) complex. Classically, individuals with CSS have been described with hypo- or aplasia of the fifth digit nails or phalanges (hence the term "fifth digit syndrome"). Other physical features seen include growth restriction, coarse facial features, hypertrichosis or hirsutism, sparse scalp hair, dental anomalies, and other organ-system abnormalities. Varying degrees of developmental and intellectual delay are universal. To date, approximately 200 individuals have been described in the literature. With the advent of large-scale genetic testing such as whole-exome sequencing is becoming more available, more individuals are being found to have mutations in this pathway, and the phenotypic spectrum appears to be broadening. We report here a large cohort of 81 individuals with the diagnosis of CSS from the first parent-reported CSS/BAF complex registry in an effort to describe this variation among individuals, the natural history of the syndrome, and draw some gene-phenotype correlations. We propose that changes in the BAF complex may represent a spectrum of disorders, including both ARID1B-related nonsyndromic intellectual disability (ARID1B-ID) and CSS with classic physical features. In addition, we offer surveillance and management recommendations based on the medical issues encountered in this cohort to help guide physicians and patients' families.


Subject(s)
Abnormalities, Multiple/pathology , Abnormalities, Multiple/therapy , Face/abnormalities , Hand Deformities, Congenital/pathology , Hand Deformities, Congenital/therapy , Intellectual Disability/pathology , Intellectual Disability/therapy , Micrognathism/pathology , Micrognathism/therapy , Neck/abnormalities , Parents , Registries , Abnormalities, Multiple/genetics , Child, Preschool , Cohort Studies , Face/pathology , Foot/pathology , Genetic Association Studies , Hand/pathology , Hand Deformities, Congenital/genetics , Humans , Infant , Intellectual Disability/genetics , Micrognathism/genetics , Neck/pathology
15.
Am J Med Genet A ; 176(11): 2243-2249, 2018 11.
Article in English | MEDLINE | ID: mdl-30276953

ABSTRACT

Congenital lumbar hernia is a rare anomaly consisting of protrusion of abdominal organs or extraperitoneal tissue through a defect in the lateral abdominal wall. The majority of affected patients have additional anomalies in a pattern described as the lumbocostovertebral syndrome. We report four patients born to mothers with poorly controlled diabetes with congenital lumbar hernia. All patients exhibited features of lumbocostovertebral syndrome with lumbar hernia, multiple vertebral segmentation anomalies in the lower thoracic and/or upper lumbar spine, rib anomalies, and unilateral renal agenesis. Additional anomalies present in the patients included preaxial hallucal polydactyly, abnormal situs, and sacral dysgenesis, anomalies known to be associated with diabetic embryopathy. At least 11 other patients have been previously reported with the lumbocostovertebral syndrome in the setting of maternal diabetes. We suggest that congenital lumbar hernia and the lumbocostovertebral syndrome are related to diabetic embryopathy.


Subject(s)
Diabetes, Gestational/pathology , Fetal Diseases/pathology , Hernia/congenital , Hernia/complications , Lumbar Vertebrae/abnormalities , Adult , Child, Preschool , Female , Fetal Diseases/diagnostic imaging , Hernia/diagnostic imaging , Humans , Infant, Newborn , Lumbar Vertebrae/diagnostic imaging , Male , Pregnancy
16.
Am J Med Genet A ; 176(12): 2564-2574, 2018 12.
Article in English | MEDLINE | ID: mdl-30302899

ABSTRACT

Schaaf-Yang Syndrome (SYS) is a genetic disorder caused by truncating pathogenic variants in the paternal allele of the maternally imprinted, paternally expressed gene MAGEL2, located in the Prader-Willi critical region 15q11-15q13. SYS is a neurodevelopmental disorder that has clinical overlap with Prader-Willi Syndrome in the initial stages of life but becomes increasingly distinct throughout childhood and adolescence. Here, we describe the phenotype of an international cohort of 78 patients with nonsense or frameshift mutations in MAGEL2. This cohort includes 43 individuals that have been reported previously, as well as 35 newly identified individuals with confirmed pathogenic genetic variants. We emphasize that intellectual disability/developmental delay, autism spectrum disorder, neonatal hypotonia, infantile feeding problems, and distal joint contractures are the most consistently shared features of patients with SYS. Our results also indicate that there is a marked prevalence of infantile respiratory distress, gastroesophageal reflux, chronic constipation, skeletal abnormalities, sleep apnea, and temperature instability. While there are many shared features, patients with SYS are characterized by a wide phenotypic spectrum, including a variable degree of intellectual disability, language development, and motor milestones. Our results indicate that the variation in phenotypic severity may depend on the specific location of the truncating mutation, suggestive of a genotype-phenotype association. This evidence may be useful in both prenatal and pediatric genetic counseling.


Subject(s)
Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Proteins/genetics , Adolescent , Child , Child, Preschool , Codon, Nonsense , Female , Frameshift Mutation , Genetic Association Studies , Humans , Infant , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Male , Phenotype , Syndrome , Young Adult
17.
Hum Mutat ; 38(12): 1649-1659, 2017 12.
Article in English | MEDLINE | ID: mdl-28940506

ABSTRACT

F-box and leucine-rich repeat protein 4 (FBXL4) is a mitochondrial protein whose exact function is not yet known. However, cellular studies have suggested that it plays significant roles in mitochondrial bioenergetics, mitochondrial DNA (mtDNA) maintenance, and mitochondrial dynamics. Biallelic pathogenic variants in FBXL4 are associated with an encephalopathic mtDNA maintenance defect syndrome that is a multisystem disease characterized by lactic acidemia, developmental delay, and hypotonia. Other features are feeding difficulties, growth failure, microcephaly, hyperammonemia, seizures, hypertrophic cardiomyopathy, elevated liver transaminases, recurrent infections, variable distinctive facial features, white matter abnormalities and cerebral atrophy found in neuroimaging, combined deficiencies of multiple electron transport complexes, and mtDNA depletion. Since its initial description in 2013, 36 different pathogenic variants in FBXL4 were reported in 50 affected individuals. In this report, we present 37 additional affected individuals and 11 previously unreported pathogenic variants. We summarize the clinical features of all 87 individuals with FBXL4-related mtDNA maintenance defect, review FBXL4 structure and function, map the 47 pathogenic variants onto the gene structure to assess the variants distribution, and investigate the genotype-phenotype correlation. Finally, we provide future directions to understand the disease mechanism and identify treatment strategies.


Subject(s)
DNA, Mitochondrial/genetics , F-Box Proteins/genetics , Genetic Association Studies , Mitochondrial Encephalomyopathies/genetics , Ubiquitin-Protein Ligases/genetics , Acidosis, Lactic/genetics , Cardiomyopathy, Hypertrophic/genetics , Genetic Predisposition to Disease , Humans , Kaplan-Meier Estimate , Mitochondria/genetics , Mitochondrial Encephalomyopathies/epidemiology , Mitochondrial Encephalomyopathies/pathology , Mitochondrial Proteins/genetics , Muscle Hypotonia/genetics , Mutation , Oxidative Phosphorylation , Proteome/genetics
18.
Am J Med Genet A ; 173(9): 2528-2533, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28653809

ABSTRACT

Mosaic trisomy 5 is a very rare condition in liveborns, with few cases reported in the last four decades. There are some reports of prenatally diagnosed mosaic trisomy 5 resulting in phenotypically normal offspring, suggesting a low level of mosaicism, but there are also reports associated with multiple congenital anomalies, cardiovascular malformations, and intrauterine growth restriction. We report an infant male diagnosed with mosaic trisomy 5 (5/15 cells) via amniocentesis. The patient was subsequently found to have uniparental disomy 5 (UPD5) by postnatal chromosome microarray, but high-resolution chromosome analysis on peripheral blood did not identify trisomy 5. Dysmorphic features included a tall forehead with low anterior hairline, hypertelorism, low-set ears, and a prominent nose and midface. Other anomalies included bilateral bifid thumbs, hypospadias, a perineal fistula, unilateral multicystic kidney, and decreased subcutaneous fat with loose skin. He had complex congenital heart disease consisting of ventricular and atrial septal defects and polyvalvular defects. The patient died at age one after a prolonged admission. We add this case to the literature with the added benefit of data from a postnatal microarray, which was not available in other cases, to broaden the phenotype of mosaic trisomy 5 and UPD5.With the current available technology, we stress the importance of postnatal genetic testing to confirm prenatal cytogenetic findings in order to further define such phenotypes. This will provide the most accurate information and counseling to affected families.


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Cri-du-Chat Syndrome/diagnosis , Trisomy/diagnosis , Uniparental Disomy/genetics , Abnormalities, Multiple/physiopathology , Chromosomes, Human, Pair 5/genetics , Cri-du-Chat Syndrome/genetics , Cri-du-Chat Syndrome/physiopathology , Humans , Infant , Male , Microarray Analysis , Mosaicism , Prenatal Diagnosis , Trisomy/genetics , Trisomy/physiopathology , Uniparental Disomy/diagnosis , Uniparental Disomy/physiopathology
19.
Am J Med Genet A ; 173(10): 2814-2820, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28815955

ABSTRACT

While X-linked intellectual disability (XLID) syndromes pose a diagnostic challenge for clinicians, an increasing number of recognized disorders and their genetic etiologies are providing answers for patients and their families. The availability of clinical exome sequencing is broadening the ability to identify mutations in genes previously unrecognized as causing XLID. In recent years, the IQSEC2 gene, located at Xp11.22, has emerged as the cause of multiple cases of both nonsyndromic and syndromic XLID. Herein we present a case series of six individuals (five males, one female) with intellectual disability and seizures found to have alterations in IQSEC2. In all cases, the diagnostic odyssey was extensive and expensive, often including invasive testing such as muscle biopsies, before ultimately reaching the diagnosis. We report these cases to demonstrate the exhaustive work-up prior to finding the changes in IQSEC2 gene, recommend that this gene be considered earlier in the diagnostic evaluation of individuals with global developmental delay, microcephaly, and severe, intractable epilepsy, and support the use of intellectual disability panels including IQSEC2 in the first-line evaluation of these patients.


Subject(s)
Guanine Nucleotide Exchange Factors/genetics , Intellectual Disability/diagnosis , Mutation , Adolescent , Adult , Child , Female , Humans , Infant , Intellectual Disability/genetics , Male , Prognosis , Syndrome , Young Adult
20.
Am J Med Genet A ; 170(12): 3333-3337, 2016 12.
Article in English | MEDLINE | ID: mdl-27568880

ABSTRACT

Kabuki syndrome (MIM 147920) is a well-described, multiple congenital anomaly syndrome characterized by growth and developmental delay, cardiac, renal, and vertebral anomalies, as well as persistent fetal finger pads and distinct facial features. Facies are characterized by long palpebral fissures with eversion of lateral third of the lower eyelid, resembling the "Kabuki make-up" theatre genre after which the syndrome is named. Kabuki syndrome is estimated to affect 1/32,000 births, with 55-80% of patients showing nonsense or frameshift mutations in the KMT2D (MLL2) gene, which encodes a histone transferase located on chromosome 12q. Additionally, owing to the heterogeneous nature of Kabuki syndrome, a smaller number of diagnosed patients have been identified with mutations or deletions in KDM6A (a component of the same transcriptional complex as KMT2D) with no mutations in KMT2D, or as those diagnosed with Kabuki syndrome and without alterations in either KMT2D or KDM6A. Diagnosis of the syndrome in newborns and infants is difficult, as the facial features are not as evident as in toddler- or childhood. There are no known "tell-tale" signs of Kabuki syndrome prenatally, and there are no reports of common, specific findings in fetuses that might suggest the diagnosis. We present here two infants who presented with prenatal hydrops/ascites, who were subsequently diagnosed with Kabuki syndrome. Although relatively non-specific, we suggest that Kabuki syndrome be added to the list of genetic syndromes that are suspected in cases of prenatal hydrops, review the molecular etiology of Kabuki syndrome, and broaden the phenotype of this well-described disorder. © 2016 Wiley Periodicals, Inc.


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Ascites/etiology , Face/abnormalities , Hematologic Diseases/diagnosis , Hematologic Diseases/genetics , Hydrops Fetalis/etiology , Vestibular Diseases/diagnosis , Vestibular Diseases/genetics , Adult , Alleles , Ascites/diagnosis , Chromosome Banding , DNA-Binding Proteins/genetics , Facies , Female , Hematologic Diseases/complications , Humans , Hydrops Fetalis/diagnosis , In Situ Hybridization, Fluorescence , Infant, Newborn , Male , Mutation , Neoplasm Proteins/genetics , Phenotype , Physical Examination , Pregnancy , Prenatal Diagnosis , Quantitative Trait Loci , Vestibular Diseases/complications
SELECTION OF CITATIONS
SEARCH DETAIL