Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Cell ; 168(1-2): 172-185.e15, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28086090

ABSTRACT

Pathogenic Vibrio cholerae remains a major human health concern. V. cholerae has a characteristic curved rod morphology, with a longer outer face and a shorter inner face. The mechanism and function of this curvature were previously unknown. Here, we identify and characterize CrvA, the first curvature determinant in V. cholerae. CrvA self-assembles into filaments at the inner face of cell curvature. Unlike traditional cytoskeletons, CrvA localizes to the periplasm and thus can be considered a periskeletal element. To quantify how curvature forms, we developed QuASAR (quantitative analysis of sacculus architecture remodeling), which measures subcellular peptidoglycan dynamics. QuASAR reveals that CrvA asymmetrically patterns peptidoglycan insertion rather than removal, causing more material insertions into the outer face than the inner face. Furthermore, crvA is quorum regulated, and CrvA-dependent curvature increases at high cell density. Finally, we demonstrate that CrvA promotes motility in hydrogels and confers an advantage in host colonization and pathogenesis.


Subject(s)
Vibrio cholerae/cytology , Vibrio cholerae/pathogenicity , Amino Acid Sequence , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Locomotion , Mice , Peptidoglycan/metabolism , Periplasm/metabolism , Sequence Alignment , Vibrio cholerae/genetics , Vibrio cholerae/metabolism , Virulence
2.
Nature ; 609(7926): 255-264, 2022 09.
Article in English | MEDLINE | ID: mdl-36071192

ABSTRACT

Liquid-liquid phase separation and related phase transitions have emerged as generic mechanisms in living cells for the formation of membraneless compartments or biomolecular condensates. The surface between two immiscible phases has an interfacial tension, generating capillary forces that can perform work on the surrounding environment. Here we present the physical principles of capillarity, including examples of how capillary forces structure multiphase condensates and remodel biological substrates. As with other mechanisms of intracellular force generation, for example, molecular motors, capillary forces can influence biological processes. Identifying the biomolecular determinants of condensate capillarity represents an exciting frontier, bridging soft matter physics and cell biology.


Subject(s)
Biomolecular Condensates , Biomolecular Condensates/chemistry , Cell Biology , Phase Transition
3.
Nat Methods ; 19(4): 486-495, 2022 04.
Article in English | MEDLINE | ID: mdl-35379947

ABSTRACT

The desire to understand how the brain generates and patterns behavior has driven rapid methodological innovation in tools to quantify natural animal behavior. While advances in deep learning and computer vision have enabled markerless pose estimation in individual animals, extending these to multiple animals presents unique challenges for studies of social behaviors or animals in their natural environments. Here we present Social LEAP Estimates Animal Poses (SLEAP), a machine learning system for multi-animal pose tracking. This system enables versatile workflows for data labeling, model training and inference on previously unseen data. SLEAP features an accessible graphical user interface, a standardized data model, a reproducible configuration system, over 30 model architectures, two approaches to part grouping and two approaches to identity tracking. We applied SLEAP to seven datasets across flies, bees, mice and gerbils to systematically evaluate each approach and architecture, and we compare it with other existing approaches. SLEAP achieves greater accuracy and speeds of more than 800 frames per second, with latencies of less than 3.5 ms at full 1,024 × 1,024 image resolution. This makes SLEAP usable for real-time applications, which we demonstrate by controlling the behavior of one animal on the basis of the tracking and detection of social interactions with another animal.


Subject(s)
Deep Learning , Algorithms , Animals , Behavior, Animal , Head , Machine Learning , Mice , Social Behavior
4.
Proc Natl Acad Sci U S A ; 119(20): e2119434119, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35561220

ABSTRACT

The ability of eukaryotic cells to differentiate surface stiffness is fundamental for many processes like stem cell development. Bacteria were previously known to sense the presence of surfaces, but the extent to which they could differentiate stiffnesses remained unclear. Here we establish that the human pathogen Pseudomonas aeruginosa actively measures surface stiffness using type IV pili (TFP). Stiffness sensing is nonlinear, as induction of the virulence factor regulator is peaked with stiffness in a physiologically important range between 0.1 kPa (similar to mucus) and 1,000 kPa (similar to cartilage). Experiments on surfaces with distinct material properties establish that stiffness is the specific biophysical parameter important for this sensing. Traction force measurements reveal that the retraction of TFP is capable of deforming even stiff substrates. We show how slow diffusion of the pilin PilA in the inner membrane yields local concentration changes at the base of TFP during extension and retraction that change with substrate stiffness. We develop a quantitative biomechanical model that explains the transcriptional response to stiffness. A competition between PilA diffusion in the inner membrane and a loss/gain of monomers during TFP extension/retraction produces substrate stiffness-dependent dynamics of the local PilA concentration. We validated this model by manipulating the ATPase activity of the TFP motors to change TFP extension and retraction velocities and PilA concentration dynamics, altering the stiffness response in a predictable manner. Our results highlight stiffness sensing as a shared behavior across biological kingdoms, revealing generalizable principles of environmental sensing across small and large cells.


Subject(s)
Fimbriae Proteins , Fimbriae, Bacterial , Pseudomonas aeruginosa , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/physiology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/pathogenicity , Surface Properties , Transcription, Genetic
5.
Phys Rev Lett ; 132(4): 048401, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38335334

ABSTRACT

The explosion of data on animal behavior in more natural contexts highlights the fact that these behaviors exhibit correlations across many timescales. However, there are major challenges in analyzing these data: records of behavior in single animals have fewer independent samples than one might expect. In pooling data from multiple animals, individual differences can mimic long-ranged temporal correlations; conversely, long-ranged correlations can lead to an overestimate of individual differences. We suggest an analysis scheme that addresses these problems directly, apply this approach to data on the spontaneous behavior of walking flies, and find evidence for scale-invariant correlations over nearly three decades in time, from seconds to one hour. Three different measures of correlation are consistent with a single underlying scaling field of dimension Δ=0.180±0.005.


Subject(s)
Behavior, Animal , Individuality , Animals
6.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article in English | MEDLINE | ID: mdl-34266946

ABSTRACT

In the limit of zero Reynolds number (Re), swimmers propel themselves exploiting a series of nonreciprocal body motions. For an artificial swimmer, a proper selection of the power source is required to drive its motion, in cooperation with its geometric and mechanical properties. Although various external fields (magnetic, acoustic, optical, etc.) have been introduced, electric fields are rarely utilized to actuate such swimmers experimentally in unbounded space. Here we use uniform and static electric fields to demonstrate locomotion of a biflagellated sphere at low Re via Quincke rotation. These Quincke swimmers exhibit three different forms of motion, including a self-oscillatory state due to elastohydrodynamic-electrohydrodynamic interactions. Each form of motion follows a distinct trajectory in space. Our experiments and numerical results demonstrate a method to generate, and potentially control, the locomotion of artificial flagellated swimmers.


Subject(s)
Locomotion/physiology , Models, Biological , Hydrodynamics , Motion , Rheology , Rotation
7.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: mdl-33593905

ABSTRACT

Type IV pili (TFP) function through cycles of extension and retraction. The coordination of these cycles remains mysterious due to a lack of quantitative measurements of multiple features of TFP dynamics. Here, we fluorescently label TFP in the pathogen Pseudomonas aeruginosa and track full extension and retraction cycles of individual filaments. Polymerization and depolymerization dynamics are stochastic; TFP are made at random times and extend, pause, and retract for random lengths of time. TFP can also pause for extended periods between two extension or two retraction events in both wild-type cells and a slowly retracting PilT mutant. We developed a biophysical model based on the stochastic binding of two dedicated extension and retraction motors to the same pilus machine that predicts the observed features of the data with no free parameters. We show that only a model in which both motors stochastically bind and unbind to the pilus machine independent of the piliation state of the machine quantitatively explains the experimentally observed pilus production rate. In experimental support of this model, we show that the abundance of the retraction motor dictates the pilus production rate and that PilT is bound to pilus machines even in their unpiliated state. Together, the strong quantitative agreement of our model with a variety of experiments suggests that the entire repetitive cycle of pilus extension and retraction is coordinated by the competition of stochastic motor binding to the pilus machine, and that the retraction motor is the major throttle for pilus production.


Subject(s)
Fimbriae Proteins/metabolism , Fimbriae, Bacterial/metabolism , Pseudomonas aeruginosa/cytology , Pseudomonas aeruginosa/metabolism , Fimbriae Proteins/chemistry , Fluorescent Dyes/chemistry , Maleimides/chemistry , Microscopy, Fluorescence , Models, Biological , Molecular Motor Proteins/metabolism , Stochastic Processes
8.
Phys Rev Lett ; 130(21): 218402, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37295076

ABSTRACT

The bacterium Myxococcus xanthus produces multicellular droplets called fruiting bodies when starved. These structures form initially through the active dewetting of a vegetative biofilm into surface-associated droplets. This motility-driven aggregation is succeeded by a primitive developmental process in which cells in the droplets mature into nonmotile spores. Here, we use atomic force microscopy to probe the mechanics of these droplets throughout their formation. Using a combination of time- and frequency-domain rheological experiments, we characterize and develop a simple model of the linear viscoelasticity of these aggregates. We then use this model to quantify how cellular behaviors predominant at different developmental times-motility during the dewetting phase and cellular sporulation during later development-manifest as decreased droplet viscosity and increased elasticity, respectively.


Subject(s)
Myxococcus xanthus , Spores, Bacterial , Bacterial Proteins
9.
Phys Rev Lett ; 131(17): 178401, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37955476

ABSTRACT

Spiroplasma is a unique, helical bacterium that lacks a cell wall and swims using propagating helix hand inversions. These deformations are likely driven by a set of cytoskeletal filaments, but how remains perplexing. Here, we probe the underlying mechanism using a model where either twist or bend drive spiroplasma's chirality inversions. We show that Spiroplasma should wrap into plectonemes at different values of the length and external viscosity, depending on the mechanism. Then, by experimentally measuring the bending modulus of Spiroplasma and if and when plectonemes form, we show that Spiroplasma's helix hand inversions are likely driven by bending.


Subject(s)
Spiroplasma , Cytoskeleton , Viscosity
10.
PLoS Comput Biol ; 18(2): e1009867, 2022 02.
Article in English | MEDLINE | ID: mdl-35202388

ABSTRACT

Aging affects almost all aspects of an organism-its morphology, its physiology, its behavior. Isolating which biological mechanisms are regulating these changes, however, has proven difficult, potentially due to our inability to characterize the full repertoire of an animal's behavior across the lifespan. Using data from fruit flies (D. melanogaster) we measure the full repertoire of behaviors as a function of age. We observe a sexually dimorphic pattern of changes in the behavioral repertoire during aging. Although the stereotypy of the behaviors and the complexity of the repertoire overall remains relatively unchanged, we find evidence that the observed alterations in behavior can be explained by changing the fly's overall energy budget, suggesting potential connections between metabolism, aging, and behavior.


Subject(s)
Drosophila melanogaster , Drosophila , Aging , Animals , Behavior, Animal , Drosophila/physiology , Drosophila melanogaster/physiology , Longevity
11.
Nat Methods ; 16(1): 117-125, 2019 01.
Article in English | MEDLINE | ID: mdl-30573820

ABSTRACT

The need for automated and efficient systems for tracking full animal pose has increased with the complexity of behavioral data and analyses. Here we introduce LEAP (LEAP estimates animal pose), a deep-learning-based method for predicting the positions of animal body parts. This framework consists of a graphical interface for labeling of body parts and training the network. LEAP offers fast prediction on new data, and training with as few as 100 frames results in 95% of peak performance. We validated LEAP using videos of freely behaving fruit flies and tracked 32 distinct points to describe the pose of the head, body, wings and legs, with an error rate of <3% of body length. We recapitulated reported findings on insect gait dynamics and demonstrated LEAP's applicability for unsupervised behavioral classification. Finally, we extended the method to more challenging imaging situations and videos of freely moving mice.


Subject(s)
Behavior, Animal , Deep Learning , Drosophila melanogaster/physiology , Neural Networks, Computer , Pattern Recognition, Automated/methods , Algorithms , Animals , Automation , Computer Graphics , Gait , Locomotion , Male , Mice , User-Computer Interface
12.
PLoS Comput Biol ; 16(10): e1008230, 2020 10.
Article in English | MEDLINE | ID: mdl-33021989

ABSTRACT

Social behaviors are ubiquitous and crucial to an animal's survival and success. The behaviors an animal performs in a social setting are affected by internal factors, inputs from the environment, and interactions with others. To quantify social behaviors, we need to measure both the stochastic nature of the behavior of isolated individuals and how this behavioral repertoire changes as a function of the environment and interactions between individuals. We probed the behavior of male and female fruit flies in a circular arena as individuals and within all possible pairings. By combining measurements of the animals' position in the arena with an unsupervised analysis of their behaviors, we define the effects of position in the environment and the presence of a partner on locomotion, grooming, singing, and other behaviors that make up an animal's repertoire. We find that geometric context tunes behavioral preference, pairs of animals synchronize their behavioral preferences across shared trials, and paired individuals display signatures of behavioral mimicry.


Subject(s)
Behavior, Animal/physiology , Drosophila melanogaster/physiology , Social Behavior , Algorithms , Animals , Female , Grooming/physiology , Image Processing, Computer-Assisted , Locomotion/physiology , Male , Unsupervised Machine Learning , Video Recording
14.
Proc Natl Acad Sci U S A ; 114(28): 7266-7271, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28655845

ABSTRACT

From colony formation in bacteria to wound healing and embryonic development in multicellular organisms, groups of living cells must often move collectively. Although considerable study has probed the biophysical mechanisms of how eukaryotic cells generate forces during migration, little such study has been devoted to bacteria, in particular with regard to the question of how bacteria generate and coordinate forces during collective motion. This question is addressed here using traction force microscopy. We study two distinct motility mechanisms of Myxococcus xanthus, namely, twitching and gliding. For twitching, powered by type-IV pilus retraction, we find that individual cells exert local traction in small hotspots with forces on the order of 50 pN. Twitching bacterial groups also produce traction hotspots, but with forces around 100 pN that fluctuate rapidly on timescales of <1.5 min. Gliding, the second motility mechanism, is driven by lateral transport of substrate adhesions. When cells are isolated, gliding produces low average traction on the order of 1 Pa. However, traction is amplified approximately fivefold in groups. Advancing protrusions of gliding cells push, on average, in the direction of motion. Together, these results show that the forces generated during twitching and gliding have complementary characters, and both forces have higher values when cells are in groups.


Subject(s)
Bacterial Proteins/metabolism , Movement , Myxococcus xanthus/physiology , Bacterial Adhesion , Biofilms , Fimbriae, Bacterial/physiology , Microscopy , Models, Biological , Motion , Pressure , Stress, Mechanical , Time Factors
15.
Phys Rev Lett ; 122(24): 248102, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31322369

ABSTRACT

Combining high-resolution single cell tracking experiments with numerical simulations, we show that starvation-induced fruiting body formation in Myxococcus xanthus is a phase separation driven by cells that tune their motility over time. The phase separation can be understood in terms of cell density and a dimensionless Péclet number that captures cell motility through speed and reversal frequency. Our work suggests that M. xanthus takes advantage of a self-driven nonequilibrium phase transition that can be controlled at the single cell level.


Subject(s)
Myxococcus xanthus/physiology , Cell Movement/physiology , Myxococcus xanthus/chemistry , Myxococcus xanthus/cytology , Phase Transition
16.
Soft Matter ; 15(30): 6224-6236, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31334524

ABSTRACT

Mechanical properties of the extracellular matrix are important determinants of cellular migration in diverse processes, such as immune response, wound healing, and cancer metastasis. Moreover, recent studies indicate that even bacterial surface colonization can depend on the mechanics of the substrate. Here, we focus on physical mechanisms that can give rise to substrate-rigidity dependent migration. We study a "twitcher", a cell driven by extension-retraction cycles, to idealize bacteria and perhaps eukaryotic cells that employ a slip-stick mode of motion. The twitcher is asymmetric and always pulls itself forward at its front. Analytical calculations show that the migration speed of a twitcher depends non-linearly on substrate rigidity. For soft substrates, deformations do not lead to build-up of significant force and the migration speed is therefore determined by stochastic adhesion unbinding. For rigid substrates, forced adhesion rupture determines the migration speed. Depending on the force-sensitivity of front and rear adhesions, forced bond rupture implies an increase or a decrease of the migration speed. A requirement for the occurrence of rigidity-dependent stick-slip migration is a "sticky" substrate, with binding rates being an order of magnitude larger than unbinding rates in absence of force. Computer simulations show that small stall forces of the driving machinery lead to a reduced movement on high rigidities, regardless of force-sensitivities of bonds. The simulations also confirm the occurrence of rigidity-dependent migration speed in a generic model for slip-stick migration of cells on a sticky substrate.


Subject(s)
Bacteria , Models, Biological , Movement , Bacterial Physiological Phenomena , Computer Simulation
17.
Proc Natl Acad Sci U S A ; 113(42): 11943-11948, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27702892

ABSTRACT

Even the simplest of animals exhibit behavioral sequences with complex temporal dynamics. Prominent among the proposed organizing principles for these dynamics has been the idea of a hierarchy, wherein the movements an animal makes can be understood as a set of nested subclusters. Although this type of organization holds potential advantages in terms of motion control and neural circuitry, measurements demonstrating this for an animal's entire behavioral repertoire have been limited in scope and temporal complexity. Here, we use a recently developed unsupervised technique to discover and track the occurrence of all stereotyped behaviors performed by fruit flies moving in a shallow arena. Calculating the optimally predictive representation of the fly's future behaviors, we show that fly behavior exhibits multiple time scales and is organized into a hierarchical structure that is indicative of its underlying behavioral programs and its changing internal states.


Subject(s)
Behavior, Animal , Drosophila , Algorithms , Animals , Drosophila melanogaster , Models, Theoretical
18.
Proc Natl Acad Sci U S A ; 113(19): 5269-74, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27114556

ABSTRACT

Alternative pre-mRNA splicing (AS) is a critical regulatory mechanism that operates extensively in the nervous system to produce diverse protein isoforms. Fruitless AS isoforms have been shown to influence male courtship behavior, but the underlying mechanisms are unknown. Using genome-wide approaches and quantitative behavioral assays, we show that the P-element somatic inhibitor (PSI) and its interaction with the U1 small nuclear ribonucleoprotein complex (snRNP) control male courtship behavior. PSI mutants lacking the U1 snRNP-interacting domain (PSIΔAB mutant) exhibit extended but futile mating attempts. The PSIΔAB mutant results in significant changes in the AS patterns of ∼1,200 genes in the Drosophila brain, many of which have been implicated in the regulation of male courtship behavior. PSI directly regulates the AS of at least one-third of these transcripts, suggesting that PSI-U1 snRNP interactions coordinate the behavioral network underlying courtship behavior. Importantly, one of these direct targets is fruitless, the master regulator of courtship. Thus, PSI imposes a specific mode of regulatory control within the neuronal circuit controlling courtship, even though it is broadly expressed in the fly nervous system. This study reinforces the importance of AS in the control of gene activity in neurons and integrated neuronal circuits, and provides a surprising link between a pleiotropic pre-mRNA splicing pathway and the precise control of successful male mating behavior.


Subject(s)
Alternative Splicing/physiology , Drosophila Proteins/physiology , Drosophila/physiology , Genes, Insect/physiology , Nuclear Proteins/physiology , RNA-Binding Proteins/physiology , Ribonucleoprotein, U1 Small Nuclear/physiology , Sexual Behavior, Animal/physiology , Animals , Courtship , Female , Male , Nerve Tissue Proteins/physiology , Sex Characteristics
19.
Proc Natl Acad Sci U S A ; 113(8): E1074-81, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26712014

ABSTRACT

The ability to acquire large-scale recordings of neuronal activity in awake and unrestrained animals is needed to provide new insights into how populations of neurons generate animal behavior. We present an instrument capable of recording intracellular calcium transients from the majority of neurons in the head of a freely behaving Caenorhabditis elegans with cellular resolution while simultaneously recording the animal's position, posture, and locomotion. This instrument provides whole-brain imaging with cellular resolution in an unrestrained and behaving animal. We use spinning-disk confocal microscopy to capture 3D volumetric fluorescent images of neurons expressing the calcium indicator GCaMP6s at 6 head-volumes/s. A suite of three cameras monitor neuronal fluorescence and the animal's position and orientation. Custom software tracks the 3D position of the animal's head in real time and two feedback loops adjust a motorized stage and objective to keep the animal's head within the field of view as the animal roams freely. We observe calcium transients from up to 77 neurons for over 4 min and correlate this activity with the animal's behavior. We characterize noise in the system due to animal motion and show that, across worms, multiple neurons show significant correlations with modes of behavior corresponding to forward, backward, and turning locomotion.


Subject(s)
Behavior, Animal , Caenorhabditis elegans/metabolism , Calcium/metabolism , Molecular Imaging/methods , Neurons/metabolism , Animals
20.
PLoS Comput Biol ; 13(5): e1005517, 2017 05.
Article in English | MEDLINE | ID: mdl-28545068

ABSTRACT

Advances in optical neuroimaging techniques now allow neural activity to be recorded with cellular resolution in awake and behaving animals. Brain motion in these recordings pose a unique challenge. The location of individual neurons must be tracked in 3D over time to accurately extract single neuron activity traces. Recordings from small invertebrates like C. elegans are especially challenging because they undergo very large brain motion and deformation during animal movement. Here we present an automated computer vision pipeline to reliably track populations of neurons with single neuron resolution in the brain of a freely moving C. elegans undergoing large motion and deformation. 3D volumetric fluorescent images of the animal's brain are straightened, aligned and registered, and the locations of neurons in the images are found via segmentation. Each neuron is then assigned an identity using a new time-independent machine-learning approach we call Neuron Registration Vector Encoding. In this approach, non-rigid point-set registration is used to match each segmented neuron in each volume with a set of reference volumes taken from throughout the recording. The way each neuron matches with the references defines a feature vector which is clustered to assign an identity to each neuron in each volume. Finally, thin-plate spline interpolation is used to correct errors in segmentation and check consistency of assigned identities. The Neuron Registration Vector Encoding approach proposed here is uniquely well suited for tracking neurons in brains undergoing large deformations. When applied to whole-brain calcium imaging recordings in freely moving C. elegans, this analysis pipeline located 156 neurons for the duration of an 8 minute recording and consistently found more neurons more quickly than manual or semi-automated approaches.


Subject(s)
Brain/cytology , Brain/diagnostic imaging , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/methods , Neuroimaging/methods , Neurons/cytology , Algorithms , Animals , Caenorhabditis elegans , Cluster Analysis
SELECTION OF CITATIONS
SEARCH DETAIL