Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Hum Mol Genet ; 32(15): 2511-2522, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37216650

ABSTRACT

FOXG1 is a critical transcription factor in human brain where loss-of-function mutations cause a severe neurodevelopmental disorder, while increased FOXG1 expression is frequently observed in glioblastoma. FOXG1 is an inhibitor of cell patterning and an activator of cell proliferation in chordate model organisms but different mechanisms have been proposed as to how this occurs. To identify genomic targets of FOXG1 in human neural progenitor cells (NPCs), we engineered a cleavable reporter construct in endogenous FOXG1 and performed chromatin immunoprecipitation (ChIP) sequencing. We also performed deep RNA sequencing of NPCs from two females with loss-of-function mutations in FOXG1 and their healthy biological mothers. Integrative analyses of RNA and ChIP sequencing data showed that cell cycle regulation and Bone Morphogenic Protein (BMP) repression gene ontology categories were over-represented as FOXG1 targets. Using engineered brain cell lines, we show that FOXG1 specifically activates SMAD7 and represses CDKN1B. Activation of SMAD7 which inhibits BMP signaling may be one way that FOXG1 patterns the forebrain, while repression of cell cycle regulators such as CDKN1B may be one way that FOXG1 expands the NPC pool to ensure proper brain size. Our data reveal novel mechanisms on how FOXG1 may control forebrain patterning and cell proliferation in human brain development.


Subject(s)
Forkhead Transcription Factors , Neural Stem Cells , Female , Humans , Forkhead Transcription Factors/metabolism , Cell Cycle/genetics , Neural Stem Cells/metabolism , Cell Division , Gene Expression Regulation , Nerve Tissue Proteins/metabolism
2.
BMC Bioinformatics ; 25(1): 155, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38641616

ABSTRACT

BACKGROUND: Classification of binary data arises naturally in many clinical applications, such as patient risk stratification through ICD codes. One of the key practical challenges in data classification using machine learning is to avoid overfitting. Overfitting in supervised learning primarily occurs when a model learns random variations from noisy labels in training data rather than the underlying patterns. While traditional methods such as regularization and early stopping have demonstrated effectiveness in interpolation tasks, addressing overfitting in the classification of binary data, in which predictions always amount to extrapolation, demands extrapolation-enhanced strategies. One such approach is hybrid mechanistic/data-driven modeling, which integrates prior knowledge on input features into the learning process, enhancing the model's ability to extrapolate. RESULTS: We present NoiseCut, a Python package for noise-tolerant classification of binary data by employing a hybrid modeling approach that leverages solutions of defined max-cut problems. In a comparative analysis conducted on synthetically generated binary datasets, NoiseCut exhibits better overfitting prevention compared to the early stopping technique employed by different supervised machine learning algorithms. The noise tolerance of NoiseCut stems from a dropout strategy that leverages prior knowledge of input features and is further enhanced by the integration of max-cut problems into the learning process. CONCLUSIONS: NoiseCut is a Python package for the implementation of hybrid modeling for the classification of binary data. It facilitates the integration of mechanistic knowledge on the input features into learning from data in a structured manner and proves to be a valuable classification tool when the available training data is noisy and/or limited in size. This advantage is especially prominent in medical and biomedical applications where data scarcity and noise are common challenges. The codebase, illustrations, and documentation for NoiseCut are accessible for download at https://pypi.org/project/noisecut/ . The implementation detailed in this paper corresponds to the version 0.2.1 release of the software.


Subject(s)
Algorithms , Software , Humans , Supervised Machine Learning , Machine Learning
3.
Hum Mol Genet ; 31(21): 3715-3728, 2022 10 28.
Article in English | MEDLINE | ID: mdl-35640156

ABSTRACT

Kabuki syndrome is frequently caused by loss-of-function mutations in one allele of histone 3 lysine 4 (H3K4) methyltransferase KMT2D and is associated with problems in neurological, immunological and skeletal system development. We generated heterozygous KMT2D knockout and Kabuki patient-derived cell models to investigate the role of reduced dosage of KMT2D in stem cells. We discovered chromosomal locus-specific alterations in gene expression, specifically a 110 Kb region containing Synaptotagmin 3 (SYT3), C-Type Lectin Domain Containing 11A (CLEC11A), Chromosome 19 Open Reading Frame 81 (C19ORF81) and SH3 And Multiple Ankyrin Repeat Domains 1 (SHANK1), suggesting locus-specific targeting of KMT2D. Using whole genome histone methylation mapping, we confirmed locus-specific changes in H3K4 methylation patterning coincident with regional decreases in gene expression in Kabuki cell models. Significantly reduced H3K4 peaks aligned with regions of stem cell maps of H3K27 and H3K4 methylation suggesting KMT2D haploinsufficiency impact bivalent enhancers in stem cells. Preparing the genome for subsequent differentiation cues may be of significant importance for Kabuki-related genes. This work provides a new insight into the mechanism of action of an important gene in bone and brain development and may increase our understanding of a specific function of a human disease-relevant H3K4 methyltransferase family member.


Subject(s)
Histone-Lysine N-Methyltransferase , Histones , Vestibular Diseases , Humans , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Stem Cells/metabolism , Vestibular Diseases/genetics
4.
Int J Mol Sci ; 25(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542188

ABSTRACT

Induced pluripotent stem cells (iPSCs) and their derivatives have been described to display epigenetic memory of their founder cells, as well as de novo reprogramming-associated alterations. In order to selectively explore changes due to the reprogramming process and not to heterologous somatic memory, we devised a circular reprogramming approach where somatic stem cells are used to generate iPSCs, which are subsequently re-differentiated into their original fate. As somatic founder cells, we employed human embryonic stem cell-derived neural stem cells (NSCs) and compared them to iPSC-derived NSCs derived thereof. Global transcription profiling of this isogenic circular system revealed remarkably similar transcriptomes of both NSC populations, with the exception of 36 transcripts. Amongst these we detected a disproportionately large fraction of X chromosomal genes, all of which were upregulated in iPSC-NSCs. Concurrently, we detected differential methylation of X chromosomal sites spatially coinciding with regions harboring differentially expressed genes. While our data point to a pronounced overall reinstallation of autosomal transcriptomic and methylation signatures when a defined somatic lineage is propagated through pluripotency, they also indicate that X chromosomal genes may partially escape this reinstallation process. Considering the broad application of iPSCs in disease modeling and regenerative approaches, such reprogramming-associated alterations in X chromosomal gene expression and DNA methylation deserve particular attention.


Subject(s)
Induced Pluripotent Stem Cells , Neural Stem Cells , Humans , DNA Methylation , Neural Stem Cells/metabolism , Cell Differentiation/genetics , Epigenesis, Genetic , Cellular Reprogramming/genetics
5.
Plant Physiol ; 187(3): 1795-1811, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34734276

ABSTRACT

Generalization of transcriptomics results can be achieved by comparison across experiments. This generalization is based on integration of interrelated transcriptomics studies into a compendium. Such a focus on the bigger picture enables both characterizations of the fate of an organism and distinction between generic and specific responses. Numerous methods for analyzing transcriptomics datasets exist. Yet, most of these methods focus on gene-wise dimension reduction to obtain marker genes and gene sets for, for example, pathway analysis. Relying only on isolated biological modules might result in missing important confounders and relevant contexts. We developed a method called Plant PhysioSpace, which enables researchers to compute experimental conditions across species and platforms without a priori reducing the reference information to specific gene sets. Plant PhysioSpace extracts physiologically relevant signatures from a reference dataset (i.e. a collection of public datasets) by integrating and transforming heterogeneous reference gene expression data into a set of physiology-specific patterns. New experimental data can be mapped to these patterns, resulting in similarity scores between the acquired data and the extracted compendium. Because of its robustness against platform bias and noise, Plant PhysioSpace can function as an inter-species or cross-platform similarity measure. We have demonstrated its success in translating stress responses between different species and platforms, including single-cell technologies. We have also implemented two R packages, one software and one data package, and a Shiny web application to facilitate access to our method and precomputed models.


Subject(s)
Botany/methods , Gene Expression Profiling/instrumentation , Plant Physiological Phenomena , Stress, Physiological , Software , Species Specificity , Transcriptome
6.
Article in German | MEDLINE | ID: mdl-35320841

ABSTRACT

The COVID-19 pandemic is a global health emergency of historic dimension. In this situation, researchers worldwide wanted to help manage the pandemic by using artificial intelligence (AI). This narrative review aims to describe the usage of AI in the combat against COVID-19. The addressed aspects encompass AI algorithms for analysis of thoracic X-rays or CTs, prediction models for severity and outcome of the disease, AI applications in development of new drugs and vaccines as well as forecasting models for spread of the virus. The review shows, which approaches were pursued, and which were successful.


Subject(s)
Artificial Intelligence , COVID-19 , Algorithms , Humans , Pandemics/prevention & control
7.
Ann Hematol ; 100(12): 2943-2956, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34390367

ABSTRACT

Myeloproliferative neoplasms (MPN), comprising essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF), are hematological disorders of the myeloid lineage characterized by hyperproliferation of mature blood cells. The prediction of the clinical course and progression remains difficult and new therapeutic modalities are required. We conducted a CD34+ gene expression study to identify signatures and potential biomarkers in the different MPN subtypes with the aim to improve treatment and prevent the transformation from the rather benign chronic state to a more malignant aggressive state. We report here on a systematic gene expression analysis (GEA) of CD34+ peripheral blood or bone marrow cells derived from 30 patients with MPN including all subtypes (ET (n = 6), PV (n = 11), PMF (n = 9), secondary MF (SMF; post-ET-/post-PV-MF; n = 4)) and six healthy donors. GEA revealed a variety of differentially regulated genes in the different MPN subtypes vs. controls, with a higher number in PMF/SMF (200/272 genes) than in ET/PV (132/121). PROGENγ analysis revealed significant induction of TNFα/NF-κB signaling (particularly in SMF) and reduction of estrogen signaling (PMF and SMF). Consistently, inflammatory GO terms were enriched in PMF/SMF, whereas RNA splicing-associated biological processes were downregulated in PMF. Differentially regulated genes that might be utilized as diagnostic/prognostic markers were identified, such as AREG, CYBB, DNTT, TIMD4, VCAM1, and S100 family members (S100A4/8/9/10/12). Additionally, 98 genes (including CLEC1B, CMTM5, CXCL8, DACH1, and RADX) were deregulated solely in SMF and may be used to predict progression from early to late stage MPN.


Subject(s)
Antigens, CD34/genetics , Myeloproliferative Disorders/genetics , Transcriptome , Gene Expression Regulation, Neoplastic , Humans , Polycythemia Vera/genetics , Primary Myelofibrosis/genetics , Thrombocythemia, Essential/genetics
8.
PLoS Comput Biol ; 16(4): e1007803, 2020 04.
Article in English | MEDLINE | ID: mdl-32310964

ABSTRACT

Translational models directly relating drug response specific processes that can be observed in vitro to their in vivo role in cancer patients constitute a crucial part of the development of personalized medication. Unfortunately, current studies often focus on the optimization of isolated model characteristics instead of examining the overall modeling workflow and the interplay of the individual model components. Moreover, they are often limited to specific data sets only. Therefore, they are often confined by the irreproducibility of the results and the non-transferability of the approaches into other contexts. In this study, we present a thorough investigation of translational models and their ability to predict the drug responses of cancer patients originating from diverse data sets using the R-package FORESEE. By systematically scanning the modeling space for optimal combinations of different model settings, we can determine models of extremely high predictivity and work out a few modeling guidelines that promote simplicity. Yet, we identify noise within the data, sample size effects, and drug unspecificity as factors that deteriorate the models' robustness. Moreover, we show that cell line models of high accuracy do not necessarily excel in predicting drug response processes in patients. We therefore hope to motivate future research to consider in vivo aspects more carefully to ultimately generate deeper insights into applicable precision medicine.


Subject(s)
Antineoplastic Agents , Computational Biology/methods , Drug Design , Neoplasms/drug therapy , Databases, Genetic , Gene Expression Profiling , Humans , Transcriptome/drug effects
9.
Infection ; 49(6): 1331-1335, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34669162

ABSTRACT

A third SARS-CoV-2 infection wave has affected Germany from March 2021 until April 24th, until the ´Bundesnotbremse´ introduced nationwide shutdown measures. The ´Bundesnotbremse´ is the technical term which was used by the German government to describe nationwide shutdown measures to control the rising infection numbers. These measures included mainly contact restrictions on several level. This study investigates which effects locally dispersed pre- and post-´Bundesnotbremse´ measures had on the infection dynamics. We analyzed the variability and strength of the rates of the changes of weekly case numbers considering different regions, age groups, and contact restrictions. Regionally diverse measures slowed the rate of weekly increase by about 50% and about 75% in regions with stronger contact restrictions. The 'Bundesnotbremse' induced a coherent reduction of infection numbers across all German federal states and age groups throughout May 2021. The coherence of the infection dynamics after the 'Bundesnotbremse' indicates that these stronger measures induced the decrease of infection numbers. The regionally diverse non-pharmaceutical interventions before could only decelerate further spreading, but not prevent it alone.


Subject(s)
COVID-19 , SARS-CoV-2 , Germany , Humans
10.
BMC Infect Dis ; 21(1): 1136, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34736400

ABSTRACT

BACKGROUND: The impact of biometric covariates on risk for adverse outcomes of COVID-19 disease was assessed by numerous observational studies on unstratified cohorts, which show great heterogeneity. However, multilevel evaluations to find possible complex, e.g. non-monotonic multi-variate patterns reflecting mutual interference of parameters are missing. We used a more detailed, computational analysis to investigate the influence of biometric differences on mortality and disease evolution among severely ill COVID-19 patients. METHODS: We analyzed a group of COVID-19 patients requiring Intensive care unit (ICU) treatment. For further analysis, the study group was segmented into six subgroups according to Body mass index (BMI) and age. To link the BMI/age derived subgroups with risk factors, we performed an enrichment analysis of diagnostic parameters and comorbidities. To suppress spurious patterns, multiple segmentations were analyzed and integrated into a consensus score for each analysis step. RESULTS: We analyzed 81 COVID-19 patients, of whom 67 required mechanical ventilation (MV). Mean mortality was 35.8%. We found a complex, non-monotonic interaction between age, BMI and mortality. A subcohort of patients with younger age and intermediate BMI exhibited a strongly reduced mortality risk (p < 0.001), while differences in all other groups were not significant. Univariate impacts of BMI or age on mortality were missing. Comparing MV with non-MV patients, we found an enrichment of baseline CRP, PCT and D-Dimers within the MV group, but not when comparing survivors vs. non-survivors within the MV patient group. CONCLUSIONS: The aim of this study was to get a more detailed insight into the influence of biometric covariates on the outcome of COVID-19 patients with high degree of severity. We found that survival in MV is affected by complex interactions of covariates differing to the reported covariates, which are hidden in generic, non-stratified studies on risk factors. Hence, our study suggests that a detailed, multivariate pattern analysis on larger patient cohorts reflecting the specific disease stages might reveal more specific patterns of risk factors supporting individually adapted treatment strategies.


Subject(s)
COVID-19 , Comorbidity , Humans , Intensive Care Units , Respiration, Artificial , SARS-CoV-2
11.
J Med Internet Res ; 23(3): e26646, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33666563

ABSTRACT

BACKGROUND: The increasing development of artificial intelligence (AI) systems in medicine driven by researchers and entrepreneurs goes along with enormous expectations for medical care advancement. AI might change the clinical practice of physicians from almost all medical disciplines and in most areas of health care. While expectations for AI in medicine are high, practical implementations of AI for clinical practice are still scarce in Germany. Moreover, physicians' requirements and expectations of AI in medicine and their opinion on the usage of anonymized patient data for clinical and biomedical research have not been investigated widely in German university hospitals. OBJECTIVE: This study aimed to evaluate physicians' requirements and expectations of AI in medicine and their opinion on the secondary usage of patient data for (bio)medical research (eg, for the development of machine learning algorithms) in university hospitals in Germany. METHODS: A web-based survey was conducted addressing physicians of all medical disciplines in 8 German university hospitals. Answers were given using Likert scales and general demographic responses. Physicians were asked to participate locally via email in the respective hospitals. RESULTS: The online survey was completed by 303 physicians (female: 121/303, 39.9%; male: 173/303, 57.1%; no response: 9/303, 3.0%) from a wide range of medical disciplines and work experience levels. Most respondents either had a positive (130/303, 42.9%) or a very positive attitude (82/303, 27.1%) towards AI in medicine. There was a significant association between the personal rating of AI in medicine and the self-reported technical affinity level (H4=48.3, P<.001). A vast majority of physicians expected the future of medicine to be a mix of human and artificial intelligence (273/303, 90.1%) but also requested a scientific evaluation before the routine implementation of AI-based systems (276/303, 91.1%). Physicians were most optimistic that AI applications would identify drug interactions (280/303, 92.4%) to improve patient care substantially but were quite reserved regarding AI-supported diagnosis of psychiatric diseases (62/303, 20.5%). Of the respondents, 82.5% (250/303) agreed that there should be open access to anonymized patient databases for medical and biomedical research. CONCLUSIONS: Physicians in stationary patient care in German university hospitals show a generally positive attitude towards using most AI applications in medicine. Along with this optimism comes several expectations and hopes that AI will assist physicians in clinical decision making. Especially in fields of medicine where huge amounts of data are processed (eg, imaging procedures in radiology and pathology) or data are collected continuously (eg, cardiology and intensive care medicine), physicians' expectations of AI to substantially improve future patient care are high. In the study, the greatest potential was seen in the application of AI for the identification of drug interactions, assumedly due to the rising complexity of drug administration to polymorbid, polypharmacy patients. However, for the practical usage of AI in health care, regulatory and organizational challenges still have to be mastered.


Subject(s)
Physicians , Radiology , Artificial Intelligence , Female , Hospitals, University , Humans , Internet , Male , Motivation , Surveys and Questionnaires
12.
Bioinformatics ; 35(19): 3846-3848, 2019 10 01.
Article in English | MEDLINE | ID: mdl-30821320

ABSTRACT

SUMMARY: Translational models that utilize omics data generated in in vitro studies to predict the drug efficacy of anti-cancer compounds in patients are highly distinct, which complicates the benchmarking process for new computational approaches. In reaction to this, we introduce the uniFied translatiOnal dRug rESponsE prEdiction platform FORESEE, an open-source R-package. FORESEE not only provides a uniform data format for public cell line and patient datasets, but also establishes a standardized environment for drug response prediction pipelines, incorporating various state-of-the-art pre-processing methods, model training algorithms and validation techniques. The modular implementation of individual elements of the pipeline facilitates a straightforward development of combinatorial models, which can be used to re-evaluate and improve already existing pipelines as well as to develop new ones. AVAILABILITY AND IMPLEMENTATION: FORESEE is licensed under GNU General Public License v3.0 and available at https://github.com/JRC-COMBINE/FORESEE and https://doi.org/10.17605/OSF.IO/RF6QK, and provides vignettes for documentation and application both online and in the Supplementary Files 2 and 3. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genomics , Software , Algorithms , Drug Design , Gene Expression
13.
J Math Biol ; 81(3): 769-798, 2020 09.
Article in English | MEDLINE | ID: mdl-32897406

ABSTRACT

The central question of systems biology is to understand how individual components of a biological system such as genes or proteins cooperate in emerging phenotypes resulting in the evolution of diseases. As living cells are open systems in quasi-steady state type equilibrium in continuous exchange with their environment, computational techniques that have been successfully applied in statistical thermodynamics to describe phase transitions may provide new insights to the emerging behavior of biological systems. Here we systematically evaluate the translation of computational techniques from solid-state physics to network models that closely resemble biological networks and develop specific translational rules to tackle problems unique to living systems. We focus on logic models exhibiting only two states in each network node. Motivated by the apparent asymmetry between biological states where an entity exhibits boolean states i.e. is active or inactive, we present an adaptation of symmetric Ising model towards an asymmetric one fitting to living systems here referred to as the modified Ising model with gene-type spins. We analyze phase transitions by Monte Carlo simulations and propose a mean-field solution of a modified Ising model of a network type that closely resembles a real-world network, the Barabási-Albert model of scale-free networks. We show that asymmetric Ising models show similarities to symmetric Ising models with the external field and undergoes a discontinuous phase transition of the first-order and exhibits hysteresis. The simulation setup presented herein can be directly used for any biological network connectivity dataset and is also applicable for other networks that exhibit similar states of activity. The method proposed here is a general statistical method to deal with non-linear large scale models arising in the context of biological systems and is scalable to any network size.


Subject(s)
Computer Simulation , Models, Theoretical , Gene Regulatory Networks , Monte Carlo Method , Nonlinear Dynamics , Phase Transition , Thermodynamics
14.
PLoS Comput Biol ; 14(1): e1005890, 2018 01.
Article in English | MEDLINE | ID: mdl-29293508

ABSTRACT

Proteome balance is safeguarded by the proteostasis network (PN), an intricately regulated network of conserved processes that evolved to maintain native function of the diverse ensemble of protein species, ensuring cellular and organismal health. Proteostasis imbalances and collapse are implicated in a spectrum of human diseases, from neurodegeneration to cancer. The characteristics of PN disease alterations however have not been assessed in a systematic way. Since the chaperome is among the central components of the PN, we focused on the chaperome in our study by utilizing a curated functional ontology of the human chaperome that we connect in a high-confidence physical protein-protein interaction network. Challenged by the lack of a systems-level understanding of proteostasis alterations in the heterogeneous spectrum of human cancers, we assessed gene expression across more than 10,000 patient biopsies covering 22 solid cancers. We derived a novel customized Meta-PCA dimension reduction approach yielding M-scores as quantitative indicators of disease expression changes to condense the complexity of cancer transcriptomics datasets into quantitative functional network topographies. We confirm upregulation of the HSP90 family and also highlight HSP60s, Prefoldins, HSP100s, ER- and mitochondria-specific chaperones as pan-cancer enriched. Our analysis also reveals a surprisingly consistent strong downregulation of small heat shock proteins (sHSPs) and we stratify two cancer groups based on the preferential upregulation of ATP-dependent chaperones. Strikingly, our analyses highlight similarities between stem cell and cancer proteostasis, and diametrically opposed chaperome deregulation between cancers and neurodegenerative diseases. We developed a web-based Proteostasis Profiler tool (Pro2) enabling intuitive analysis and visual exploration of proteostasis disease alterations using gene expression data. Our study showcases a comprehensive profiling of chaperome shifts in human cancers and sets the stage for a systematic global analysis of PN alterations across the human diseasome towards novel hypotheses for therapeutic network re-adjustment in proteostasis disorders.


Subject(s)
Molecular Chaperones/metabolism , Neoplasms/metabolism , Proteostasis , Adenosine Triphosphate/metabolism , Computational Biology , Gene Expression Profiling , Humans , Metabolic Networks and Pathways , Models, Biological , Molecular Chaperones/genetics , Neoplasms/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Protein Interaction Maps , Proteome/genetics , Proteome/metabolism , Proteostasis Deficiencies/genetics , Proteostasis Deficiencies/metabolism , Software
15.
BMC Med ; 16(1): 150, 2018 08 27.
Article in English | MEDLINE | ID: mdl-30145981

ABSTRACT

BACKGROUND: Personalized, precision, P4, or stratified medicine is understood as a medical approach in which patients are stratified based on their disease subtype, risk, prognosis, or treatment response using specialized diagnostic tests. The key idea is to base medical decisions on individual patient characteristics, including molecular and behavioral biomarkers, rather than on population averages. Personalized medicine is deeply connected to and dependent on data science, specifically machine learning (often named Artificial Intelligence in the mainstream media). While during recent years there has been a lot of enthusiasm about the potential of 'big data' and machine learning-based solutions, there exist only few examples that impact current clinical practice. The lack of impact on clinical practice can largely be attributed to insufficient performance of predictive models, difficulties to interpret complex model predictions, and lack of validation via prospective clinical trials that demonstrate a clear benefit compared to the standard of care. In this paper, we review the potential of state-of-the-art data science approaches for personalized medicine, discuss open challenges, and highlight directions that may help to overcome them in the future. CONCLUSIONS: There is a need for an interdisciplinary effort, including data scientists, physicians, patient advocates, regulatory agencies, and health insurance organizations. Partially unrealistic expectations and concerns about data science-based solutions need to be better managed. In parallel, computational methods must advance more to provide direct benefit to clinical practice.


Subject(s)
Precision Medicine/methods , Humans , Prospective Studies
16.
Curr Opin Crit Care ; 24(1): 1-9, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29176329

ABSTRACT

PURPOSE OF REVIEW: ARDS is a severe pulmonary disease characterized by inflammation. However, inflammation-directed therapies have yet failed to improve the outcome in ARDS patients. One of the reasons may be the underestimated complexity of inflammation. Here, we summarize recent insights into the complex interrelations between inflammatory circuits. RECENT FINDINGS: Gene expression analysis from animal models or from patients with ARDS, sepsis or trauma show an enormous number of differentially expressed genes with highly significant overlaps between the various conditions. These similarities, however, should not obscure the complexity of inflammation. We suggest to consider inflammation in ARDS as a system controlled by scale-free networks of genome-wide molecular interaction with hubs (e.g. NFκB, C/EBPß, ATF3), exhibiting nonlinear emergence and the ability to adapt, meaning for instance that mild and life-threatening inflammation in ARDS are distinct processes. In order to comprehend this complex system, it seems necessary to combine model-driven simulations, data-driven modelling and hypothesis-driven experimental studies. Recent experimental studies have illustrated how several regulatory circuits interact during pulmonary inflammation, including the resolution of inflammation, the inflammasome, autophagy and apoptosis. SUMMARY: We suggest that therapeutic interventions in ARDS should be based on a systems approach to inflammation.


Subject(s)
Apoptosis/physiology , Autophagy/physiology , Inflammasomes/physiology , Inflammation/pathology , Inflammation/physiopathology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/physiopathology , Cytokines/immunology , Gene Expression Profiling , Humans , Inflammation/genetics , Inflammation/therapy , Respiratory Distress Syndrome/genetics , Respiratory Distress Syndrome/therapy , Systems Theory
17.
J Crit Care ; 82: 154795, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38531748

ABSTRACT

PURPOSE: Treatment of patients undergoing prolonged weaning from mechanical ventilation includes repeated spontaneous breathing trials (SBTs) without respiratory support, whose duration must be balanced critically to prevent over- and underload of respiratory musculature. This study aimed to develop a machine learning model to predict the duration of unassisted spontaneous breathing. MATERIALS AND METHODS: Structured clinical data of patients from a specialized weaning unit were used to develop (1) a classifier model to qualitatively predict an increase of duration, (2) a regressor model to quantitatively predict the precise duration of SBTs on the next day, and (3) the duration difference between the current and following day. 61 features, known to influence weaning, were included into a Histogram-based gradient boosting model. The models were trained and evaluated using separated data sets. RESULTS: 18.948 patient-days from 1018 individual patients were included. The classifier model yielded an ROC-AUC of 0.713. The regressor models displayed a mean absolute error of 2:50 h for prediction of absolute durations and 2:47 h for day-to-day difference. CONCLUSIONS: The developed machine learning model showed informed results when predicting the spontaneous breathing capacity of a patient in prolonged weaning, however lacking prognostic quality required for direct translation to clinical use.


Subject(s)
Machine Learning , Ventilator Weaning , Ventilator Weaning/methods , Humans , Male , Female , Time Factors , Respiration , Aged , Middle Aged , Respiration, Artificial/methods
18.
Sci Rep ; 14(1): 5725, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459085

ABSTRACT

The development of reliable mortality risk stratification models is an active research area in computational healthcare. Mortality risk stratification provides a standard to assist physicians in evaluating a patient's condition or prognosis objectively. Particular interest lies in methods that are transparent to clinical interpretation and that retain predictive power once validated across diverse datasets they were not trained on. This study addresses the challenge of consolidating numerous ICD codes for predictive modeling of ICU mortality, employing a hybrid modeling approach that integrates mechanistic, clinical knowledge with mathematical and machine learning models . A tree-structured network connecting independent modules that carry clinical meaning is implemented for interpretability. Our training strategy utilizes graph-theoretic methods for data analysis, aiming to identify the functions of individual black-box modules within the tree-structured network by harnessing solutions from specific max-cut problems. The trained model is then validated on external datasets from different hospitals, demonstrating successful generalization capabilities, particularly in binary-feature datasets where label assessment involves extrapolation.


Subject(s)
Hospitals , Machine Learning , Humans , Prognosis , Intensive Care Units
19.
Infect Dis Model ; 9(2): 501-518, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38445252

ABSTRACT

In July 2023, the Center of Excellence in Respiratory Pathogens organized a two-day workshop on infectious diseases modelling and the lessons learnt from the Covid-19 pandemic. This report summarizes the rich discussions that occurred during the workshop. The workshop participants discussed multisource data integration and highlighted the benefits of combining traditional surveillance with more novel data sources like mobility data, social media, and wastewater monitoring. Significant advancements were noted in the development of predictive models, with examples from various countries showcasing the use of machine learning and artificial intelligence in detecting and monitoring disease trends. The role of open collaboration between various stakeholders in modelling was stressed, advocating for the continuation of such partnerships beyond the pandemic. A major gap identified was the absence of a common international framework for data sharing, which is crucial for global pandemic preparedness. Overall, the workshop underscored the need for robust, adaptable modelling frameworks and the integration of different data sources and collaboration across sectors, as key elements in enhancing future pandemic response and preparedness.

20.
Diagnostics (Basel) ; 13(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36766496

ABSTRACT

The COVID-19 pandemic shed light on the need for quick diagnosis tools in healthcare, leading to the development of several algorithmic models for disease detection. Though these models are relatively easy to build, their training requires a lot of data, storage, and resources, which may not be available for use by medical institutions or could be beyond the skillset of the people who most need these tools. This paper describes a data analysis and machine learning platform that takes advantage of high-performance computing infrastructure for medical diagnosis support applications. This platform is validated by re-training a previously published deep learning model (COVID-Net) on new data, where it is shown that the performance of the model is improved through large-scale hyperparameter optimisation that uncovered optimal training parameter combinations. The per-class accuracy of the model, especially for COVID-19 and pneumonia, is higher when using the tuned hyperparameters (healthy: 96.5%; pneumonia: 61.5%; COVID-19: 78.9%) as opposed to parameters chosen through traditional methods (healthy: 93.6%; pneumonia: 46.1%; COVID-19: 76.3%). Furthermore, training speed-up analysis shows a major decrease in training time as resources increase, from 207 min using 1 node to 54 min when distributed over 32 nodes, but highlights the presence of a cut-off point where the communication overhead begins to affect performance. The developed platform is intended to provide the medical field with a technical environment for developing novel portable artificial-intelligence-based tools for diagnosis support.

SELECTION OF CITATIONS
SEARCH DETAIL