Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Stem Cell Reports ; 19(6): 922-932, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38788723

ABSTRACT

Stemformatics.org has been serving the stem cell research community for over a decade, by making it easy for users to find and view transcriptional profiles of pluripotent and adult stem cells and their progeny, comparing data derived from multiple tissues and derivation methods. In recent years, Stemformatics has shifted its focus from curation to collation and integration of public data with shared phenotypes. It now hosts several integrated expression atlases based on human myeloid cells, which allow for easy cross-dataset comparisons and discovery of emerging cell subsets and activation properties. The atlases are designed for external users to benchmark their own data against a common reference. Here, we use case studies to illustrate how to find and explore previously published datasets of relevance and how in-vitro-derived cells can be transcriptionally matched to cells in the integrated atlas to highlight phenotypes of interest.


Subject(s)
Benchmarking , Myeloid Cells , Humans , Myeloid Cells/metabolism , Myeloid Cells/cytology , Computational Biology/methods , Gene Expression Profiling/methods , Transcriptome , Databases, Genetic
2.
Genome Biol Evol ; 13(11)2021 11 05.
Article in English | MEDLINE | ID: mdl-34788801

ABSTRACT

Chimpanzees (Pan troglodytes) are a genetically diverse species, consisting of four highly distinct subspecies. As humans' closest living relative, they have been a key model organism in the study of human evolution, and comparisons of human and chimpanzee transcriptomes have been widely used to characterize differences in gene expression levels that could underlie the phenotypic differences between the two species. However, the subspecies from which these transcriptomic data sets have been derived is not recorded in metadata available in the public NCBI Sequence Read Archive (SRA). Furthermore, labeling of RNA sequencing (RNA-seq) samples is for the most part inconsistent across studies, and the true number of individuals from whom transcriptomic data are available is difficult to ascertain. Thus, we have evaluated genetic diversity at the subspecies and individual level in 486 public RNA-seq samples available in the SRA, spanning the vast majority of public chimpanzee transcriptomic data. Using multiple population genetics approaches, we find that nearly all samples (96.6%) have some degree of Western chimpanzee ancestry. At the individual donor level, we identify multiple samples that have been repeatedly analyzed across different studies and identify a total of 135 genetically distinct individuals within our data, a number that falls to 89 when we exclude likely first- and second-degree relatives. Altogether, our results show that current transcriptomic data from chimpanzees are capturing low levels of genetic diversity relative to what exists in wild chimpanzee populations. These findings provide important context to current comparative transcriptomics research involving chimpanzees.


Subject(s)
Hominidae , Pan troglodytes , Animals , Genetic Variation , Genetics, Population , Hominidae/genetics , Humans , Pan troglodytes/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL