Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Chembiochem ; 25(13): e202400060, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38715149

ABSTRACT

While plaques comprised of fibrillar Aß aggregates are hallmarks of Alzheimer's disease, soluble Aß oligomers present higher neurotoxicity. Thus, one therapeutic approach is to prevent the formation of Aß oligomers and reduce their associated harmful effects. We have proposed a peptoid mimic of the Aß hydrophobic KLVFF core as an ideal candidate aggregation inhibitor due to its ability to evade proteolytic degradation via repositioning of the side chain from the α-carbon to the amide nitrogen. This peptoid, JPT1, utilizes chiral sidechains to achieve a helical structure, while C-terminal addition of two phenylalanine residues places aromatic groups on two sides of the helix with spacing designed to facilitate interaction with amyloid ß-sheet structure. We have previously shown that JPT1 modulates Aß fibril formation. Here, we demonstrate that JPT1 also modulates Aß oligomerization, and we explore the role of the charge on the linker between the KLVFF mimic and the extended aromatic residues. Additionally, we demonstrate that peptoid-induced changes in Aß oligomerization correlate with attenuation of oligomer-induced nuclear factor-κB activation in SH-SY5Y human neuroblastoma cells. These findings support the therapeutic potential of peptoids to target early stages of Aß aggregation and impact the associated Aß-induced cellular response.


Subject(s)
Amyloid beta-Peptides , Peptoids , Peptoids/chemistry , Peptoids/pharmacology , Peptoids/chemical synthesis , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Humans , Cell Line, Tumor , Drug Design
2.
Chembiochem ; 24(22): e202300503, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37679300

ABSTRACT

While the primary pathology of Alzheimer's disease (AD) is defined by brain deposition of amyloid-ß (Aß) plaques and tau neurofibrillary tangles, chronic inflammation has emerged as an important factor in AD etiology. Upregulated cell surface expression of the receptor for advanced glycation end-products (RAGE), a key receptor of innate immune response, is reported in AD. In parallel, RAGE ligands, including Aß aggregates, HMGB1, and S100B, are elevated in AD brain. Activation of RAGE by these ligands triggers release of inflammatory cytokines and upregulates cell surface RAGE. Despite such observation, there are currently no therapeutics that target RAGE for treatment of AD-associated neuroinflammation. Peptoids, a novel class of potential AD therapeutics, display low toxicity, facile blood-brain barrier permeability, and resistance to proteolytic degradation. In the current study, peptoids were designed to mimic Aß, a ligand that binds the V-domain of RAGE, and curtail RAGE inflammatory activation. We reveal the nanomolar binding capability of peptoids JPT1 and JPT1a to RAGE and demonstrate their ability to attenuate lipopolysaccharide-induced pro-inflammatory cytokine production as well as upregulation of RAGE cell surface expression. These results support RAGE antagonist peptoid-based mimics as a prospective therapeutic strategy to counter neuroinflammation in AD and other neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Peptoids , Humans , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/therapeutic use , Peptoids/pharmacology , Neuroinflammatory Diseases , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism
3.
Mol Cell Biochem ; 476(1): 13-22, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32816187

ABSTRACT

Strategies to improve the early diagnosis of prostate cancer will provide opportunities for earlier intervention. The blood-based prostate-specific antigen (PSA) assay is widely used for prostate cancer diagnosis but specificity of the assay is not satisfactory. An algorithm based on serum levels of PSA combined with other serum biomarkers may significantly improve prostate cancer diagnosis. Plasma glycan-binding IgG/IgM studies suggested that glycan patterns differ between normal and tumor cells. We hypothesize that in prostate cancer glycoproteins or glycolipids are secreted from tumor tissues into the blood and induce auto-immunoglobulin (Ig) production. A 24-glycan microarray and a 5-glycan subarray were developed using plasma samples obtained from 35 prostate cancer patients and 54 healthy subjects to identify glycan-binding auto-IgGs. Neu5Acα2-8Neu5Acα2-8Neu5Acα (G81)-binding auto-IgG was higher in prostate cancer samples and, when levels of G81-binding auto-IgG and growth differentiation factor-15 (GDF-15 or NAG-1) were combined with levels of PSA, the prediction rate of prostate cancer increased from 78.2% to 86.2% than with PSA levels alone. The G81 glycan-binding auto-IgG fraction was isolated from plasma samples using G81 glycan-affinity chromatography and identified by N-terminal sequencing of the 50 kDa heavy chain variable region of the IgG. G81 glycan-binding 25 kDa fibroblast growth factor-1 (FGF1) fragment was also identified by N-terminal sequencing. Our results demonstrated that a multiplex diagnostic combining G81 glycan-binding auto-IgG, GDF-15/NAG-1 and PSA (≥ 2.1 ng PSA/ml for cancer) increased the specificity of prostate cancer diagnosis by 8%. The multiplex assessment could improve the early diagnosis of prostate cancer thereby allowing the prompt delivery of prostate cancer treatment.


Subject(s)
Biomarkers, Tumor/blood , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Immunoglobulin G/blood , Prostatic Neoplasms/blood , Aged , Algorithms , Biomarkers/blood , Early Detection of Cancer , Humans , Male , Middle Aged , Neoplasm Metastasis , Oligonucleotide Array Sequence Analysis , Polymers/chemistry , Polysaccharides/chemistry , Prostate-Specific Antigen/blood , Proteomics , Reproducibility of Results
4.
Biopolymers ; 110(6): e23283, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31009076

ABSTRACT

Peptoids are peptidomimetic oligomers that predominantly harness similarities to peptides for biomimetic functionality. They have potential for use in biomedical applications and biosensors due to resistance to proteolytic degradation and low immunogenicity. The incorporation of chiral, aromatic side chains in the peptoid sequence allows for the formation of distinct secondary structures and self-assembly into supramolecular assemblies, including microspheres. Peptoid microspheres can be coated onto substrates for potential use in biosensor technologies, tissue engineering platforms, and drug-delivery systems. In order to be useful for these applications, the peptoid coatings must be robust under physiological conditions. In this study, we report the effects of various conditions on the peptoid microsphere coatings, including (i) helicity, (ii) temperature, (iii) pH, and (iv) ionic strength. These studies show that microsphere size decreases with increasing peptoid helicity and the positively charged side chains are positioned on the outside of the microspheres. The peptoid microsphere coatings are robust under physiological conditions but degrade in acidic conditions (pH < 7) and at low ionic strengths (<150 µM).


Subject(s)
Microspheres , Peptoids/chemistry , Calorimetry, Differential Scanning , Hydrogen-Ion Concentration , Osmolar Concentration , Peptoids/chemical synthesis , Protein Conformation, alpha-Helical , Surface Properties , Temperature
5.
Bioorg Med Chem ; 25(1): 20-26, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27776890

ABSTRACT

Alzheimer's disease (AD) is characterized by the buildup of insoluble aggregated amyloid-ß protein (Aß) into plaques that accumulate between the neural cells in the brain. AD is the sixth leading cause of death in the United States and is the only cause of death among the top ten that cannot currently be treated or cured (Alzheimer's Association, 2011; Selkoe, 1996). Researchers have focused on developing small molecules and peptides to prevent Aß aggregation; however, while some compounds appear promising in vitro, the research has not resulted in a viable therapeutic treatment. We previously reported a peptoid-based mimic (JPT1) of the peptide KLVFF (residues 16-20 of Aß) that modulates Aß40 aggregation, specifically reducing the total number of fibrillar, ß-sheet structured aggregates formed. In this study, we investigate two new variants of JPT1 that probe the importance of aromatic side chain placement (JPT1s) and side chain chirality (JPT1a). Both JPT1s and JPT1a modulate Aß40 aggregation by reducing total ß-sheet aggregates. However, JPT1a also has a pronounced effect on the morphology of fibrillar Aß40 aggregates. These results suggest that Aß40 aggregation may follow a different pathway in the presence of peptoids with different secondary structures. A better understanding of the interactions between peptoids and Aß will allow for improved design of AD treatments.


Subject(s)
Amyloid beta-Peptides/metabolism , Amyloid/metabolism , Peptide Fragments/metabolism , Peptoids/analogs & derivatives , Peptoids/pharmacology , Protein Aggregates/drug effects , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amino Acid Sequence , Amyloid/antagonists & inhibitors , Amyloid/ultrastructure , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/pharmacology , Amyloid beta-Peptides/ultrastructure , Humans , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Peptide Fragments/ultrastructure , Stereoisomerism
7.
Org Biomol Chem ; 11(27): 4459-64, 2013 Jul 21.
Article in English | MEDLINE | ID: mdl-23715089

ABSTRACT

Peptoids are a versatile family of oligomeric synthetic molecules that can be customized for many applications. The submonomer solid-phase synthesis of peptoids allows for quick and inexpensive manufacturing and the selection of side chains is nearly limitless. In addition, peptoids that include chiral, aromatic side chains form stable helical secondary structure that leads to the potential for the formation of supramolecular assemblies. The effects of water solubility, helical content, charge placement, and side chain bulk on microsphere formation were studied for seven peptoid sequences. We found that secondary structure and partial water solubility were essential for microsphere formation. In addition, charge placement and side chain bulk affect both the ability to form microspheres and the diameter of the microspheres.


Subject(s)
Peptoids/chemistry , Microspheres , Peptoids/chemical synthesis , Protein Structure, Secondary , Solid-Phase Synthesis Techniques , Solubility
8.
PLoS One ; 17(8): e0272169, 2022.
Article in English | MEDLINE | ID: mdl-35917312

ABSTRACT

Microneedle patches are a promising source for transdermal diffusion of macromolecules and are designed to painlessly penetrate the skin. In this study, a biodegradable chitosan microneedle patch to deliver meloxicam for managing pain in cattle was tested. The potential of reuse of the polymeric solution to fabricate the patches, optimization of fabrication, morphological analysis of the microneedle patch and analysis of preservation of the chemical composition after sterilization were evaluated. In-vitro analysis consisted of studying in-vitro penetration mechanical properties, compression testing analysis of microneedle patch, and in-vitro drug release analysis. In-vivo studies were performed to analyze the dissolution capability of the microneedle patch. Results regarding the physical characteristics, chemical composition, and mechanical properties confirmed that rheological properties of the chitosan solution, present significant differences over time, demonstrating that reusing the solution on the fourth day results in failure patches. Morphological characteristics and chemical composition studies revealed that the process of sterilization (ethylene oxide gas) needed for implanting the patches into the skin did not affect the properties of microneedle patches. In-vitro studies showed that approximately 33.02 ± 3.88% of the meloxicam was released over 7 days. A full penetration of the microneedles into the skin can be obtained by applying approximately 3.2 N. In-vivo studies demonstrated that microneedle patches were capable of swelling and dissolving, exhibiting a dissolution percentage of more than 50% of the original height of microneedle after 7 days. No abnormal tissue, swelling, or inflammation was observed in the implanted area. The results of this work show that chitosan biodegradable microneedle patches may be useful to deliver meloxicam to improve pain management of cattle with positive effects for commercial manufacturing.


Subject(s)
Chitosan , Administration, Cutaneous , Animals , Cattle , Chitosan/chemistry , Drug Delivery Systems/methods , Meloxicam/pharmacology , Needles , Pain/drug therapy , Pain/veterinary , Pain Management , Skin , Transdermal Patch
9.
Biochim Biophys Acta ; 1798(9): 1663-78, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20441770

ABSTRACT

Hydrophobic lung surfactant proteins B and C (SP-B and SP-C) are critical for normal respiration in vertebrates, and each comprises specific structural attributes that enable the surface-tension-reducing ability of the lipid-protein mixture in lung surfactant. The difficulty in obtaining pure SP-B and SP-C on a large scale has hindered efforts to develop a non-animal-derived surfactant replacement therapy for respiratory distress. Although peptide-based SP-C mimics exhibit similar activity to the natural protein, helical peptide-based mimics of SP-B benefit from dimeric structures. To determine if in vitro surface activity improvements in a mixed lipid film could be garnered without creating a dimerized structural motif, a helical and cationic peptoid-based SP-B mimic was modified by SP-C-like N-terminus alkylation with octadecylamine. "Hybridized" mono- and dialkylated peptoids significantly decreased the maximum surface tension of the lipid film during cycling on the pulsating bubble surfactometer relative to the unalkylated variant. Peptoids were localized in the fluid phase of giant unilamellar vesicle lipid bilayers, as has been described for SP-B and SP-C. Using Langmuir-Wilhelmy surface balance epifluorescence imaging (FM) and atomic force microscopy (AFM), only lipid-alkylated peptoid films revealed micro- and nanostructures closely resembling films containing SP-B. AFM images of lipid-alkylated peptoid films showed gel condensed-phase domains surrounded by a distinct phase containing "nanosilo" structures believed to enhance re-spreading of submonolayer material. N-terminus alkylation may be a simple, effective method for increasing lipid affinity and surface activity of single-helix SP-B mimics.


Subject(s)
Lipoylation , Pulmonary Surfactant-Associated Protein B/chemistry , Pulmonary Surfactant-Associated Protein C/chemistry , Circular Dichroism , Lipid Bilayers/chemistry , Microscopy, Atomic Force , Microscopy, Fluorescence , Spectrophotometry, Ultraviolet , Surface Properties , Temperature
10.
Stat Appl Genet Mol Biol ; 9: Article 14, 2010.
Article in English | MEDLINE | ID: mdl-20196749

ABSTRACT

Nuisance factors in a protein-array study add obfuscating variation to spot intensity measurements, diminishing the accuracy and precision of protein concentration predictions. The effects of nuisance factors may be reduced by design of experiments, and by estimating and then subtracting nuisance effects. Estimated nuisance effects also inform about the quality of the study and suggest refinements for future studies.We demonstrate a method to reduce nuisance effects by incorporating a non-interfering internal calibration in the study design and its complemental analysis of variance. We illustrate this method by applying a chip-level internal calibration in a biomarker discovery study. The variability of sample intensity estimates was reduced 16% to 92% with a median of 58%; confidence interval widths were reduced 8% to 70% with a median of 35%. Calibration diagnostics revealed processing nuisance trends potentially related to spot print order and chip location on a slide. The accuracy and precision of a protein-array study may be increased by incorporating a non-interfering internal calibration. Internal calibration modeling diagnostics improve confidence in study results and suggest process steps that may need refinement. Though developed for our protein-array studies, this internal calibration method is applicable to other targeted array-based studies.


Subject(s)
Protein Array Analysis/statistics & numerical data , Analysis of Variance , Biostatistics , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/statistics & numerical data , Humans , Models, Statistical , Protein Array Analysis/methods
11.
J Biomech ; 121: 110381, 2021 05 24.
Article in English | MEDLINE | ID: mdl-33845356

ABSTRACT

Peptoids as an extracellular matrix (ECM) material is gaining importance in in vitro neuronal cell culture studies due to their biocompatibility, self-assembling structure, and stability. Mechanotransduction between a neuronal cell and an ECM is mediated by neuronal cell receptors such as integrin and neural cellular adhesion molecule. In this study, using molecular dynamics, we investigate the interaction energies between peptoid and neuronal cell receptors, and also study the effect of peptoid bundle size. We investigate the interaction surface between peptoid bundles and neuronal cell receptors, integrin and neural cellular adhesion molecule, using the solvent accessible surface area method to find the influence of hydrophobic and hydrophilic residues of the peptoid chain. We find the free energy landscape using the umbrella sampling method and then evaluate the potential mean force (PMF) and unbinding force during the dissociation between peptoid bundles and neuronal cell receptors. We find that the peptoid bundles have a higher affinity for the neuronal cell receptors, however increasing the size of peptoid bundles increases the affinity for integrin and neural cell adhesion molecule. PMF data for peptoid and neuronal cell receptor dissociation indicates that binding force increases as the size of the peptoid bundle increases. The higher binding strength during peptoid and neuronal cell receptors are due to the hydrophobic residue cluster area in the binding region. These findings will provide a better insight into using peptoid as an ECM.


Subject(s)
Peptoids , Hydrophobic and Hydrophilic Interactions , Ligands , Mechanotransduction, Cellular , Molecular Dynamics Simulation
12.
Bioinformatics ; 25(12): 1566-7, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19346326

ABSTRACT

SUMMARY: ELISA-BASE is an open source database for capturing, organizing and analyzing enzyme-linked immunosorbent assay (ELISA) microarray data. ELISA-BASE is an extension of the BioArray Software Environment (BASE) database system. AVAILABILITY: http://www.pnl.gov/statistics/ProMAT/ELISA-BASE.stm.


Subject(s)
Computational Biology/methods , Enzyme-Linked Immunosorbent Assay/methods , Oligonucleotide Array Sequence Analysis/methods , Software , Databases, Genetic , User-Computer Interface
13.
Appl Biochem Biotechnol ; 191(2): 824-837, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31872336

ABSTRACT

The development of low fouling membranes to minimize protein adsorption has relevance in various biomedical applications. Here, electrically neutral peptoids containing 2-methoxyethyl glycine (NMEG) side chains were attached to polysulfone hollow fiber membranes via polydopamine. The number of side chains and grafting density were varied to determine the effect on coating properties and the ability to prevent fouling. NMEG peptoid coatings have high hydrophilicity compared to unmodified polysulfone membranes. The extent of biofouling was evaluated using bovine serum albumin, as well as platelet adhesion. The results suggest that both the number of side chains and grafting density play a role in the surface properties that drive biofouling. Protein adsorption decreased with increasing peptoid grafting density and is lowest above a critical grafting density specific to peptoid chain length. Our findings show that the optimization of grafting density and hydration of the surface are important factors for achieving the desired antifouling performance.


Subject(s)
Membranes, Artificial , Peptoids/chemistry , Polymers/chemistry , Sulfones/chemistry , Adsorption , Biofouling/prevention & control , Blood Platelets , Indoles , Serum Albumin, Bovine/chemistry , Surface Properties
14.
Methods Mol Biol ; 520: 143-50, 2009.
Article in English | MEDLINE | ID: mdl-19381952

ABSTRACT

Enzyme-linked immunosorbent assay (ELISA) microarrays promise to be a powerful tool for the detection and validation of disease biomarkers. ELISA microarrays are capable of simultaneous detection of many proteins using a small sample volume. Although there are many potential pitfalls to the use of ELISA microarrays, these can be avoided by careful planning of experiments. In this chapter we describe a high-throughput protocol for processing ELISA microarrays that will result in reliable and reproducible data.


Subject(s)
Antigens/blood , Enzyme-Linked Immunosorbent Assay/methods , Protein Array Analysis/methods , Humans
15.
Proteomics ; 8(11): 2199-210, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18452230

ABSTRACT

Sandwich ELISA microarrays have great potential for validating disease biomarkers. Each ELISA relies on robust-affinity reagents that retain activity when immobilized on a solid surface or when labeled for detection. Single-chain antibodies (scFv) are affinity reagents that have greater potential for high-throughput production than traditional IgG. Unfortunately, scFv are typically less active than IgG following immobilization on a solid surface and not always suitable for use in sandwich ELISAs. We therefore investigated different immobilization strategies and scFv constructs to determine a more robust strategy for using scFv as ELISA reagents. Two promising strategies emerged from these studies: (i) the precapture of epitope-tagged scFv using an antiepitope antibody and (ii) the direct printing of a thioredoxin (TRX)/scFv fusion protein on glass slides. Both strategies improved the stability of immobilized scFv and increased the sensitivity of the scFv ELISA microarray assays, although the antiepitope precapture method introduced a risk of reagent transfer. Using the direct printing method, we show that scFv against prostate-specific antigen (PSA) are highly specific when tested against 21 different IgG-based assays. In addition, the scFv microarray PSA assay gave comparable quantitative results (R(2) = 0.95) to a commercial 96-well ELISA when tested using human serum samples. In addition, we find that TRX-scFv fusions against epidermal growth factor and toxin X have good LOD. Overall, these results suggest that minor modifications of the scFv construct are sufficient to produce reagents that are suitable for use in multiplex assay systems.


Subject(s)
Antibodies/chemistry , Enzyme-Linked Immunosorbent Assay/instrumentation , Enzyme-Linked Immunosorbent Assay/methods , Proteomics/methods , Animals , Cell Separation , Epidermal Growth Factor/chemistry , Epitopes/chemistry , Humans , Immunoglobulin Fragments/chemistry , Immunoglobulin G/chemistry , Immunoglobulin Variable Region/chemistry , Mice , Protein Array Analysis/methods , Proteins/chemistry , Thioredoxins/chemistry
16.
Chem Phys Lipids ; 217: 43-50, 2018 12.
Article in English | MEDLINE | ID: mdl-30391486

ABSTRACT

Cell function is tied to the interactions that occur within and across the cell membrane. Therefore, understanding membrane-affiliated interactions is important to many biomedical applications. Advancing the body of knowledge about these interactions will lead to discoveries in biomarker detection and therapeutic targets for disease detection and treatment. Model membrane systems are an effective way to study membrane proteins for such discoveries, allowing for stable protein structure and maintaining native activity. Bicelles, disc-shaped lipid bilayers created by combining long- and short-chain phospholipids, are the model membrane system of focus in this study. Bicelles are accessible from both sides and have a wide size range, which makes them attractive for studying membrane interactions without affecting function. In this work, bicelles were functionalized with peptoids to alter the edge chemistry. Peptoids are suitable for this application because of the large diversity of available side chain chemistries that can be easily incorporated in a sequence-specific manner. The peptoid sequence consists of three functional regions to promote insertion into the edge of bicelles. The insertion sequence at the C-terminus contains two alkyl chains and two hydrophobic, chiral aromatic groups that anchor into the bicelle edge. The facially amphipathic helix contains chiral aromatic groups on one side that interact with the lipid tails and positively charged groups on the other side, which interact with the lipid head groups. Thiol groups are included at the N-terminus to allow for visualization of peptoid location in the bicelle. Bicelle morphology and size were assessed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Peptoid location in the bicelle was determined by attachment of gold nanoparticles, which confirmed preferential incorporation of the peptoid into the bicelle edge with 82% specificity. Additionally, the peptoid-functionalized bicelles are of similar size and morphology to non-functionalized bicelles. Results from this study show that peptoid-functionalized bicelles are a promising model membrane system with potential applications in biosensors or bioseparations.


Subject(s)
Lipid Bilayers/chemistry , Peptoids/chemistry , Circular Dichroism , Dynamic Light Scattering , Gold/chemistry , Hydrophobic and Hydrophilic Interactions , Liposomes/chemistry , Metal Nanoparticles/chemistry , Microscopy, Electron, Transmission
17.
Front Biosci ; 12: 3956-64, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17485349

ABSTRACT

Enzyme-linked immunosorbent assay (ELISA) microarrays promise to be a powerful tool for the detection of disease biomarkers. The original technology for printing ELISA microarray chips and capturing antibodies on slides was derived from the DNA microarray field. However, due to the need to maintain antibody structure and function when immobilized, surface chemistries used for DNA microarrays are not always appropriate for ELISA microarrays. In order to identify better surface chemistries for antibody capture, a number of commercial companies and academic research groups have developed new slide types that could improve antibody function in microarray applications. In this review we compare and contrast the commercially available slide chemistries, as well as highlight some promising recent advances in the field.


Subject(s)
Antibodies/immunology , Surface Properties , Enzyme-Linked Immunosorbent Assay
18.
Colloids Surf B Biointerfaces ; 57(1): 37-55, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17287113

ABSTRACT

A crucial aspect of developing a functional, biomimetic lung surfactant (LS) replacement is the selection of the synthetic lipid mixture and surfactant proteins (SPs) or suitable mimics thereof. Studies elucidating the roles of different lipids and surfactant proteins in natural LS have provided critical information necessary for the development of synthetic LS replacements that offer performance comparable to the natural material. In this study, the in vitro surface-active behaviors of peptide- and peptoid-based mimics of the lung surfactant proteins, SP-B and SP-C, were investigated using three different lipid formulations. The lipid mixtures were chosen from among those commonly used for the testing and characterization of SP mimics--(1) dipalmitoyl phosphatidylcholine:palmitoyloleoyl phosphatidylglycerol 7:3 (w/w) (PCPG), (2) dipalmitoyl phosphatidylcholine:palmitoyloleoyl phosphatidylglycerol:palmitic acid 68:22:9 (w/w) (TL), and (3) dipalmitoyl phosphatidylcholine:palmitoyloleoyl phosphatidylcholine:palmitoyloleoyl phosphatidylglycerol:palmitoyloleoyl phosphatidylethanolamine:palmitoyloleoyl phosphatidylserine:cholesterol 16:10:3:1:3:2 (w/w) (IL). The lipid mixtures and lipid/peptide or lipid/peptoid formulations were characterized in vitro using a Langmuir-Wilhelmy surface balance, fluorescent microscopic imaging of surface film morphology, and a pulsating bubble surfactometer. Results show that the three lipid formulations exhibit significantly different surface-active behaviors, both in the presence and absence of SP mimics, with desirable in vitro biomimetic behaviors being greatest for the TL formulation. Specifically, the TL formulation is able to reach low-surface tensions at physiological temperature as determined by dynamic PBS and LWSB studies, and dynamic PBS studies show this to occur with a minimal amount of compression, similar to natural LS.


Subject(s)
Phospholipids/chemistry , Pulmonary Surfactant-Associated Protein B/chemistry , Pulmonary Surfactant-Associated Protein C/chemistry , Pulmonary Surfactants/chemistry , Humans , Infant, Newborn , Microscopy, Fluorescence , Molecular Mimicry , Peptides/chemistry , Phenylglyoxal/analogs & derivatives , Phenylglyoxal/chemistry , Respiratory Distress Syndrome, Newborn/metabolism , Surface Properties
19.
Colloids Surf B Biointerfaces ; 149: 23-29, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27716528

ABSTRACT

Biofouling is a persistent problem for membranes exposed to blood or other complex biological fluids, affecting surface structure and hindering performance. In this study, a peptoid with 2-methoxyethyl (NMEG5) side chains was immobilized on polysulfone hollow fiber membranes to prevent protein fouling. The successful attachment of NMEG5 to the polysulfone surface was confirmed by X-ray photoelectron spectroscopy and an increase in hydrophilicity was confirmed by contact angle analysis. The NMEG5-modified surface was found to resist fouling with bovine serum albumin, lysozyme, and adsorbed significantly less fibrinogen as compared with other published low-fouling surfaces. Due to the low fouling nature and increased biocompatibility of the NMEG5 coated membranes, they have potential applicability in numerous biomedical applications including artificial lungs and hemodialysis.


Subject(s)
Biofouling/prevention & control , Peptidomimetics/chemical synthesis , Polymers/chemistry , Sulfones/chemistry , Adsorption/drug effects , Alkylation , Fibrinogen/chemistry , Hydrophobic and Hydrophilic Interactions , Membranes, Artificial , Muramidase/chemistry , Peptidomimetics/pharmacology , Photoelectron Spectroscopy , Polymers/pharmacology , Serum Albumin, Bovine/chemistry , Sulfones/pharmacology , Surface Properties
20.
ACS Chem Neurosci ; 5(7): 552-8, 2014 Jul 16.
Article in English | MEDLINE | ID: mdl-24689364

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia and the sixth leading cause of death in the United States. Plaques composed of aggregated amyloid-beta protein (Aß) accumulate between the neural cells in the brain and are associated with dementia and cellular death. Many strategies have been investigated to prevent Aß self-assembly into disease-associated ß-sheet amyloid aggregates; however, a promising therapeutic has not yet been identified. In this study, a peptoid-based mimic of the peptide KLVFF (residues 16-20 of Aß) was tested for its ability to modulate Aß aggregation. Peptoid JPT1 includes chiral, aromatic side chains to induce formation of a stable helical secondary structure that allows for greater interaction between the aromatic side chains and the cross ß-sheet of Aß. JPT1 was found to modulate Aß40 aggregation, specifically decreasing lag time to ß-sheet aggregate formation as well as the total number of fibrillar, ß-sheet structured aggregates formed. These results suggest that peptoids may be able to limit the formation of Aß aggregates that are associated with AD.


Subject(s)
Amyloid beta-Peptides/chemistry , Peptide Fragments/chemistry , Peptoids/chemistry , Benzothiazoles , Binding, Competitive , Circular Dichroism , Fluorescence , Immunoblotting , Protein Structure, Secondary , Thiazoles/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL