Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Glob Chang Biol ; 29(12): 3271-3284, 2023 06.
Article in English | MEDLINE | ID: mdl-36924241

ABSTRACT

At large scales, the mechanisms underpinning stability in natural communities may vary in importance due to changes in species composition, mean abundance, and species richness. Here we link species characteristics (niche positions) and community characteristics (richness and abundance) to evaluate the importance of stability mechanisms in 156 butterfly communities monitored across three European countries and spanning five bioclimatic regions. We construct niche-based hierarchical structural Bayesian models to explain first differences in abundance, population stability, and species richness between the countries, and then explore how these factors impact community stability both directly and indirectly (via synchrony and population stability). Species richness was partially explained by the position of a site relative to the niches of the species pool, and species near the centre of their niche had higher average population stability. The differences in mean abundance, population stability, and species richness then influenced how much variation in community stability they explained across the countries. We found, using variance partitioning, that community stability in Finnish communities was most influenced by community abundance, whereas this aspect was unimportant in Spain with species synchrony explaining most variation; the UK was somewhat intermediate with both factors explaining variation. Across all countries, the diversity-stability relationship was indirect with species richness reducing synchrony which increased community stability, with no direct effects of species richness. Our results suggest that in natural communities, biogeographical variation observed in key drivers of stability, such as population abundance and species richness, leads to community stability being limited by different factors and that this can partially be explained due to the niche characteristics of the European butterfly assemblage.


Subject(s)
Butterflies , Ecosystem , Animals , Biodiversity , Bayes Theorem , Europe
2.
Ecol Indic ; 146: 109866, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36777177

ABSTRACT

Extensively managed grasslands are globally recognized for their high biodiversity value. Over the past century, a continuous loss and degradation of grassland habitats has been observed across Europe that is mainly attributable to agricultural intensification and land abandonment. Particularly insects have suffered from the loss of grassland habitats due to land-use change and the decrease in habitat quality, either due to an increase in livestock density, higher mowing frequency, and an increase in nitrogen fertilization, or by abandonment. However, only a few studies have used nationwide datasets to analyse the effects of land cover and land-use intensity on insects. It further remains largely unexplored how these effects are modulated by species traits, i.e. habitat specialisation and mobility. Using nationwide butterfly data originating from the German Butterfly Monitoring Scheme, we investigated the effect of three indicators related to land cover and agricultural land-use intensity on species richness as well as trait composition of butterfly communities. Based on agricultural census data at the municipality scale, we calculated the share of permanent grasslands (measure of habitat availability), the total livestock density (proxy for organic fertilization) and the livestock density of domestic herbivores (proxy for management intensity in grasslands) within a 2 km buffer surrounding each butterfly transect. To analyse the relationships between butterflies and indicators of land cover and land-use intensity, we applied generalised linear mixed effect models. We found a negative relationship between butterfly species richness and the livestock density of domestic herbivores. Further, the ratio of butterfly generalist to specialist species shifted towards generalists and the size of butterflies increased with higher herbivore livestock density, indicating a shift in communities towards mobile habitat generalists. Our results are in accordance with previous studies carried out across smaller geographic extents, highlighting the importance of low herbivore livestock densities to halt the loss of pollinating insects and safeguard biodiversity and associated ecosystem services in agricultural landscapes. We here demonstrate that indicators based on livestock distribution data at the municipality scale can provide insights into processes and spatial diversity patterns of butterflies at the national level. Further, we highlight potentials and limitations of using agricultural census data to quantify and assess effects of land cover and land-use intensity on butterflies, and make recommendations for further research needs.

3.
Glob Chang Biol ; 28(9): 2846-2874, 2022 05.
Article in English | MEDLINE | ID: mdl-35098619

ABSTRACT

The two most urgent and interlinked environmental challenges humanity faces are climate change and biodiversity loss. We are entering a pivotal decade for both the international biodiversity and climate change agendas with the sharpening of ambitious strategies and targets by the Convention on Biological Diversity and the United Nations Framework Convention on Climate Change. Within their respective Conventions, the biodiversity and climate interlinked challenges have largely been addressed separately. There is evidence that conservation actions that halt, slow or reverse biodiversity loss can simultaneously slow anthropogenic mediated climate change significantly. This review highlights conservation actions which have the largest potential for mitigation of climate change. We note that conservation actions have mainly synergistic benefits and few antagonistic trade-offs with climate change mitigation. Specifically, we identify direct co-benefits in 14 out of the 21 action targets of the draft post-2020 global biodiversity framework of the Convention on Biological Diversity, notwithstanding the many indirect links that can also support both biodiversity conservation and climate change mitigation. These relationships are context and scale-dependent; therefore, we showcase examples of local biodiversity conservation actions that can be incentivized, guided and prioritized by global objectives and targets. The close interlinkages between biodiversity, climate change mitigation, other nature's contributions to people and good quality of life are seldom as integrated as they should be in management and policy. This review aims to re-emphasize the vital relationships between biodiversity conservation actions and climate change mitigation in a timely manner, in support to major Conferences of Parties that are about to negotiate strategic frameworks and international goals for the decades to come.


Subject(s)
Conservation of Natural Resources , Quality of Life , Biodiversity , Climate Change , Ecosystem , Humans
4.
Ecol Appl ; 32(3): e2560, 2022 04.
Article in English | MEDLINE | ID: mdl-35112756

ABSTRACT

Biological control services of agroecosystems depend on the functional diversity of species traits. However, the relationship between arthropod traits and landscape heterogeneity is still poorly understood, especially in tropical rice agroecosystems, which harbor a high diversity of often specialized species. We investigated how landscape heterogeneity, measured by three metrics of landscape composition and configuration, influenced body size, functional group composition, dispersal ability, and vertical distribution of rice arthropods in the Philippines. We found that landscape composition and configuration acted to filter arthropod traits in tropical rice agroecosystems. Landscape diversity and rice habitat fragmentation were the two main gradients influencing rice-arthropod traits, indicating that different rice arthropods have distinct habitat requirements. Whereas small parasitoids and species mostly present in the rice canopy were favored in landscapes with high compositional heterogeneity, predators and medium-sized species occupying the base of the rice plant, including planthoppers, mostly occurred in highly fragmented rice habitats. We demonstrate the importance of landscape heterogeneity as an ecological filter for rice arthropods, identifying how the different components of landscape heterogeneity selected for or against specific functional traits. However, the contrasting effects of landscape parameters on different groups of natural enemies indicate that not all beneficial rice arthropods can be promoted at the same time when using a single land management strategy. Increasing compositional heterogeneity in rice landscapes can promote parasitoids but may also negatively affect predators. Future research should focus on identifying trade-offs between fragmented rice habitats and structurally diverse landscapes to maximize the presence of multiple groups of beneficial arthropods.


Subject(s)
Arthropods , Oryza , Animals , Biodiversity , Ecosystem
5.
Nature ; 540(7632): 220-229, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27894123

ABSTRACT

Wild and managed pollinators provide a wide range of benefits to society in terms of contributions to food security, farmer and beekeeper livelihoods, social and cultural values, as well as the maintenance of wider biodiversity and ecosystem stability. Pollinators face numerous threats, including changes in land-use and management intensity, climate change, pesticides and genetically modified crops, pollinator management and pathogens, and invasive alien species. There are well-documented declines in some wild and managed pollinators in several regions of the world. However, many effective policy and management responses can be implemented to safeguard pollinators and sustain pollination services.


Subject(s)
Conservation of Natural Resources/trends , Crop Production , Environmental Policy/trends , Insecta/physiology , Pollination , Vertebrates/physiology , Animals , Bees/physiology , Butterflies/physiology , Climate Change , Crop Production/economics , Crops, Agricultural/genetics , Crops, Agricultural/physiology , Ecosystem , Humans , Introduced Species , Pesticides/adverse effects , Pesticides/toxicity , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/genetics , Population Dynamics
6.
BMC Ecol ; 20(1): 42, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32762674

ABSTRACT

The seventh BMC Ecology competition attracted entries from talented ecologists from around the world. Together, they showcase the beauty and diversity of life on our planet as well as providing an insight into the biological interactions found in nature. This editorial celebrates the winning images as selected by the Editor of BMC Ecology and senior members of the journal's editorial board. Enjoy!


Subject(s)
Ecology
7.
Conserv Biol ; 33(5): 1187-1192, 2019 10.
Article in English | MEDLINE | ID: mdl-30868645

ABSTRACT

Human activities are accelerating global biodiversity change and have resulted in severely threatened ecosystem services. A large proportion of terrestrial biodiversity is harbored by soil, but soil biodiversity has been omitted from many global biodiversity assessments and conservation actions, and understanding of global patterns of soil biodiversity remains limited. In particular, the extent to which hotspots and coldspots of aboveground and soil biodiversity overlap is not clear. We examined global patterns of these overlaps by mapping indices of aboveground (mammals, birds, amphibians, vascular plants) and soil (bacteria, fungi, macrofauna) biodiversity that we created using previously published data on species richness. Areas of mismatch between aboveground and soil biodiversity covered 27% of Earth's terrestrial surface. The temperate broadleaf and mixed forests biome had the highest proportion of grid cells with high aboveground biodiversity but low soil biodiversity, whereas the boreal and tundra biomes had intermediate soil biodiversity but low aboveground biodiversity. While more data on soil biodiversity are needed, both to cover geographic gaps and to include additional taxa, our results suggest that protecting aboveground biodiversity may not sufficiently reduce threats to soil biodiversity. Given the functional importance of soil biodiversity and the role of soils in human well-being, soil biodiversity should be considered further in policy agendas and conservation actions by adapting management practices to sustain soil biodiversity and considering soil biodiversity when designing protected areas.


Disparidades Mundiales entre la Biodiversidad Sobre y Bajo el Suelo Resumen Las actividades humanas están acelerando el cambio en la biodiversidad mundial y han tenido como resultado unos servicios ambientales severamente amenazados. Una gran proporción de la biodiversidad terrestre está albergada en el suelo, pero la biodiversidad de este ha sido omitida de varias evaluaciones mundiales de biodiversidad y de las acciones de conservación, además de que el entendimiento de los patrones mundiales de la biodiversidad del suelo permanece limitado; particularmente, la extensión del traslape entre los puntos fríos y calientes de biodiversidad sobre y bajo suelo no está clara. Examinamos los patrones mundiales de estos traslapes mapeando los índices de biodiversidad sobre el suelo (mamíferos, aves, anfibios y plantas vasculares) y bajo el suelo (bacterias, hongos y macrofauna) que creamos con datos previamente publicados de la riqueza de especies. Las áreas de disparidad entre la biodiversidad sobre y bajo el suelo cubrieron el 27% de la superficie terrestre del planeta. El bioma de los bosques templados de plantas frondosas y mixtas tuvo la proporción más alta de celdas de cuadrícula con una biodiversidad alta sobre el suelo, pero baja para en el subsuelo, mientras que los biomas boreales y de la tundra tuvieron una biodiversidad intermedia bajo el suelo, pero baja para el sobre suelo. Aunque se requieren más datos sobre la biodiversidad del suelo, tanto para cubrir los vacíos geográficos como para incluir a taxones adiciones, nuestros resultados sugieren que la protección a la biodiversidad sobre el suelo puede no reducir suficientemente las amenazas para la biodiversidad del suelo. Dada la importancia funcional de la biodiversidad del suelo y el papel de los suelos en el bienestar humano, se debería considerar a la biodiversidad del suelo mucho más en las agendas políticas y en las acciones de conservación, adaptando a las prácticas de manejo para que mantengan a la biodiversidad del suelo y la consideren cuando designen áreas protegidas.


Subject(s)
Conservation of Natural Resources , Ecosystem , Animals , Biodiversity , Forests , Humans , Soil
8.
Oecologia ; 190(4): 913-926, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31300926

ABSTRACT

How species respond to environmental change is a fundamental question in ecology and species traits can help to tackle this question. In this study, we analyze how the functional structure of species assemblages changes with selected environmental variables along an elevational gradient. In particular, we used species traits of local butterfly communities (body size, voltinism, overwintering stages, and host specificity) in a national nature reserve in China to assess the impacts of temperature, net primary productivity, and land use. Our results show that productivity, measured as NDVI, had a stronger influence on the functional community structure of butterflies than temperature. Within the butterfly assemblages, net primary productivity mainly affected body size and supported few but large species. Length of vegetation period demonstrated dominating effects on the functional structure of local butterfly assemblages. However, an observed increase in dietary generalists with longer vegetation periods contradicted expectations based on niche breadth hypothesis, that more stable conditions should favor specialists. Furthermore, the general positive impact of vegetation period on species abundances differed considerably among functional groups. Only the group containing species hibernating as egg decreased with the length of vegetation period. Our results suggest that trait associations are instructive to explain environment-herbivore relationships, that resource availability can predominantly influence the functional composition of herbivore assemblages, and that conservation priority should be given to specialist butterfly species overwintering as egg, especially in the face of global warming.


Subject(s)
Butterflies , Animals , Body Size , China , Ecosystem
9.
BMC Ecol ; 19(1): 11, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30845928

ABSTRACT

The sixth BMC Ecology Image Competition received more than 145 photographs from talented ecologists around the world, showcasing the amazing biodiversity, natural beauty and biological interactions found in nature. In this editorial, we showcase the winning images, as selected by our guest judge, Professor Zhigang Jiang from the Institute of Zoology of the Chinese Academy of Sciences, with help from the journal's editorial board. Enjoy!


Subject(s)
Ecology , Photography
10.
Nature ; 552(7685): 334, 2017 Dec.
Article in English | MEDLINE | ID: mdl-32094685
11.
Nature ; 552(7685): 334, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29293217
12.
Ecol Lett ; 20(5): 673-689, 2017 05.
Article in English | MEDLINE | ID: mdl-28346980

ABSTRACT

Worldwide, human appropriation of ecosystems is disrupting plant-pollinator communities and pollination function through habitat conversion and landscape homogenisation. Conversion to agriculture is destroying and degrading semi-natural ecosystems while conventional land-use intensification (e.g. industrial management of large-scale monocultures with high chemical inputs) homogenises landscape structure and quality. Together, these anthropogenic processes reduce the connectivity of populations and erode floral and nesting resources to undermine pollinator abundance and diversity, and ultimately pollination services. Ecological intensification of agriculture represents a strategic alternative to ameliorate these drivers of pollinator decline while supporting sustainable food production, by promoting biodiversity beneficial to agricultural production through management practices such as intercropping, crop rotations, farm-level diversification and reduced agrochemical use. We critically evaluate its potential to address and reverse the land use and management trends currently degrading pollinator communities and potentially causing widespread pollination deficits. We find that many of the practices that constitute ecological intensification can contribute to mitigating the drivers of pollinator decline. Our findings support ecological intensification as a solution to pollinator declines, and we discuss ways to promote it in agricultural policy and practice.


Subject(s)
Agriculture , Biota , Conservation of Natural Resources , Crops, Agricultural/physiology , Insecta/physiology , Pollination , Animals
14.
Nature ; 538(7626): 459, 2016 10 27.
Article in English | MEDLINE | ID: mdl-27786207
15.
BMC Ecol ; 17(1): 28, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28818045

ABSTRACT

For the fifth year, BMC Ecology is proud to present the winning images from our annual image competition. The 2017 edition received entries by talented shutterbug-ecologists from across the world, showcasing research that is increasing our understanding of ecosystems worldwide and the beauty and diversity of life on our planet. In this editorial we showcase the winning images, as chosen by our Editorial Board and guest judge Chris Darimont, as well as our selection of highly commended images. Enjoy!


Subject(s)
Photography , Animals , Awards and Prizes , Ecology , Ecosystem , Humans , Photography/classification
16.
Proc Biol Sci ; 283(1833)2016 06 29.
Article in English | MEDLINE | ID: mdl-27335419

ABSTRACT

Animal-mediated pollination is required for the reproduction of the majority of angiosperms, and pollinators are therefore essential for ecosystem functioning and the economy. Two major threats to insect pollinators are anthropogenic land-use change and the spread of pathogens, whose effects may interact to impact pollination. Here, we investigated the relative effects on the ecosystem service of pollination of (i) land-use change brought on by agriculture and urbanization as well as (ii) the prevalence of pollinator parasites, using experimental insect pollinator-dependent plant species in natural pollinator communities. We found that pollinator habitat (i.e. availability of nesting resources for ground-nesting bees and local flower richness) was strongly related to flower visitation rates at the local scale and indirectly influenced plant pollination success. At the landscape scale, pollination was positively related to urbanization, both directly and indirectly via elevated visitation rates. Bumblebees were the most abundant pollinator group visiting experimental flowers. Prevalence of trypanosomatids, such as the common bumblebee parasite Crithidia bombi, was higher in urban compared with agricultural areas, a relationship which was mediated through higher Bombus abundance. Yet, we did not find any top-down, negative effects of bumblebee parasitism on pollination. We conclude that urban areas can be places of high transmission of both pollen and pathogens.


Subject(s)
Bees/physiology , Bees/parasitology , Ecosystem , Pollination , Urbanization , Animals , Crithidia , Flowers
17.
BMC Ecol ; 16: 34, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27503341

ABSTRACT

The 2016 BMC Ecology Image Competition marked another celebration of the astounding biodiversity, natural beauty, and biological interactions documented by talented ecologists worldwide. For our fourth annual competition, we welcomed guest judge Dr. Matthew Palmer of Columbia University, who chose the winning image from over 140 entries. In this editorial, we highlight the award winning images along with a selection of highly commended honorable mentions.


Subject(s)
Awards and Prizes , Photography , Biodiversity , Conservation of Natural Resources , Ecology , Photography/standards
19.
BMC Ecol ; 15: 22, 2015 Jul 29.
Article in English | MEDLINE | ID: mdl-26219534

ABSTRACT

For the third time, BMC Ecology is delighted to announce the winners of our Image Competition. This year featured entries from all over the world and showcased not only the creativity and talent of the participants, but also the exquisite beauty and diversity of our planet. We are pleased to present the winning selections of the editorial board of the journal and guest judge Dr. Ana Luz Porzecanski, as well as some highly commended images that are sure to impress.


Subject(s)
Awards and Prizes , Ecology , Photography
20.
Nature ; 496(7444): 169, 2013 Apr 11.
Article in English | MEDLINE | ID: mdl-23579667
SELECTION OF CITATIONS
SEARCH DETAIL