Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Physiol Genomics ; 42A(1): 1-7, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20571108

ABSTRACT

To confirm seizure susceptibility (SZS) quantitative trait loci (QTLs) on chromosome (chr) 15 identified previously using C57BL/6J (B6) and DBA/2J (D2) mice and to refine their genomic map position, we studied a set of three congenic strains in which overlapping segments of chr 15 from D2 were transferred onto the B6 background. We measured thresholds for generalized electroshock seizure (GEST) and maximal electroshock seizure (MEST) in congenic strains and B6-like littermates and also tested their responses to kainic acid (KA) and pentylenetetrazol (PTZ). Results document that MEST is significantly lower in strains 15M and 15D, which harbor medial and distal (telomeric) segments of chr 15 (respectively) from D2, compared with strain 15P, which harbors the proximal (acromeric) segment of chr 15 from D2, and with control littermates. Congenic strains 15P and 15M exhibited greater KA SZS compared with strain 15D and B6-like controls. All congenic strains were similar to controls with regard to PTZ SZS. Taken together, results suggest there are multiple SZS QTLs on chr 15 and that two QTLs harbor gene variants that affect MEST and KA SZS independently. The MEST QTL is refined to a 19 Mb region flanked by rs13482630 and D15Mit159. This interval contains 350 genes, 183 of which reside in areas where the polymorphism rate between B6 and D2 is high. The KA QTL interval spans a 65 Mb region flanked by markers D15Mit13 and rs31271969. It harbors 83 genes in highly polymorphic areas, 310 genes in all. Complete dissection of these loci will lead to identification of genetic variants that influence SZS in mice and provide a better understanding of seizure biology.


Subject(s)
Chromosomes, Mammalian/genetics , Genetic Predisposition to Disease/genetics , Quantitative Trait Loci/genetics , Seizures/genetics , Animals , Female , Genotype , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA
2.
Neuroscience ; 277: 403-16, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25058503

ABSTRACT

Compared to DBA/2J (D2), C57BL/6J (B6) inbred mice exhibit strong morphine preference when tested using a two-bottle choice drinking paradigm. A morphine preference quantitative trait locus (QTL), Mop2, was originally mapped to proximal chromosome (Chr) 10 using a B6xD2 F2 intercross population, confirmed with reciprocal congenic strains and fine mapped with recombinant congenic strains. These efforts identified a ∼ 10-Million base pair (Mbp) interval, underlying Mop2, containing 35 genes. To further reduce the interval, mice from the D2.B6-Mop2-P1 congenic strain were backcrossed to parental D2 mice and two new recombinant strains of interest were generated: D2.B6-Mop2-P1.pD.dB and D2.B6-Mop2-P1.pD.dD. Results obtained from testing these strains in the two-bottle choice drinking paradigm suggest that the gene(s) responsible for the Mop2 QTL is one or more of 22 remaining within the newly defined interval (∼ 7.6 Mbp) which includes Oprm1 and several other genes related to opioid pharmacology. Real-time qRT-PCR analysis of Oprm1 and opioid-related genes Rgs17, Ppp1r14c, Vip, and Iyd revealed both between-strain and within-strain expression differences in comparisons of saline- and morphine-treated B6 and D2 mice. Analysis of Rgs17 protein levels also revealed both between-strain and within-strain differences in comparisons of saline- and morphine-treated B6 and D2 mice. Results suggest that the Mop2 QTL represents the combined influence of multiple genetic variants on morphine preference in these two strains. Relative contributions of each variant remain to be determined.


Subject(s)
Drug-Seeking Behavior/physiology , Morphine/administration & dosage , Narcotics/administration & dosage , Quantitative Trait Loci , Analgesics, Non-Narcotic/administration & dosage , Animals , Brain/physiology , Choice Behavior/drug effects , Choice Behavior/physiology , Drinking Behavior/drug effects , Drinking Behavior/physiology , Gene Expression/physiology , Mice, Inbred C57BL , Mice, Inbred DBA , Quinine/administration & dosage , RGS Proteins/metabolism , Species Specificity
3.
Genes Brain Behav ; 10(3): 309-15, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21129161

ABSTRACT

We mapped the quantitative trait loci (QTL) that contribute to the robust difference in maximal electroshock seizure threshold (MEST) between C57BLKS/J (BKS) and C57BL10S/J (B10S) mice. BKS, B10S, BKS × B10S F1 and BKS × B10S F2 intercross mice were tested for MEST at 8-9 weeks of age. Results of F2 testing showed that, in this cross, MEST is a continuously distributed trait determined by polygenic inheritance. Mice from the extremes of the trait distribution were genotyped using microarray technology. MEST correlated significantly with body weight and sex; however, because of the high correlation between these factors, the QTL mapping was conditioned on sex alone. A sequential series of statistical analyses was used to map QTLs including single-point, multipoint and multilocus methods. Two QTLs reached genome-wide levels of significance based upon an empirically determined permutation threshold: chromosome 6 (LOD = 6.0 at ∼69 cM) and chromosome 8 (LOD = 5.7 at ∼27 cM). Two additional QTLs were retained in a multilocus regression model: chromosome 3 (LOD = 2.1 at ∼68 cM) and chromosome 5 (LOD = 2.7 at ∼73 cM). Together the four QTLs explain one third of the total phenotypic variance in the mapping population. Lack of overlap between the major MEST QTLs mapped here in BKS and B10S mice and those mapped previously in C57BL/6J and DBA/2J mice (strains that are closely related to BKS and B10S) suggest that BKS and B10S represent a new polygenic mouse model for investigating susceptibility to seizures.


Subject(s)
Chromosome Mapping/methods , Epilepsy/genetics , Genetic Predisposition to Disease/genetics , Quantitative Trait Loci/genetics , Animals , Brain Chemistry/genetics , Disease Models, Animal , Electric Stimulation/adverse effects , Electric Stimulation/methods , Epilepsy/physiopathology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains
SELECTION OF CITATIONS
SEARCH DETAIL