Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Nature ; 631(8019): 207-215, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38926576

ABSTRACT

Pyroptosis is a lytic cell death mode that helps limit the spread of infections and is also linked to pathology in sterile inflammatory diseases and autoimmune diseases1-4. During pyroptosis, inflammasome activation and the engagement of caspase-1 lead to cell death, along with the maturation and secretion of the inflammatory cytokine interleukin-1ß (IL-1ß). The dominant effect of IL-1ß in promoting tissue inflammation has clouded the potential influence of other factors released from pyroptotic cells. Here, using a system in which macrophages are induced to undergo pyroptosis without IL-1ß or IL-1α release (denoted Pyro-1), we identify unexpected beneficial effects of the Pyro-1 secretome. First, we noted that the Pyro-1 supernatants upregulated gene signatures linked to migration, cellular proliferation and wound healing. Consistent with this gene signature, Pyro-1 supernatants boosted migration of primary fibroblasts and macrophages, and promoted faster wound closure in vitro and improved tissue repair in vivo. In mechanistic studies, lipidomics and metabolomics of the Pyro-1 supernatants identified the presence of both oxylipins and metabolites, linking them to pro-wound-healing effects. Focusing specifically on the oxylipin prostaglandin E2 (PGE2), we find that its synthesis is induced de novo during pyroptosis, downstream of caspase-1 activation and cyclooxygenase-2 activity; further, PGE2 synthesis occurs late in pyroptosis, with its release dependent on gasdermin D pores opened during pyroptosis. As for the pyroptotic metabolites, they link to immune cell infiltration into the wounds, and polarization to CD301+ macrophages. Collectively, these data advance the concept that the pyroptotic secretome possesses oxylipins and metabolites with tissue repair properties that may be harnessed therapeutically.


Subject(s)
Macrophages , Oxylipins , Pyroptosis , Secretome , Wound Healing , Animals , Female , Humans , Mice , Caspase 1/metabolism , Cell Movement , Cell Proliferation , Cyclooxygenase 2/metabolism , Dinoprostone/biosynthesis , Dinoprostone/metabolism , Fibroblasts/metabolism , Fibroblasts/cytology , Gasdermins/metabolism , Inflammasomes/metabolism , Interleukin-1beta , Lipidomics , Macrophages/metabolism , Macrophages/cytology , Mice, Inbred C57BL , Oxylipins/metabolism , Phosphate-Binding Proteins/metabolism , Secretome/metabolism , Wound Healing/physiology
2.
Elife ; 132024 Jun 03.
Article in English | MEDLINE | ID: mdl-38742735

ABSTRACT

Transcriptomic profiling became a standard approach to quantify a cell state, which led to the accumulation of huge amount of public gene expression datasets. However, both reuse of these datasets or analysis of newly generated ones requires significant technical expertise. Here, we present Phantasus: a user-friendly web application for interactive gene expression analysis which provides a streamlined access to more than 96,000 public gene expression datasets, as well as allows analysis of user-uploaded datasets. Phantasus integrates an intuitive and highly interactive JavaScript-based heatmap interface with an ability to run sophisticated R-based analysis methods. Overall Phantasus allows users to go all the way from loading, normalizing, and filtering data to doing differential gene expression and downstream analysis. Phantasus can be accessed online at https://alserglab.wustl.edu/phantasus or can be installed locally from Bioconductor (https://bioconductor.org/packages/phantasus). Phantasus source code is available at https://github.com/ctlab/phantasus under an MIT license.


Subject(s)
Gene Expression Profiling , Internet , Software , Gene Expression Profiling/methods , Computational Biology/methods , Humans
3.
Nat Commun ; 15(1): 6212, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39043636

ABSTRACT

The population of Russia consists of more than 150 local ethnicities. The ethnic diversity and geographic origins, which extend from eastern Europe to Asia, make the population uniquely positioned to investigate the shared properties of inherited disease risks between European and Asian ancestries. We present the analysis of genetic and phenotypic data from a cohort of 4,145 individuals collected in three metro areas in western Russia. We show the presence of multiple admixed genetic ancestry clusters spanning from primarily European to Asian and high identity-by-descent sharing with the Finnish population. As a result, there was notable enrichment of Finnish-specific variants in Russia. We illustrate the utility of Russian-descent cohorts for discovery of novel population-specific genetic associations, as well as replication of previously identified associations that were thought to be population-specific in other cohorts. Finally, we provide access to a database of allele frequencies and GWAS results for 464 phenotypes.


Subject(s)
Gene Frequency , Genome-Wide Association Study , Humans , Russia/epidemiology , Male , Polymorphism, Single Nucleotide , Female , Genetic Predisposition to Disease , Genetics, Population , Phenotype , White People/genetics , Finland , Asian People/genetics , Genetic Variation , Cohort Studies , Multifactorial Inheritance/genetics , Ethnicity/genetics , Eastern European People
SELECTION OF CITATIONS
SEARCH DETAIL