ABSTRACT
BACKGROUND: With the recent publication of WHO-recommended methods to estimate net survival, comparative analyses from different areas have now become possible. With this in mind, a study was undertaken in Nigeria to compare the performance of a specific long-lasting insecticidal net (LLIN) product in three socio-ecologically different areas. In addition, the objective was to assess the feasibility of a retrospective study design for durability. METHODS: In three states, Zamfara in the north, Nasarawa in the centre and Cross River in the south, four local government areas were selected one year after mass distribution of 100-denier polyester LLINs. From a representative sample of 300 households per site that had received campaign nets, an assessment of net survival was made based on rate of loss of nets and the physical condition of surviving nets measured by the proportionate hole index (pHI). Surveys were repeated after two and three years. RESULTS: Over the three-year period 98% of the targeted sample size of 3,720 households was obtained and 94% of the 5,669 campaign nets found were assessed for damage. With increasing time since distribution, recall of having received campaign nets dropped by 11-22% and only 31-87% of nets actually lost were reported. Using a recall bias adjustment, attrition rates were fairly similar in all three sites. The proportion of surviving nets in serviceable condition differed dramatically, however, resulting in an estimated median net survival of 3.0 years in Nasarawa, 4.5 years in Cross River and 4.7 years in Zamfara. Although repairs on damaged nets increased from around 10% at baseline to 21-38% after three years, the average pHI value for each of the four hole size categories did not differ between repaired and unrepaired nets. CONCLUSIONS: First, the differences observed in net survival are driven by living conditions and household behaviours and not the LLIN material. Second, recall bias in a retrospective durability study can be significant and while adjustments can be made, enough uncertainty remains that prospective studies on durability are preferable wherever possible. Third, repair does not seem to measurably improve net condition and focus should, therefore, be on improving preventive behaviour.
Subject(s)
Culicidae , Insecticide-Treated Bednets , Insecticides , Mosquito Control/methods , Residence Characteristics , Animals , Family Characteristics , Nigeria , Retrospective StudiesABSTRACT
BACKGROUND: While significant focus has been given to net distribution, little is known about what is done with nets that leave a household, either to be used by others or when they are discarded. To better understand the magnitude of sharing LLIN between households and patterns of discarding LLIN, the present study pools data from 14 post-campaign surveys to draw larger conclusions about the fate of nets that leave households. METHODS: Data from 14 sub-national post-campaign surveys conducted in Ghana, Senegal, Nigeria (10 states), and Uganda between 2009 and 2012 were pooled. Survey design and data collection methods were similar across surveys. The timing of surveys ranged from 2-16 months following their respective mass LLIN distributions. RESULTS: Among the 14 surveys a total of 14,196 households reported owning 25,447 nets of any kind, of which 23,955 (94%) were LLINs. In addition, a total of 4,102 nets were reported to have left the households in the sample: 63% were discarded, and 34% were given away. Only 255 of the discarded nets were reported used for other purposes, representing less than 1% of the total sample of nets. The majority (62.5%) of nets given away were given to or taken by relatives, while 31.1% were given to non-relatives. Campaign nets were almost six times (OR 5.95, 4.25-8.32, p < 0.0001) more likely to be given away than non-campaign nets lost during the same period. Nets were primarily given away within the first few months after distribution. The overall rate of net redistribution was 5% of all nets. DISCUSSION AND CONCLUSION: Intra-household re-allocation of nets does occur, but was sensitive to current household net ownership and the time elapsed since mass distribution. These factors can be addressed programmatically to further facilitate reallocation within a given community. Secondly, the overwhelming majority of nets were used for malaria prevention. Of the repurposed nets (<1% overall), the majority were already considered too torn, indicating they had already served out their useful life for malaria prevention. National programmes and donor agencies should remain confident that overall, their investments in LLIN are being appropriately used.
Subject(s)
Family Characteristics , Insecticide-Treated Bednets/statistics & numerical data , Ownership/statistics & numerical data , Africa South of the Sahara , Cross-Sectional Studies , Humans , Malaria/prevention & control , Mosquito Control/methodsABSTRACT
BACKGROUND: Until recently only two indicators were used to evaluate malaria prevention with insecticide-treated nets (ITN): "proportion of households with any ITN" and "proportion of the population using an ITN last night". This study explores the potential of the expanded set of indicators recommended by the Roll Back Malaria Monitoring and Evaluation Reference Group (MERG) for comprehensive analysis of universal coverage with ITN by applying them to the Nigeria 2010 Malaria Indicator Survey data. METHODS: The two additional indicators of "proportion of households with at least one ITN for every two people" and "proportion of population with access to an ITN within the household" were calculated as recommended by MERG. Based on the estimates for each of the four ITN indicators three gaps were calculated: i) households with no ITN, ii) households with any but not enough ITN, iii) population with access to ITN not using it. In addition, coverage with at least one ITN at community level was explored by applying Lot Quality Assurance Sampling (LQAS) decision rules to the cluster level of the data. All outcomes were analysed by household background characteristics and whether an ITN campaign had recently been done. RESULTS: While the proportion of households with any ITN was only 42% overall, it was 75% in areas with a recent mass campaign and in these areas 66% of communities had coverage of 80% or better. However, the campaigns left a considerable intra-household ownership gap with 66% of households with any ITN not having enough for every family member. In contrast, the analysis comparing actual against potential use showed that ITN utilization was good overall with only 19% of people with access not using the ITN, but with a significant difference between the North, where use was excellent (use gap 11%), and the South (use gap 36%) indicating the need for enhanced behaviour change communication. CONCLUSIONS: The expanded ITN indicators to assess universal coverage provide strong tools for a comprehensive system effectiveness analysis that produces clear, actionable evidence of progress as well as the need for specific additional interventions clearly differentiating between gaps in ownership and use.