ABSTRACT
(1) Background: Early reintervention increases the risk of infection of cardiac implantable electronic devices (CIEDs). Some operators therefore delay lead repositioning in the case of dislocation by weeks; however, there is no evidence to support this practice. The aim of our study was to evaluate the impact of the timing of reoperation on infection risk. (2) Methods: The data from consecutive patients undergoing lead repositioning in two European referral centers were retrospectively analyzed. The odds ratio (OR) of CIED infection in the first year was compared among patients undergoing early (≤1 week) vs. delayed (>1 week to 1 year) reoperation. (3) Results: Out of 249 patients requiring CIED reintervention, 85 patients (34%) underwent an early (median 2 days) and 164 (66%) underwent a delayed lead revision (median 53 days). A total of nine (3.6%) wound/device infections were identified. The risk of infection was numerically lower in the early (1.2%) vs. delayed (4.9%) intervention group yielding no statistically significant difference, even after adjustment for typical risk factors for CIED infection (adjusted OR = 0.264, 95% CI 0.032-2.179, p = 0.216). System explantation/extraction was necessary in seven cases, all being revised in the delayed group. (4) Conclusions: In this bicentric, international study, delayed lead repositioning did not reduce the risk of CIED infection.
ABSTRACT
PURPOSE: The use of cardiac implantable electronic devices (CIEDs) has increased significantly over the last decades. With the development of transvenous lead extraction (TLE), procedural success rates also improved; however, data regarding long-term outcomes are still limited. The aim of our study was to analyze the outcomes after TLE, including reimplantation data, all-cause and cause-specific mortality. METHODS: Data from consecutive patients undergoing TLE in our institution between 2012 and 2020 were retrospectively analyzed. Periprocedural, 30-day, long-term, and cause-specific mortalities were calculated. We examined the original and the revised CIED indications and survival rate of patients with or without reimplantation. RESULTS: A total of 150 patients (age 66 ± 14 years) with 308 leads (dwelling time 7.8 ± 6.3 years) underwent TLE due to pocket infection (n = 105, 70%), endocarditis (n = 35, 23%), or non-infectious indications (n = 10, 7%). All-cause mortality data were available for all patients, detailed reimplantation data in 98 cases. Procedural death rate was 2% (n = 3), 30-day mortality rate 2.6% (n = 4). During the 3.5 ± 2.4 years of follow-up, 44 patients died. Arrhythmia, as the direct cause of death, was absent. Cardiovascular cause was responsible for mortality in 25%. There was no significant survival difference between groups with or without reimplantation (p = 0.136). CONCLUSIONS: Despite the high number of pocket and systemic infection and long dwelling times in our cohort, the short- and long-term mortality after TLE proved to be favorable. Moreover, survival without a new device was not worse compared to patients who underwent a reimplantation procedure. Our study underlines the importance of individual reassessment of the original CIED indication, to avoid unnecessary reimplantation.
Subject(s)
Defibrillators, Implantable , Pacemaker, Artificial , Humans , Middle Aged , Aged , Aged, 80 and over , Retrospective Studies , Arrhythmias, Cardiac/therapy , Survival Rate , Device Removal/methods , Treatment OutcomeABSTRACT
PURPOSE: Radiofrequency (RF) catheter ablation of the slow pathway (SP) in atrioventricular nodal reentry tachycardia (AVNRT) is highly effective; however, it may require prolonged fluoroscopy and RF time. We postulated that visualization of the SP region with intracardiac echocardiography (ICE) could decrease ablation time, minimize radiation exposure, and facilitate SP ablation compared to the standard, fluoroscopy-guided approach. METHODS: In our study, we randomized 91 patients undergoing electrophysiologic study and SP ablation for AVNRT into 2 groups: fluoroscopy-only (n = 48) or ICE-guided (n = 43) group. Crossover to ICE-guidance was allowed after 8 unsuccessful RF applications. RESULTS: Mapping plus ablation time (mean ± standard deviation: 18.8 ± 16.1 min vs 11.6 ± 15.0 min, p = 0.031), fluoroscopy time (median [interquartile range]: 4.9 [2.93-8.13] min vs. 1.8 [1.2-2.8] min, p < 0.001), and total ablation time (144 [104-196] s vs. 81 [60-159] s, p = 0.001) were significantly shorter in the ICE group. ICE-guidance was associated with reduced radiation exposure (13.2 [8.2-13.4] mGy vs. 3.7 [1.5-5.8] mGy, p < 0.001). The sum of delivered RF energy (3866 [2786-5656] Ws vs. 2283 [1694-4284] Ws, p = 0.002) and number of RF applications (8 [4.25-12.75] vs. 4 [2-7], p = 0.001) were also lower with ICE-guidance. Twelve (25%) patients crossed over to the ICE-guided group. All were treated successfully thereafter with similar number, time, and cumulative energy of RF applications compared to the ICE group. No recurrence occurred during the follow-up. CONCLUSIONS: ICE-guidance during SP ablation significantly reduces mapping and ablation time, radiation exposure, and RF delivery in comparison to fluoroscopy-only procedures. Moreover, early switching to ICE-guided ablation seems to be an optimal choice in challenging cases.
Subject(s)
Catheter Ablation , Tachycardia, Atrioventricular Nodal Reentry , Catheter Ablation/methods , Echocardiography , Electrophysiologic Techniques, Cardiac , Fluoroscopy/methods , Humans , Tachycardia, Atrioventricular Nodal Reentry/diagnostic imaging , Tachycardia, Atrioventricular Nodal Reentry/etiology , Tachycardia, Atrioventricular Nodal Reentry/surgery , Treatment OutcomeABSTRACT
Although the clinical manifestations of SARS-CoV-2 viral infection affect mainly the respiratory system, cardiac complications are common and are associated with increased morbidity and mortality. While echocardiographic alterations indicating myocardial involvement are widely reported in patients hospitalized for acute COVID-19 infection, much fewer data available in non-hospitalized, mildly symptomatic COVID-19 patients. In our work, we aimed to investigate subclinical cardiac alterations characterized by parameters provided by advanced echocardiographic techniques following mild SARS-CoV-2 viral infection. A total of 86 patients (30 males, age: 39.5 ± 13.0 yrs) were assessed 59 ± 33 days after mild SARS-CoV-2 viral infection (requiring no hospital or <5 days in-hospital treatment) by advanced echocardiographic examination including 2-dimensional (2D) speckle tracking echocardiography and non-invasive myocardial work analysis, and were compared to an age-and sex-matched control group. Altogether, variables from eleven echocardiographic categories representing morphological or functional echocardiographic parameters showed statistical difference between the post-COVID patient group and the control group. The magnitude of change was subtle or mild in the case of these parameters, ranging from 1−11.7% of relative change. Among the parameters, global longitudinal strain [−20.3 (−21.1−−19.0) vs. −19.1 (−20.4−−17.6) %; p = 0.0007], global myocardial work index [1975 (1789−2105) vs. 1829 (1656−2057) Hgmm%; p = 0.007] and right ventricular free wall strain values (−26.6 ± 3.80 vs. −23.8 ± 4.0%; p = 0.0003) showed the most significant differences between the two groups. Subclinical cardiac alterations are present following even mild SARS-CoV-2 viral infection. These more subtle alterations are difficult to detect by routine echocardiography. Extended protocols, involving speckle-tracking echocardiography, non-invasive measurement of cardiac hemodynamics, and possibly myocardial work are necessary for detection and adequate follow-up.