Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Molecules ; 28(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36985569

ABSTRACT

The d-GlcNAc moiety in sialyl Lewisx (sLex, 1) acts predominantly as a linker to position the d-Gal and the l-Fuc moieties in the bioactive spatial orientation. The hypothesis has been made that the NHAc group of GlcNAc pushes the fucose underneath the galactose and, thus, contributes to the stabilization of the bioactive conformation of the core of sLex (1). To test this hypothesis, GlcNAc mimetics consisting of (R,R)-1,2-cyclohexanediols substituted with alkyl and aryl substituents adjacent to the linking position of the fucose moiety were synthesized. To explore a broad range of extended and spatially demanding R-groups, an enzymatic approach for the synthesis of 3-alkyl/aryl-1,2-cyclohexanediols (3b-n) was applied. These cyclohexanediol derivatives were incorporated into the sLex mimetics 2b-n. For analyzing the relationship of affinity and core conformation, a 1H NMR structural-reporter-group concept was applied. Thus, the chemical shift of H-C5Fuc proved to be a sensitive indicator for the degree of pre-organization of the core of this class of sLex mimetics and therefore could be used to quantify the contribution of the R-groups.


Subject(s)
Fucose , Oligosaccharides , Sialyl Lewis X Antigen , Oligosaccharides/chemistry , Fucose/chemistry , Molecular Conformation , Magnetic Resonance Spectroscopy
2.
Angew Chem Int Ed Engl ; 62(52): e202314280, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37947772

ABSTRACT

Carbohydrate-binding proteins are generally characterized by poor affinities for their natural glycan ligands, predominantly due to the shallow and solvent-exposed binding sites. To overcome this drawback, nature has exploited multivalency to strengthen the binding by establishing multiple interactions simultaneously. The development of oligovalent structures frequently proved to be successful, not only for proteins with multiple binding sites, but also for proteins that possess a single recognition domain. Herein we present the syntheses of a number of oligovalent ligands for Siglec-8, a monomeric I-type lectin found on eosinophils and mast cells, alongside the thermodynamic characterization of their binding. While the enthalpic contribution of each binding epitope was within a narrow range to that of the monomeric ligand, the entropy penalty increased steadily with growing valency. Additionally, we observed a successful agonistic binding of the tetra- and hexavalent and, to an even larger extent, multivalent ligands to Siglec-8 on immune cells and modulation of immune cell activation. Thus, triggering a biological effect is not restricted to multivalent ligands but could be induced by low oligovalent ligands as well, whereas a monovalent ligand, despite binding with similar affinity, showed an antagonistic effect.


Subject(s)
Eosinophils , Polysaccharides , Ligands , Polysaccharides/chemistry , Eosinophils/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
3.
J Am Chem Soc ; 143(42): 17465-17478, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34652144

ABSTRACT

The C-type lectin receptor DC-SIGN is a pattern recognition receptor expressed on macrophages and dendritic cells. It has been identified as a promiscuous entry receptor for many pathogens, including epidemic and pandemic viruses such as SARS-CoV-2, Ebola virus, and HIV-1. In the context of the recent SARS-CoV-2 pandemic, DC-SIGN-mediated virus dissemination and stimulation of innate immune responses has been implicated as a potential factor in the development of severe COVID-19. Inhibition of virus binding to DC-SIGN, thus, represents an attractive host-directed strategy to attenuate overshooting innate immune responses and prevent the progression of the disease. In this study, we report on the discovery of a new class of potent glycomimetic DC-SIGN antagonists from a focused library of triazole-based mannose analogues. Structure-based optimization of an initial screening hit yielded a glycomimetic ligand with a more than 100-fold improved binding affinity compared to methyl α-d-mannopyranoside. Analysis of binding thermodynamics revealed an enthalpy-driven improvement of binding affinity that was enabled by hydrophobic interactions with a loop region adjacent to the binding site and displacement of a conserved water molecule. The identified ligand was employed for the synthesis of multivalent glycopolymers that were able to inhibit SARS-CoV-2 spike glycoprotein binding to DC-SIGN-expressing cells, as well as DC-SIGN-mediated trans-infection of ACE2+ cells by SARS-CoV-2 spike protein-expressing viruses, in nanomolar concentrations. The identified glycomimetic ligands reported here open promising perspectives for the development of highly potent and fully selective DC-SIGN-targeted therapeutics for a broad spectrum of viral infections.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Cell Adhesion Molecules/metabolism , Lectins, C-Type/metabolism , Receptors, Cell Surface/metabolism , COVID-19/metabolism , COVID-19/virology , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism
4.
J Am Chem Soc ; 143(45): 18977-18988, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34748320

ABSTRACT

Dendritic cells (DC) are antigen-presenting cells coordinating the interplay of the innate and the adaptive immune response. The endocytic C-type lectin receptors DC-SIGN and Langerin display expression profiles restricted to distinct DC subtypes and have emerged as prime targets for next-generation immunotherapies and anti-infectives. Using heteromultivalent liposomes copresenting mannosides bearing aromatic aglycones with natural glycan ligands, we serendipitously discovered striking cooperativity effects for DC-SIGN+ but not for Langerin+ cell lines. Mechanistic investigations combining NMR spectroscopy with molecular docking and molecular dynamics simulations led to the identification of a secondary binding pocket for the glycomimetics. This pocket, located remotely of DC-SIGN's carbohydrate bindings site, can be leveraged by heteromultivalent avidity enhancement. We further present preliminary evidence that the aglycone allosterically activates glycan recognition and thereby contributes to DC-SIGN-specific cell targeting. Our findings have important implications for both translational and basic glycoscience, showcasing heteromultivalent targeting of DCs to improve specificity and supporting potential allosteric regulation of DC-SIGN and CLRs in general.


Subject(s)
Cell Adhesion Molecules/metabolism , Lectins, C-Type/metabolism , Receptors, Cell Surface/metabolism , Antigens, CD/metabolism , Binding Sites , Cell Adhesion Molecules/chemistry , Cell Line, Tumor , Humans , Lectins, C-Type/chemistry , Ligands , Liposomes/chemistry , Liposomes/metabolism , Mannose-Binding Lectins/metabolism , Mannosides/chemistry , Mannosides/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Receptors, Cell Surface/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism
5.
Chimia (Aarau) ; 75(6): 495-499, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34233811

ABSTRACT

Among the many molecular entities suitable for therapeutic use, peptides have emerged as a particularly attractive option for academic drug discovery and development. Their modular structure and extendibility, the availability of powerful and affordable screening platforms, and the relative ease-of-synthesis render therapeutic peptides highly approachable for teaching and research alike. With a strong focus on the therapeutic modulation of host defence pathways, including the complement and renin-angiotensin systems, the Molecular Pharmacy group at the University of Basel strongly relies on peptides to introduce students to practical aspects of modern drug design, to discover novel therapeutics for immune and inflammatory diseases, and to expand on options for the preclinical development of a promising drug class. Current projects reach from student-driven iterative design of peptidic angiotensin-converting enzyme inhibitors and the use of phage display technology to discover novel immune modulators to the development of protective peptide coatings for biomaterials and transplants and the structure-activity-relationship-guided optimization of therapeutic peptide drug candidates in late-stage clinical trials. Even at the current stage, peptides allow for a perfect circle between pharmaceutical research and education, and the recent spark of clinical applications for peptide-based drugs may only increase the value and relevance of this versatile drug class.


Subject(s)
Drug Design , Peptides , Drug Discovery , Homeostasis , Humans
6.
Chemistry ; 23(48): 11570-11577, 2017 Aug 25.
Article in English | MEDLINE | ID: mdl-28654733

ABSTRACT

Target-directed dynamic combinatorial chemistry (DCC) is an emerging technique for the efficient identification of inhibitors of pharmacologically relevant targets. In this contribution, we present an application for a bacterial target, the lectin FimH, a crucial virulence factor of uropathogenic E. coli being the main cause of urinary tract infections. A small dynamic library of acylhydrazones was formed from aldehydes and hydrazides and equilibrated at neutral pH in presence of aniline as nucleophilic catalyst. The major success factors turned out to be an accordingly adjusted ratio of scaffolds and fragments, an adequate sample preparation prior to HPLC analysis, and the data processing. Only then did the ranking of the dynamic library constituents correlate well with affinity data. Furthermore, as a support of DCC applications especially to larger libraries, a new protocol for improved hit identification was established.


Subject(s)
Fimbriae Proteins/antagonists & inhibitors , Hydrazones/chemistry , Adhesins, Escherichia coli/genetics , Adhesins, Escherichia coli/metabolism , Aldehydes/chemistry , Aniline Compounds/chemistry , Catalysis , Combinatorial Chemistry Techniques , Escherichia coli/metabolism , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Hydrazones/chemical synthesis , Hydrazones/metabolism , Hydrogen-Ion Concentration , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Surface Plasmon Resonance
7.
Chembiochem ; 17(11): 1012-20, 2016 06 02.
Article in English | MEDLINE | ID: mdl-26991759

ABSTRACT

FimH is a bacterial lectin found at the tips of type 1 pili of uropathogenic Escherichia coli (UPEC). It mediates shear-enhanced adhesion to mannosylated surfaces. Binding of UPEC to urothelial cells initiates the infection cycle leading to urinary tract infections (UTIs). Antiadhesive glycomimetics based on α-d-mannopyranose offer an attractive alternative to the conventional antibiotic treatment because they do not induce a selection pressure and are therefore expected to have a reduced resistance potential. Genetic variation of the fimH gene in clinically isolated UPEC has been associated with distinct mannose binding phenotypes. For this reason, we investigated the mannose binding characteristics of four FimH variants with mannose-based ligands under static and hydrodynamic conditions. The selected FimH variants showed individually different binding behavior under both sets of conditions as a result of the conformational variability of FimH. Clinically relevant FimH variants typically exist in a dynamic conformational equilibrium. Additionally, we evaluated inhibitory potencies of four FimH antagonists representing different structural classes. Inhibitory potencies of three of the tested antagonists were dependent on the binding phenotype and hence on the conformational equilibrium of the FimH variant. However, the squarate derivative was the notable exception and inhibited FimH variants irrespective of their binding phenotype. Information on antagonist affinities towards various FimH variants has remained largely unconsidered despite being essential for successful antiadhesion therapy.


Subject(s)
Adhesins, Escherichia coli/metabolism , Fimbriae Proteins/metabolism , Adhesins, Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli/metabolism , Fimbriae Proteins/antagonists & inhibitors , Fimbriae Proteins/genetics , Humans , Mannose/chemistry , Mannose/metabolism , Mutation , Phenotype , Protein Binding , Protein Structure, Tertiary , Urinary Tract Infections/microbiology , Urinary Tract Infections/pathology , Uroplakin Ia/chemistry , Uroplakin Ia/metabolism
8.
Chembiochem ; 16(8): 1235-46, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25940742

ABSTRACT

Urinary tract infections caused by uropathogenic E. coli are among the most prevalent infectious diseases. The mannose-specific lectin FimH mediates the adhesion of the bacteria to the urothelium, thus enabling host cell invasion and recurrent infections. An attractive alternative to antibiotic treatment is the development of FimH antagonists that mimic the physiological ligand. A large variety of candidate drugs have been developed and characterized by means of in vitro studies and animal models. Here we present the X-ray co-crystal structures of FimH with members of four antagonist classes. In three of these cases no structural data had previously been available. We used NMR spectroscopy to characterize FimH-antagonist interactions further by chemical shift perturbation. The analysis allowed a clear determination of the conformation of the tyrosine gate motif that is crucial for the interaction with aglycone moieties and was not obvious from X-ray structural data alone. Finally, ITC experiments provided insight into the thermodynamics of antagonist binding. In conjunction with the structural information from X-ray and NMR experiments the results provide a mechanism for the often-observed enthalpy-entropy compensation of FimH antagonists that plays a role in fine-tuning of the interaction.


Subject(s)
Adhesins, Escherichia coli/chemistry , Escherichia coli K12 , Fimbriae Proteins/chemistry , Tyrosine , Adhesins, Escherichia coli/metabolism , Crystallography, X-Ray , Fimbriae Proteins/antagonists & inhibitors , Fimbriae Proteins/metabolism , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Structure, Secondary
9.
Top Curr Chem ; 367: 151-200, 2015.
Article in English | MEDLINE | ID: mdl-24276958

ABSTRACT

Siglec-4, also known as myelin-associated glycoprotein (MAG), is a member of the siglec (sialic acid-binding immunoglobulin-like lectins) family. MAG binds with high preference to sialic acids α(2-3)-linked to D-galactose. Although the involvement and relevance of its sialic acid binding activity is still controversial, it could be demonstrated that interactions of MAG with sialylated gangliosides play an important role in axon stability and regeneration. In this article we describe in detail our current understanding of the biological role and the carbohydrate specificity of siglec-4. Furthermore, this review compiles the intensive research efforts leading from the identification of the minimal oligosaccharide binding epitope in gangliosides via micromolar oligosaccharide mimics to the development of small molecular weight and more drug-like sialic acid derivatives binding with low nanomolar affinities. Such compounds will be useful to elucidate MAG's biological functions, which are currently not fully understood.


Subject(s)
Gangliosides/chemistry , Myelin-Associated Glycoprotein/antagonists & inhibitors , Oligosaccharides/chemistry , Sialic Acids/chemistry , Small Molecule Libraries/chemistry , Amino Acid Sequence , Biomimetics/methods , Carbohydrate Sequence , Epitopes/chemistry , Epitopes/metabolism , Gangliosides/metabolism , Glycomics/methods , Humans , Molecular Mimicry , Molecular Sequence Data , Myelin-Associated Glycoprotein/chemistry , Myelin-Associated Glycoprotein/metabolism , Oligosaccharides/metabolism , Protein Binding , Sequence Homology, Amino Acid , Sialic Acids/metabolism , Small Molecule Libraries/chemical synthesis , Structure-Activity Relationship
10.
Eur J Med Chem ; 272: 116455, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38728868

ABSTRACT

The selectin family consisting of E-, P- and L-selectin plays dominant roles in atherosclerosis, ischemia-reperfusion injury, inflammatory diseases, and metastatic spreading of some cancers. An early goal in selectin-targeted drug discovery campaigns was to identify ligands binding to all three selectins, so-called pan-selectin antagonists. The physiological epitope, tetrasaccharide sialyl Lewisx (sLex, 1) binds to all selectins, albeit with very different affinities. Whereas P- and L-selectin require additional interactions contributed by sulfate groups for high binding affinity, E-selectin can functionally bind sLex-modified glycolipids and glycoproteins. Rivipansel (3) marked the first pan-selectin antagonist, which simultaneously interacted with both the sLex and the sulfate binding site. The aim of this contribution was to improve the pan-selectin affinity of rivipansel (3) by leveraging a new class of sLex mimetics in combination with an optimized linker length to the sulfate bearing group. As a result, the pan-selectin antagonist 11b exhibits an approximatively 5-fold improved affinity for E-, as well as P-selectin.


Subject(s)
Selectins , Humans , Selectins/metabolism , Structure-Activity Relationship , Oligosaccharides/chemistry , Oligosaccharides/pharmacology , Oligosaccharides/chemical synthesis , Molecular Structure , Sialyl Lewis X Antigen , Dose-Response Relationship, Drug , E-Selectin/metabolism , E-Selectin/antagonists & inhibitors , Glycolipids
11.
J Med Chem ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771131

ABSTRACT

Due to the shallow and hydrophilic binding sites of carbohydrate-binding proteins, the design of glycomimetics is often complicated by high desolvation costs as well as competition with solvent. Therefore, a careful optimization of interaction vectors and ligand properties is required in the design and optimization of glycomimetics. Here, we employ thermodynamics-guided design to optimize mannose-based glycomimetics targeting the human C-type lectin receptor dendritic cell-specific intercellular adhesion molecule 3 grabbing nonintegrin (DC-SIGN), a pathogenic host factor in viral infections. By exploring ligand rigidification and hydrogen bond engineering, a monovalent glycomimetic with an unprecedented affinity for DC-SIGN in the low µM range was discovered. A matched molecular pair analysis based on microcalorimetric data revealed a stereospecific hydrogen bond interaction with Glu358/Ser360 as the origin of this cooperative and enthalpically dominated interaction. This detailed insight into the binding mechanism paves the way for an improvement of monovalent glycomimetics targeting DC-SIGN.

12.
J Am Chem Soc ; 135(26): 9820-8, 2013 Jul 03.
Article in English | MEDLINE | ID: mdl-23742188

ABSTRACT

Selectins, a family of C-type lectins, play a key role in inflammatory diseases (e.g., asthma and arthritis). However, the only millimolar affinity of sialyl Lewis(x) (sLe(x)), which is the common tetrasaccharide epitope of all physiological selectin ligands, has been a major obstacle to the development of selectin antagonists for therapeutic applications. In a fragment-based approach guided by NMR, ligands binding to a second site in close proximity to a sLe(x) mimic were identified. A library of antagonists obtained by connecting the sLe(x) mimic to the best second-site ligand via triazole linkers of different lengths was evaluated by surface plasmon resonance. Detailed analysis of the five most promising candidates revealed antagonists with K(D) values ranging from 30 to 89 nM. In contrast to carbohydrate-lectin complexes with typical half-lives (t(1/2)) in the range of one second or even less, these fragment-based selectin antagonists show t1/2 of several minutes. They exhibit a promising starting point for the development of novel anti-inflammatory drugs.


Subject(s)
E-Selectin/metabolism , E-Selectin/chemistry , Molecular Conformation , Nuclear Magnetic Resonance, Biomolecular
13.
J Pharm Biomed Anal ; 236: 115716, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37722165

ABSTRACT

Erlotinib is an epidermal growth factor receptor tyrosine kinase inhibitor used in the treatment of cancer. Atorvastatin is a statin commonly applied to treat hypercholesterolemia. In humans, both compounds are metabolized by CYP3A4 and are transported by OATP2B1, ABCB1 and ABCG2. We aimed to generate and validate a bioanalytical method for simultaneous determination of atorvastatin, erlotinib and its major metabolite OSI-420 applicable to biological samples. Quantification of erlotinib, OSI-420, and atorvastatin was achieved with an Agilent high-performance liquid chromatography system 1100/1200 coupled to a triple quadrupole G6410B. The method involved separation over the column Kinetex C8 (100 × 3 mm, 2.6 µm) using 2 mM ammonium acetate (pH 4.0) and acetonitrile as eluent. The method was assessed for selectivity, accuracy, recovery, matrix effect, and stability over a range from 1 to 4,000 ng/mL according to the respective guidelines. We applied the bioanalytical method to quantify the formation of OSI-420 in liver microsomes isolated from male and female Wistar rats. The optimized experiment revealed slower formation in microsomes of female compared to male rats, in which we observed lower amounts of CYP3A1 by Western blot analysis. Moreover, the presence of atorvastatin inhibited the CYP3A-mediated metabolism of erlotinib. Serum obtained from a drug-drug interaction study performed in male rats was also analyzed using the validated method. Non-compartmental pharmacokinetic analysis revealed a lower clearance of erlotinib when atorvastatin was co-administered. However, for atorvastatin we observed a lower systemic exposure in presence of erlotinib. In summary, we report a method to detect OSI-420, erlotinib and atorvastatin applicable to samples from ex vivo and in vivo studies.


Subject(s)
Microsomes, Liver , Tandem Mass Spectrometry , Humans , Male , Female , Rats , Animals , Erlotinib Hydrochloride/pharmacology , Atorvastatin , Rats, Wistar , Chromatography, Liquid/methods , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods
14.
Chemistry ; 18(5): 1342-51, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22213563

ABSTRACT

A new class of N-acetyl-D-glucosamine (GlcNAc) mimics for E-selectin antagonists was designed and synthesized. The mimic consists of a cyclohexane ring substituted with alkyl substituents adjacent to the linking position of the fucose moiety. Incorporation into E-selectin antagonists led to the test compounds 8 and the 2'-benzoylated analogues 21, which exhibit affinities in the low micromolar range. By using saturation transfer difference (STD)-NMR it could be shown that the increase in affinity does not result from an additional hydrophobic contact of the alkyl substituent with the target protein E-selectin, but rather from a steric effect stabilizing the antagonist in its bioactive conformation. The loss of affinity found for antagonists 10 and 35 containing a methyl substituent in a remote position (and therefore unable to support to the stabilization of the core) further supports this hypothesis. Finally, when a GlcNAc mimetic containing two methyl substituents (52 and 53) was used, in which one methyl was positioned adjacent to the fucose linking position and the other was in a remote position, the affinity was regained.


Subject(s)
Acetylglucosamine/chemistry , E-Selectin/chemistry , E-Selectin/drug effects , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Structure , Structure-Activity Relationship
15.
ChemMedChem ; 17(1): e202100634, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34870892

ABSTRACT

Because of their large polar surface area, carbohydrates often exhibit insufficient pharmacokinetic properties. Specifically, the carboxylic acid function of the tetrasaccharide sialyl Lewisx , a pharmacophore crucial for the formation of a salt bridge with selectins, prevents oral availability. A common approach is the transfer of carboxylic acid into ester prodrugs. Once the prodrug is either actively or passively absorbed, the active principle is released by hydrolysis. In the present study, ester prodrugs of selectin antagonists with aliphatic promoieties were synthesized and their potential for oral availability was investigated in vitro and in vivo. The addition of lipophilic ester moieties to overcome insufficient lipophilicity improved passive permeation into enterocytes, however at the same time supported efflux back to the small intestines as well as oxidation into non-hydrolysable metabolites. In summary, our examples demonstrate that different modifications of carbohydrates can result in opposing effects and have to be studied in their entirety.


Subject(s)
E-Selectin/antagonists & inhibitors , Esters/pharmacology , Prodrugs/pharmacology , Administration, Oral , Animals , Biological Availability , Caco-2 Cells , Dose-Response Relationship, Drug , E-Selectin/metabolism , Esters/administration & dosage , Esters/chemistry , Female , Humans , Male , Mice , Mice, Inbred BALB C , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Prodrugs/administration & dosage , Prodrugs/chemistry , Rats , Structure-Activity Relationship
16.
ChemMedChem ; 17(3): e202100514, 2022 02 04.
Article in English | MEDLINE | ID: mdl-34613662

ABSTRACT

Galectin-8 has gained attention as a potential new pharmacological target for the treatment of various diseases, including cancer, inflammation, and disorders associated with bone mass reduction. To that end, new molecular probes are needed in order to better understand its role and its functions. Herein we aimed to improve the affinity and target selectivity of a recently published galectin-8 ligand, 3-O-[1-carboxyethyl]-ß-d-galactopyranoside, by introducing modifications at positions 1 and 3 of the galactose. Affinity data measured by fluorescence polarization show that the most potent compound reached a KD of 12 µM. Furthermore, reasonable selectivity versus other galectins was achieved, making the highlighted compound a promising lead for the development of new selective and potent ligands for galectin-8 as molecular probes to examine the protein's role in cell-based and in vivo studies.


Subject(s)
Galectins/metabolism , Muramic Acids/pharmacology , Fluorescence Polarization , Humans , Ligands , Molecular Structure , Muramic Acids/chemical synthesis , Muramic Acids/chemistry
17.
ACS Chem Biol ; 17(7): 1890-1900, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35675124

ABSTRACT

Antibiotic resistance is a major worldwide concern, and new drugs with mechanistically novel modes of action are urgently needed. Here, we report the structure-based drug design, synthesis, and evaluation in vitro and in cellular systems of sialic acid derivatives able to inhibit the bacterial sialic acid symporter SiaT. We designed and synthesized 21 sialic acid derivatives and screened their affinity for SiaT by a thermal shift assay and elucidated the inhibitory mechanism through binding thermodynamics, computational methods, and inhibitory kinetic studies. The most potent compounds, which have a 180-fold higher affinity compared to the natural substrate, were tested in bacterial growth assays and indicate bacterial growth delay in methicillin-resistant Staphylococcus aureus. This study represents the first example and a promising lead in developing sialic acid uptake inhibitors as novel antibacterial agents.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/chemistry , Kinetics , Microbial Sensitivity Tests , N-Acetylneuraminic Acid/pharmacology
18.
Bioorg Med Chem ; 19(21): 6454-73, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21962988

ABSTRACT

Urinary tract infection (UTI) caused by uropathogenic Escherichia coli (UPEC) is one of the most prevalent infectious diseases. Particularly affected are women, who have a 40-50% risk to experience at least one symptomatic UTI episode at some time during their life. In the initial step of the infection, the lectin FimH, located at the tip of bacterial pili, interacts with the high-mannosylated uroplakin Ia glycoprotein on the urinary bladder mucosa. This interaction is critical for the ability of UPEC to colonize and invade the bladder epithelium. X-ray structures of FimH co-crystallized with two different ligands, the physiological binding epitope oligomannose-3 and the antagonist biphenyl α-D-mannoside 4a revealed different binding modes, an in-docking-mode and an out-docking-mode, respectively. To accomplish the in-docking-mode, that is the docking mode where the ligand is hosted by the so-called tyrosine gate, FimH antagonists with increased flexibility were designed and synthesized. All derivatives 5-8 showed nanomolar affinities, but only one representative, the 4-pyridiyl derivative 5j, was as potent as the reference compound n-heptyl α-D-mannoside (1b). Furthermore, a loss of affinity was observed for C-glycosides and derivatives where the triazole aglycone is directly N-linked to the anomeric center. A conformational analysis by NMR revealed that the triazolyl-methyl-C-mannosides 8 adopt an unusual (1)C(4) chair conformation, explaining the comparably lower affinity of these compounds. Furthermore, to address the druglikeness of this new class of FimH antagonists, selected pharmacokinetic parameters, which are critical for oral bioavailability (lipophilicity, solubility, and membrane permeation), were determined.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Fimbriae Proteins/antagonists & inhibitors , Mannosides/chemistry , Mannosides/pharmacology , Triazoles/chemistry , Triazoles/pharmacology , Adhesins, Escherichia coli , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacokinetics , Binding, Competitive , Guinea Pigs , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Mannosides/chemical synthesis , Mannosides/pharmacokinetics , Models, Molecular , Molecular Conformation , Optical Rotation , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/pharmacokinetics , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/drug effects
19.
Anal Biochem ; 407(2): 188-95, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-20705050

ABSTRACT

Uropathogenic Escherichia coli (UPEC) is the primary cause of urinary tract infections (UTIs). In the first step of this infective process, the virulence factor FimH located on type 1 pili allows UPEC to specifically adhere to oligosaccharides, which are part of glycoproteins on the urinary bladder mucosa. This initial step prevents the clearance of E. coli from the urinary tract and enables the invasion of the host cells. Because FimH antagonists can block this interaction, they exhibit a promising therapeutic potential as anti-infectives. For the evaluation of their binding properties, a reliable, target-based affinity assay is required. Here, we describe the expression and purification of the carbohydrate recognition domain of FimH (FimH-CRD) as well as the development of a competitive binding assay. FimH-CRD linked with a thrombin cleavage site to a 6His-tag is recombinantly expressed and purified by affinity chromatography. For the evaluation of FimH antagonists, a cell-free binding assay based on the interaction of a biotinylated polyacrylamide glycopolymer with the FimH-CRD was developed. Complexation of the biotinylated glycopolymer with streptavidin coupled to horseradish peroxidase allows the quantification of the binding properties of FimH antagonists. The assay format was optimized and validated by a comparison with affinity data from reported assays.


Subject(s)
Binding, Competitive , Colorimetry/methods , Fimbriae Proteins/antagonists & inhibitors , Acrylic Resins/chemistry , Adhesins, Escherichia coli/genetics , Adhesins, Escherichia coli/metabolism , Dimethyl Sulfoxide/chemistry , Edetic Acid/chemistry , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Histidine/genetics , Histidine/metabolism , Oligopeptides/genetics , Oligopeptides/metabolism , Polymers/chemistry , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
20.
Bioorg Med Chem ; 18(20): 7239-51, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20843694

ABSTRACT

Broad modifications of various positions of the minimal natural epitope recognized by the myelin-associated glycoprotein (MAG), a blocker of regeneration of neurite injuries, produced sialosides with nanomolar affinities. However, important pharmacokinetic issues, for example, the metabolic stability of these sialosides, remain to be addressed. For this reason, the novel non-carbohydrate mimic 3 was designed and synthesized from (-)-quinic acid. For the design of 3, previously identified beneficial modifications of side chains of Neu5Ac were combined with the replacement of the ring oxygen by a methylene group and the substitution of the C(4)-OH by an acetamide. Although docking experiments to a homology model of MAG revealed that mimic 3 forms all but one of the essential hydrogen bonds identified for the earlier reported lead 2, its affinity was substantially reduced. Extensive molecular-dynamics simulation disclosed that the missing hydrogen bond of the former C(8)-OH leads to a change of the orientation of the side chain. As a consequence, an important hydrophobic contact is compromised leading to a loss of affinity.


Subject(s)
Benzamides/chemistry , Carbohydrates/chemistry , Cyclohexanecarboxylic Acids/chemistry , Myelin-Associated Glycoprotein/antagonists & inhibitors , Benzamides/chemical synthesis , Benzamides/pharmacology , Binding Sites , Carbohydrates/chemical synthesis , Carbohydrates/pharmacology , Computer Simulation , Cyclohexanecarboxylic Acids/chemical synthesis , Cyclohexanecarboxylic Acids/pharmacology , Drug Design , Hydrogen Bonding , Models, Molecular , Myelin-Associated Glycoprotein/metabolism , N-Acetylneuraminic Acid/chemistry , Sialic Acids/chemical synthesis , Sialic Acids/chemistry , Sialic Acids/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL