Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Nature ; 565(7741): 654-658, 2019 01.
Article in English | MEDLINE | ID: mdl-30675060

ABSTRACT

Diffuse gliomas are the most common malignant brain tumours in adults and include glioblastomas and World Health Organization (WHO) grade II and grade III tumours (sometimes referred to as lower-grade gliomas). Genetic tumour profiling is used to classify disease and guide therapy1,2, but involves brain surgery for tissue collection; repeated tumour biopsies may be necessary for accurate genotyping over the course of the disease3-10. While the detection of circulating tumour DNA (ctDNA) in the blood of patients with primary brain tumours remains challenging11,12, sequencing of ctDNA from the cerebrospinal fluid (CSF) may provide an alternative way to genotype gliomas with lower morbidity and cost13,14. We therefore evaluated the representation of the glioma genome in CSF from 85 patients with gliomas who underwent a lumbar puncture because they showed neurological signs or symptoms. Here we show that tumour-derived DNA was detected in CSF from 42 out of 85 patients (49.4%) and was associated with disease burden and adverse outcome. The genomic landscape of glioma in the CSF included a broad spectrum of genetic alterations and closely resembled the genomes of tumour biopsies. Alterations that occur early during tumorigenesis, such as co-deletion of chromosome arms 1p and 19q (1p/19q codeletion) and mutations in the metabolic genes isocitrate dehydrogenase 1 (IDH1) or IDH21,2, were shared in all matched ctDNA-positive CSF-tumour pairs, whereas growth factor receptor signalling pathways showed considerable evolution. The ability to monitor the evolution of the glioma genome through a minimally invasive technique could advance the clinical development and use of genotype-directed therapies for glioma, one of the most aggressive human cancers.


Subject(s)
Evolution, Molecular , Glioma/cerebrospinal fluid , Glioma/genetics , Liquid Biopsy , Mutation , Genes, Neoplasm/genetics , Genome, Human/genetics , Genomics , Glioblastoma/cerebrospinal fluid , Glioblastoma/genetics , Glioblastoma/pathology , Glioma/pathology , Humans , Neoplasm Grading
2.
Lancet Oncol ; 24(10): 1073-1082, 2023 10.
Article in English | MEDLINE | ID: mdl-37666264

ABSTRACT

BACKGROUND: The addition of nivolumab to chemotherapy improves survival in patients with advanced oesophagogastric (oesophageal, gastric, or gastro-oesophageal junction) adenocarcinoma; however, outcomes remain poor. We assessed the safety and activity of regorafenib in combination with nivolumab and chemotherapy in the first-line treatment of advanced oesophagogastric adenocarcinoma. METHODS: This investigator-initiated, single-arm, phase 2 trial in adult patients (aged ≥18 years) with previously untreated, HER2-negative, metastatic oesophagogastric adenocarcinoma was done at the Memorial Sloan Kettering Cancer Center (New York, NY, USA). Eligible patients had measurable disease or non-measurable disease that was evaluable (defined by Response Evaluation Criteria in Solid Tumours [RECIST] version 1.1) and Eastern Cooperative Oncology Group performance status of 0 or 1. Patients received FOLFOX chemotherapy (fluorouracil [400 mg/m2 bolus followed by 2400 mg/m2 over 48 h], leucovorin [400 mg/m2], and oxaliplatin [85 mg/m2]) and nivolumab (240 mg) intravenously on days 1 and 15, and oral regorafenib (80 mg) on days 1-21 of a 28-day cycle. Treatment was continued until disease progression (defined by RECIST version 1.1), unacceptable toxicity, or withdrawal of consent. The primary endpoint was 6-month progression-free survival in the per-protocol population (ie, all participants who received a dose of all study treatments). The regimen would be considered worthy of further investigation if at least 24 of 35 patients were progression free at 6 months. Safety was assessed in all participants who received at least one dose of any study treatment. This trial is registered with ClinicalTrials.gov, NCT04757363, and is now complete. FINDINGS: Between Feb 11, 2021, and May 4, 2022, 39 patients were enrolled, received at least one dose of study drug, and were included in safety analyses. 35 patients were evaluable for 6-month progression-free survival. Median age was 57 years (IQR 52-66), nine (26%) patients were women, 26 (74%) were men, 28 (80%) were White, and seven (20%) were Asian. At data cutoff (March 3, 2023), median follow-up was 18·1 months (IQR 12·7-20·4). The primary endpoint was reached, with 25 (71%; 95% CI 54-85) of 35 patients progression free at 6 months. Nine (26%) of 35 patients had disease progression and one (3%) patient died; the death was unrelated to treatment. The most common adverse event of any grade was fatigue (36 [92%] of 39). The most common grade 3 or 4 adverse events were decreased neutrophil count (18 [46%]), hypertension (six [15%]), dry skin, pruritus, or rash (five [13%]), and anaemia (four [10%]). Serious treatment-related adverse events occurred in ten (26%) patients, which were acute kidney injury (three [8%]), hepatotoxicity (two [5%]), sepsis (two [5%]), dry skin, pruritus, or rash (one [3%]), nausea (one [3%]), and gastric perforation (one [3%]). There were no treatment-related deaths. INTERPRETATION: Regorafenib can be safely combined with nivolumab and chemotherapy and showed promising activity in HER2-negative metastatic oesophagogastric cancer. A randomised, phase 3 clinical trial is planned. FUNDING: Bristol Myers Squibb, Bayer and National Institutes of Health/National Cancer Institute.


Subject(s)
Adenocarcinoma , Esophageal Neoplasms , Exanthema , Stomach Neoplasms , Adolescent , Adult , Female , Humans , Male , Middle Aged , Adenocarcinoma/pathology , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Disease Progression , Nivolumab/adverse effects , Pruritus/etiology , Stomach Neoplasms/pathology
3.
Nature ; 518(7538): 240-4, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25409150

ABSTRACT

Broad and deep tumour genome sequencing has shed new light on tumour heterogeneity and provided important insights into the evolution of metastases arising from different clones. There is an additional layer of complexity, in that tumour evolution may be influenced by selective pressure provided by therapy, in a similar fashion to that occurring in infectious diseases. Here we studied tumour genomic evolution in a patient (index patient) with metastatic breast cancer bearing an activating PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha, PI(3)Kα) mutation. The patient was treated with the PI(3)Kα inhibitor BYL719, which achieved a lasting clinical response, but the patient eventually became resistant to this drug (emergence of lung metastases) and died shortly thereafter. A rapid autopsy was performed and material from a total of 14 metastatic sites was collected and sequenced. All metastatic lesions, when compared to the pre-treatment tumour, had a copy loss of PTEN (phosphatase and tensin homolog) and those lesions that became refractory to BYL719 had additional and different PTEN genetic alterations, resulting in the loss of PTEN expression. To put these results in context, we examined six other patients also treated with BYL719. Acquired bi-allelic loss of PTEN was found in one of these patients, whereas in two others PIK3CA mutations present in the primary tumour were no longer detected at the time of progression. To characterize our findings functionally, we examined the effects of PTEN knockdown in several preclinical models (both in cell lines intrinsically sensitive to BYL719 and in PTEN-null xenografts derived from our index patient), which we found resulted in resistance to BYL719, whereas simultaneous PI(3)K p110ß blockade reverted this resistance phenotype. We conclude that parallel genetic evolution of separate metastatic sites with different PTEN genomic alterations leads to a convergent PTEN-null phenotype resistant to PI(3)Kα inhibition.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , PTEN Phosphohydrolase/deficiency , PTEN Phosphohydrolase/genetics , Phosphoinositide-3 Kinase Inhibitors , Thiazoles/pharmacology , Alleles , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Class I Phosphatidylinositol 3-Kinases , Drug Resistance, Neoplasm/drug effects , Female , Humans , Loss of Heterozygosity/drug effects , Loss of Heterozygosity/genetics , Mice , Mice, Nude , PTEN Phosphohydrolase/metabolism , Thiazoles/therapeutic use , Xenograft Model Antitumor Assays
4.
Nature ; 526(7573): 453-7, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26444240

ABSTRACT

Activation of oncogenes by mechanisms other than genetic aberrations such as mutations, translocations, or amplifications is largely undefined. Here we report a novel isoform of the anaplastic lymphoma kinase (ALK) that is expressed in ∼11% of melanomas and sporadically in other human cancer types, but not in normal tissues. The novel ALK transcript initiates from a de novo alternative transcription initiation (ATI) site in ALK intron 19, and was termed ALK(ATI). In ALK(ATI)-expressing tumours, the ATI site is enriched for H3K4me3 and RNA polymerase II, chromatin marks characteristic of active transcription initiation sites. ALK(ATI) is expressed from both ALK alleles, and no recurrent genetic aberrations are found at the ALK locus, indicating that the transcriptional activation is independent of genetic aberrations at the ALK locus. The ALK(ATI) transcript encodes three proteins with molecular weights of 61.1, 60.8 and 58.7 kilodaltons, consisting primarily of the intracellular tyrosine kinase domain. ALK(ATI) stimulates multiple oncogenic signalling pathways, drives growth-factor-independent cell proliferation in vitro, and promotes tumorigenesis in vivo in mouse models. ALK inhibitors can suppress the kinase activity of ALK(ATI), suggesting that patients with ALK(ATI)-expressing tumours may benefit from ALK inhibitors. Our findings suggest a novel mechanism of oncogene activation in cancer through de novo alternative transcription initiation.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Neoplasms/enzymology , Neoplasms/genetics , Receptor Protein-Tyrosine Kinases/genetics , Transcription Initiation, Genetic , Alleles , Anaplastic Lymphoma Kinase , Animals , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic , Female , HEK293 Cells , Histones/chemistry , Histones/metabolism , Humans , Introns/genetics , Isoenzymes/antagonists & inhibitors , Isoenzymes/biosynthesis , Isoenzymes/chemistry , Isoenzymes/genetics , Lysine/metabolism , Methylation , Mice , Molecular Sequence Data , Molecular Weight , NIH 3T3 Cells , Neoplasms/drug therapy , Oncogenes/genetics , Protein Structure, Tertiary/genetics , RNA Polymerase II/metabolism , RNA, Messenger/analysis , RNA, Messenger/genetics , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/biosynthesis , Receptor Protein-Tyrosine Kinases/chemistry , Signal Transduction
5.
Cancer ; 123(7): 1134-1143, 2017 04 01.
Article in English | MEDLINE | ID: mdl-27875625

ABSTRACT

BACKGROUND: Ovarian metastases from colorectal cancer (OM-CRC) often are unresponsive to chemotherapy and are associated with poor survival. To the authors' knowledge, the clinicopathologic and genomic predictors of OM-CRC are poorly characterized and optimal clinical management remains unclear. METHODS: Women with a histopathological diagnosis of OM-CRC who were treated at Memorial Sloan Kettering Cancer Center from 1999 to 2015 were identified. Next-generation somatic mutation profiling (Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets [MSK-IMPACT]) was performed on 38 OM-CRC cases, including 21 matched tumor pairs/trios. Regression models were used to analyze variables associated with progression-free survival and overall survival (OS). RESULTS: Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS), SMAD family member 4 (SMAD4), and neurotrophic receptor tyrosine kinase 1 (NTRK1) mutations were more frequent in cases of OM-CRC than in instances of CRC occurring without OM. SMAD4 and lysine methyltransferase 2D (KMT2D) mutations were associated with reduced OS. Matched multisite tumor sequencing did not identify OM-specific genomic alterations. Of the 195 patients who underwent oophorectomy for OM-CRC (median age, 49 years with a progression-free survival of 9.4 months and an OS of 23 months from oophorectomy), 76% had extraovarian metastasis (EOM). In multivariable analysis, residual disease after surgery (R2 resection) was associated with worse survival. Patients with EOM were less likely to achieve R0/R1 surgical resection status (complete macroscopic resection without clinical/radiological evidence of disease) (48% vs 94%). However, if R0/R1 resection status was achieved, both patients with (35.9 months vs 12 months) and without (43.2 months vs 14.5 months) EOM were found to have better OS. Among 114 patients with R0/R1 resection status, 23 (20%) had no disease recurrence, including 10 patients (9%) with > 3 years of follow-up. CONCLUSIONS: Loss-of-function alterations in SMAD4 are frequent and predictive of worse survival in patients with OM-CRC. Similar to oligometastatic CRC to the lung or liver, surgical resection of OM-CRC is associated with a better outcome only if all macroscopic metastatic disease is resected. Cancer 2017;123:1134-1143. © 2016 American Cancer Society.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Genetic Predisposition to Disease , Ovarian Neoplasms/etiology , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor , Colorectal Neoplasms/mortality , Colorectal Neoplasms/therapy , Combined Modality Therapy/methods , Female , Humans , Kaplan-Meier Estimate , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/mortality , Ovarian Neoplasms/therapy , Prognosis , Proportional Hazards Models , Proto-Oncogene Proteins p21(ras)/genetics , Smad4 Protein/genetics , Treatment Outcome , Tumor Burden , Young Adult
6.
Mod Pathol ; 28(8): 1123-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25975284

ABSTRACT

The biological relevance of histological subtyping of ampullary carcinoma into intestinal vs pancreaticobiliary types remains to be determined. In an effort to molecularly profile these subtypes of ampullary carcinomas, we conducted a two-phase study. In the discovery phase, we identified 18 pancreatobiliary-type ampullary carcinomas and 14 intestinal-type ampullary carcinomas using stringent pathologic criteria and performed next-generation sequencing targeting 279 cancer-associated genes on these tumors. Although the results showed overlapping of genomic alterations between the two subtypes, trends including more frequent KRAS alterations in pancreatobiliary-type ampullary carcinoma (61 vs 29%) and more frequent mutations in APC in intestinal-type ampullary carcinoma (43 vs 17%) were observed. Of the entire cohort of 32 tumors, the most frequently mutated gene was TP53 (n=17); the most frequently amplified gene was ERBB2 (n=5); and the most frequently deleted gene was CDKN2A (n=6). In the second phase of the study, we aimed at validating our observation on ERBB2 and assessed ERBB2 amplification and protein overexpression in a series of 100 ampullary carcinomas. We found that (1) gene amplification and immunohistochemical overexpression of ERBB2 occurred in 13% of all ampullary carcinomas, therefore providing a potential target for anti-HER2 therapy in these tumors; (2) amplification and immunohistochemical expression correlated in all cases, thus indicating that immunohistochemistry could be used to screen tumors; and (3) none of the 14 ERBB2-amplified tumors harbored any downstream driver mutations in KRAS/NRAS, whereas 56% of the cases negative for ERBB2 amplification did, an observation clinically pertinent as downstream mutations may cause primary resistance to inhibition of EGFR family members.


Subject(s)
Ampulla of Vater , Biomarkers, Tumor/genetics , Carcinoma/genetics , Common Bile Duct Neoplasms/genetics , Gene Amplification , Gene Expression Profiling , Receptor, ErbB-2/genetics , Adult , Aged , Aged, 80 and over , Ampulla of Vater/chemistry , Ampulla of Vater/pathology , Biomarkers, Tumor/analysis , Carcinoma/chemistry , Carcinoma/pathology , Common Bile Duct Neoplasms/chemistry , Common Bile Duct Neoplasms/pathology , Cyclin-Dependent Kinase Inhibitor p16/genetics , DNA Mutational Analysis , Female , GTP Phosphohydrolases/genetics , Gene Deletion , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Humans , Immunohistochemistry , In Situ Hybridization , Male , Membrane Proteins/genetics , Middle Aged , Mutation , Oligonucleotide Array Sequence Analysis , Phenotype , Predictive Value of Tests , Proto-Oncogene Proteins p21(ras)/genetics , Receptor, ErbB-2/analysis , Tumor Suppressor Protein p53/genetics , Up-Regulation
7.
Endocr Relat Cancer ; 31(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38252063

ABSTRACT

In advanced pancreatic neuroendocrine neoplasms (PanNEN), there are little data detailing the frequency of genetic alterations identified in cell free DNA (cfDNA), plasma-tissue concordance of detected alterations, and clinical utility of cfDNA. Patients with metastatic PanNENs underwent cfDNA collection in routine practice. Next-generation sequencing (NGS) of cfDNA and matched tissue when available was performed. Clinical actionability of variants was annotated by OncoKB. Thirty-two cfDNA samples were analyzed from 25 patients, the majority who had well-differentiated intermediate grade disease (13/25; 52%). Genomic alterations were detected in 68% of patients and in 66% of all cfDNA samples. The most frequently altered genes were DAXX (28%), TSC2 (24%), MEN1 (24%), ARID1B (20%), ARID1A (12%), and ATRX (12%). Twenty-three out of 25 (92%) patients underwent tumor tissue NGS. Tissue-plasma concordance for select genes was as follows:DAXX (95.7%), ARID1A (91.1%), ATRX (87%), TSC2 (82.6%), MEN1 (69.6%). Potentially actionable alterations were identified in cfDNA of 8 patients, including TSC2 (4; level 3b), ATM (1; level 3b), ARID1A (2; level 4), and KRAS (1; level 4). An ETV6:NTRK fusion detected in tumor tissue was treated with larotrectinib; at progression, sequencing of cfDNA identified an NTRK3 G623R alteration as the acquired mechanism of resistance; the patient enrolled in a clinical trial of a second-generation TRK inhibitor with clinical benefit. In metastatic PanNENs, cfDNA-based NGS identified tumor-associated mutations in 66% of plasma samples with a high level of plasma-tissue agreement in PanNEN-associated genes. Clonal evolution, actionable alterations, and resistance mechanisms were detected through circulating cfDNA genotyping.


Subject(s)
Cell-Free Nucleic Acids , Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Cell-Free Nucleic Acids/genetics , Genomics , Genome , Neuroendocrine Tumors/genetics , Pancreatic Neoplasms/genetics , High-Throughput Nucleotide Sequencing , Mutation
8.
Blood Adv ; 8(4): 846-856, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38147626

ABSTRACT

ABSTRACT: Clonal hematopoiesis (CH) identified by somatic gene variants with variant allele fraction (VAF) ≥ 2% is associated with an increased risk of hematologic malignancy. However, CH defined by a broader set of genotypes and lower VAFs is ubiquitous in older individuals. To improve our understanding of the relationship between CH genotype and risk of hematologic malignancy, we analyzed data from 42 714 patients who underwent blood sequencing as a normal comparator for nonhematologic tumor testing using a large cancer-related gene panel. We cataloged hematologic malignancies in this cohort using natural language processing and manual curation of medical records. We found that some CH genotypes including JAK2, RUNX1, and XPO1 variants were associated with high hematologic malignancy risk. Chronic disease was predicted better than acute disease suggesting the influence of length bias. To better understand the implications of hematopoietic clonality independent of mutational function, we evaluated a set of silent synonymous and noncoding mutations. We found that silent CH, particularly when multiple variants were present or VAF was high, was associated with increased risk of hematologic malignancy. We tracked expansion of CH mutations in 26 hematologic malignancies sequenced with the same platform. JAK2 and TP53 VAF consistently expanded at disease onset, whereas DNMT3A and silent CH VAFs mostly decreased. These data inform the clinical and biological interpretation of CH in the context of nonhematologic cancer.


Subject(s)
Clonal Hematopoiesis , Hematologic Neoplasms , Humans , Aged , Hematopoiesis/genetics , Mutation , Hematologic Neoplasms/epidemiology , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Genotype
9.
Nat Med ; 30(6): 1655-1666, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877116

ABSTRACT

In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGESNV uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGECNV also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGESNV enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition.


Subject(s)
Circulating Tumor DNA , DNA Copy Number Variations , Machine Learning , Neoplasm, Residual , Tumor Burden , Humans , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Neoplasm, Residual/genetics , Whole Genome Sequencing , Neoplasms/genetics , Neoplasms/blood , Neoplasms/therapy , Neoplasms/pathology , Polymorphism, Single Nucleotide , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Colorectal Neoplasms/genetics , Colorectal Neoplasms/blood , Colorectal Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/blood , Lung Neoplasms/pathology
10.
JCO Precis Oncol ; 7: e2300272, 2023 09.
Article in English | MEDLINE | ID: mdl-37769223

ABSTRACT

PURPOSE: Next-generation sequencing (NGS) of tumor-derived, circulating cell-free DNA (cfDNA) may aid in diagnosis, prognostication, and treatment of patients with hepatocellular carcinoma (HCC). The operating characteristics of cfDNA mutational profiling must be determined before routine clinical implementation. METHODS: This was a single-center, retrospective study with the primary objective of defining genomic alterations in circulating cfDNA along with plasma-tissue genotype agreement between NGS of matched tumor samples in patients with advanced HCC. cfDNA was analyzed using a clinically validated 129-gene NGS assay; matched tissue-based NGS was analyzed with a US Food and Drug Administration-authorized NGS tumor assay. RESULTS: Fifty-three plasma samples from 51 patients with histologically confirmed HCC underwent NGS-based cfDNA analysis. Genomic alterations were detected in 92.2% of patients, with the most commonly mutated genes including TERT promoter (57%), TP53 (47%), CTNNB1 (37%), ARID1A (18%), and TSC2 (14%). In total, 37 (73%) patients underwent paired tumor NGS, and concordance was high for mutations observed in patient-matched plasma samples: TERT (83%), TP53 (94%), CTNNB1 (92%), ARID1A (100%), and TSC2 (71%). In 10 (27%) of 37 tumor-plasma samples, alterations were detected by cfDNA analysis that were not detected in the patient-matched tumors. Potentially actionable mutations were identified in 37% of all cases including oncogenic/likely oncogenic alterations in TSC1/2 (18%), BRCA1/2 (8%), and PIK3CA (8%). Higher average variant allele fraction was associated with elevated alpha-fetoprotein, increased tumor volume, and no previous systemic therapy, but did not correlate with overall survival in treatment-naïve patients. CONCLUSION: Tumor mutation profiling of cfDNA in HCC represents an alternative to tissue-based genomic profiling, given the high degree of tumor-plasma NGS concordance; however, genotyping of both blood and tumor may be required to detect all clinically actionable genomic alterations.


Subject(s)
Carcinoma, Hepatocellular , Cell-Free Nucleic Acids , Circulating Tumor DNA , Liver Neoplasms , United States , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , BRCA1 Protein , Retrospective Studies , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Circulating Tumor DNA/genetics , BRCA2 Protein , Cell-Free Nucleic Acids/genetics
11.
Nat Commun ; 14(1): 630, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36746967

ABSTRACT

HER2 mutations are infrequent genomic events in biliary tract cancers (BTCs). Neratinib, an irreversible, pan-HER, oral tyrosine kinase inhibitor, interferes with constitutive receptor kinase activation and has activity in HER2-mutant tumours. SUMMIT is an open-label, single-arm, multi-cohort, phase 2, 'basket' trial of neratinib in patients with solid tumours harbouring oncogenic HER2 somatic mutations (ClinicalTrials.gov: NCT01953926). The primary objective of the BTC cohort, which is now complete, is first objective response rate (ORR) to neratinib 240 mg orally daily. Secondary objectives include confirmed ORR, clinical benefit rate, progression-free survival, duration of response, overall survival, safety and tolerability. Genomic analyses were exploratory. Among 25 treatment-refractory patients (11 cholangiocarcinoma, 10 gallbladder, 4 ampullary cancers), the ORR is 16% (95% CI 4.5-36.1%). The most common HER2 mutations are S310F (n = 11; 48%) and V777L (n = 4; 17%). Outcomes appear worse for ampullary tumours or those with co-occurring oncogenic TP53 and CDKN2A alterations. Loss of amplified HER2 S310F and acquisition of multiple previously undetected oncogenic co-mutations are identified at progression in one responder. Diarrhoea is the most common adverse event, with any-grade diarrhoea in 14 patients (56%). Although neratinib demonstrates antitumour activity in patients with refractory BTC harbouring HER2 mutations, the primary endpoint was not met and combinations may be explored.


Subject(s)
Biliary Tract Neoplasms , Breast Neoplasms , Quinolines , Humans , Female , Receptor, ErbB-2/genetics , Quinolines/pharmacology , Quinolines/therapeutic use , Biliary Tract Neoplasms/drug therapy , Biliary Tract Neoplasms/genetics , Biliary Tract Neoplasms/chemically induced , Diarrhea/chemically induced , Breast Neoplasms/etiology , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Treatment Outcome
12.
Clin Cancer Res ; 29(2): 410-421, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36007103

ABSTRACT

PURPOSE: We sought to determine whether sequencing analysis of circulating cell-free DNA (cfDNA) in patients with prospectively accrued endometrial cancer captures the mutational repertoire of the primary lesion and allows for disease monitoring. EXPERIMENTAL DESIGN: Peripheral blood was prospectively collected from 44 newly diagnosed patients with endometrial cancer over a 24-month period (i.e., baseline, postsurgery, every 6 months after). DNA from the primary endometrial cancers was subjected to targeted next-generation sequencing (NGS) of 468 cancer-related genes, and cfDNA to a high-depth NGS assay of 129 genes with molecular barcoding. Sequencing data were analyzed using validated bioinformatics methods. RESULTS: cfDNA levels correlated with surgical stage in endometrial cancers, with higher levels of cfDNA being present in advanced-stage disease. Mutations in cfDNA at baseline were detected preoperatively in 8 of 36 (22%) patients with sequencing data, all of whom were diagnosed with advanced-stage disease, high tumor volume, and/or aggressive histologic type. Of the 38 somatic mutations identified in the primary tumors also present in the cfDNA assay, 35 (92%) and 38 (100%) were detected at baseline and follow-up, respectively. In 6 patients with recurrent disease, changes in circulating tumor DNA (ctDNA) fraction/variant allele fractions in cfDNA during follow-up closely mirrored disease progression and therapy response, with a lead time over clinically detected recurrence in two cases. The presence of ctDNA at baseline (P < 0.001) or postsurgery (P = 0.014) was significantly associated with reduced progression-free survival. CONCLUSIONS: cfDNA sequencing analysis in patients with endometrial cancer at diagnosis has prognostic value, and serial postsurgery cfDNA analysis enables disease and treatment response monitoring. See related commentary by Grant et al., p. 305.


Subject(s)
Cell-Free Nucleic Acids , Circulating Tumor DNA , Endometrial Neoplasms , Female , Humans , Cell-Free Nucleic Acids/genetics , Circulating Tumor DNA/genetics , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/genetics , Prognosis , Mutation , High-Throughput Nucleotide Sequencing/methods , Biomarkers, Tumor/genetics
13.
Cancer Manag Res ; 11: 7525-7536, 2019.
Article in English | MEDLINE | ID: mdl-31616176

ABSTRACT

The decreasing cost of and increasing capacity of DNA sequencing has led to vastly increased opportunities for population-level genomic studies to discover novel genomic alterations associated with both Mendelian and complex phenotypes. To translate genomic findings clinically, a number of health care institutions have worked collaboratively or individually to initiate precision medicine programs. These precision medicine programs involve designing patient enrollment systems, tracking electronic health records, building biobank repositories, and returning results with actionable matched therapies. As cancer is a paradigm for genetic diseases and new therapies are increasingly tailored to attack genetic susceptibilities in tumors, these precision medicine programs are largely driven by the urgent need to perform genetic profiling on cancer patients in real time. Here, we review the current landscape of precision oncology and highlight challenges to be overcome and examples of benefits to patients. Furthermore, we make suggestions to optimize future precision oncology programs based upon the lessons learned from these "first generation" early adopters.

14.
Oncotarget ; 8(26): 42487-42494, 2017 Jun 27.
Article in English | MEDLINE | ID: mdl-28476018

ABSTRACT

PURPOSE: Anastomotic recurrences (AR) occur in 2-10% of colorectal carcinoma cases after resection of primary tumor (PT). Currently, there are no molecular data investigating their genetic profile and multiple theories exist about their pathogenesis. The aim of our study was to compare the genomic profile of AR to that of the patients' corresponding matched PT and, when available, to a distant metastasis (DM). EXPERIMENTAL DESIGN: Thirty-six tumors from 14 patients were genotyped using a capture-based, next-generation assay to define the mutational status of 341 cancer-associated genes. All patients had R0 resection of their PT and AR occurred 1.1-7.0 years following PT resection. A DM or a second AR was analyzed in 8 patients. All tumors were microsatellite stable except in one patient with Lynch syndrome. RESULTS: A total of 254 somatic mutations were detected including 138 mutations in the microsatellite stable (MSS) cases. The most commonly mutated genes were APC, KRAS, TP53, PIK3CA, ATM and PIK3R1. In all patients with MSS tumors the AR and PT shared between 50-100% of mutations, including mutations in key driver genes, consistent with these tumors being clonally related. Genetic events private to DM were not detected in AR and phylogenetic analysis showed that ARs were more closely related to PT than DM. In the Lynch syndrome patient the PT and AR showed distinct somatic mutations consistent with independent primaries. CONCLUSIONS: ARs are clonally related to PT in sporadic colorectal carcinomas and do not appear to represent seeding of the anastomotic site by distant metastases.


Subject(s)
Clonal Evolution , Colorectal Neoplasms/pathology , Aged , Biomarkers, Tumor , Clonal Evolution/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/surgery , DNA Copy Number Variations , DNA Mutational Analysis , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Mutation , Mutation Rate , Neoplasm Metastasis , Neoplasm Recurrence, Local , Neoplasm Staging
15.
Nat Med ; 23(6): 703-713, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28481359

ABSTRACT

Tumor molecular profiling is a fundamental component of precision oncology, enabling the identification of genomic alterations in genes and pathways that can be targeted therapeutically. The existence of recurrent targetable alterations across distinct histologically defined tumor types, coupled with an expanding portfolio of molecularly targeted therapies, demands flexible and comprehensive approaches to profile clinically relevant genes across the full spectrum of cancers. We established a large-scale, prospective clinical sequencing initiative using a comprehensive assay, MSK-IMPACT, through which we have compiled tumor and matched normal sequence data from a unique cohort of more than 10,000 patients with advanced cancer and available pathological and clinical annotations. Using these data, we identified clinically relevant somatic mutations, novel noncoding alterations, and mutational signatures that were shared by common and rare tumor types. Patients were enrolled on genomically matched clinical trials at a rate of 11%. To enable discovery of novel biomarkers and deeper investigation into rare alterations and tumor types, all results are publicly accessible.


Subject(s)
Biomarkers, Tumor/genetics , DNA, Neoplasm/genetics , Neoplasm Metastasis/genetics , Neoplasms/genetics , Cohort Studies , Data Mining , Feasibility Studies , Female , Genomics , High-Throughput Nucleotide Sequencing , Humans , Male , Mutation , Neoplasms/pathology , Prospective Studies , Sequence Analysis, DNA
16.
J Clin Invest ; 126(3): 1052-66, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26878173

ABSTRACT

BACKGROUND: Poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC) are rare and frequently lethal tumors that so far have not been subjected to comprehensive genetic characterization. METHODS: We performed next-generation sequencing of 341 cancer genes from 117 patient-derived PDTCs and ATCs and analyzed the transcriptome of a representative subset of 37 tumors. Results were analyzed in the context of The Cancer Genome Atlas study (TCGA study) of papillary thyroid cancers (PTC). RESULTS: Compared to PDTCs, ATCs had a greater mutation burden, including a higher frequency of mutations in TP53, TERT promoter, PI3K/AKT/mTOR pathway effectors, SWI/SNF subunits, and histone methyltransferases. BRAF and RAS were the predominant drivers and dictated distinct tropism for nodal versus distant metastases in PDTC. RAS and BRAF sharply distinguished between PDTCs defined by the Turin (PDTC-Turin) versus MSKCC (PDTC-MSK) criteria, respectively. Mutations of EIF1AX, a component of the translational preinitiation complex, were markedly enriched in PDTCs and ATCs and had a striking pattern of co-occurrence with RAS mutations. While TERT promoter mutations were rare and subclonal in PTCs, they were clonal and highly prevalent in advanced cancers. Application of the TCGA-derived BRAF-RAS score (a measure of MAPK transcriptional output) revealed a preserved relationship with BRAF/RAS mutation in PDTCs, whereas ATCs were BRAF-like irrespective of driver mutation. CONCLUSIONS: These data support a model of tumorigenesis whereby PDTCs and ATCs arise from well-differentiated tumors through the accumulation of key additional genetic abnormalities, many of which have prognostic and possible therapeutic relevance. The widespread genomic disruptions in ATC compared with PDTC underscore their greater virulence and higher mortality. FUNDING: This work was supported in part by NIH grants CA50706, CA72597, P50-CA72012, P30-CA008748, and 5T32-CA160001; the Lefkovsky Family Foundation; the Society of Memorial Sloan Kettering; the Byrne fund; and Cycle for Survival.


Subject(s)
Thyroid Carcinoma, Anaplastic/genetics , Thyroid Neoplasms/genetics , Transcriptome , Adult , Aged , Aged, 80 and over , DNA Mutational Analysis , Eukaryotic Initiation Factor-1/genetics , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genome, Human , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Proportional Hazards Models , Proto-Oncogene Proteins B-raf/genetics , Telomerase/genetics , Thyroid Carcinoma, Anaplastic/metabolism , Thyroid Carcinoma, Anaplastic/mortality , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/mortality , Thyroid Neoplasms/pathology , Wnt Signaling Pathway , Young Adult , ras Proteins/genetics
17.
J Clin Oncol ; 34(20): 2404-15, 2016 07 10.
Article in English | MEDLINE | ID: mdl-27161972

ABSTRACT

PURPOSE: Cancer spread to the central nervous system (CNS) often is diagnosed late and is unresponsive to therapy. Mechanisms of tumor dissemination and evolution within the CNS are largely unknown because of limited access to tumor tissue. MATERIALS AND METHODS: We sequenced 341 cancer-associated genes in cell-free DNA from cerebrospinal fluid (CSF) obtained through routine lumbar puncture in 53 patients with suspected or known CNS involvement by cancer. RESULTS: We detected high-confidence somatic alterations in 63% (20 of 32) of patients with CNS metastases of solid tumors, 50% (six of 12) of patients with primary brain tumors, and 0% (zero of nine) of patients without CNS involvement by cancer. Several patients with tumor progression in the CNS during therapy with inhibitors of oncogenic kinases harbored mutations in the kinase target or kinase bypass pathways. In patients with glioma, the most common malignant primary brain tumor in adults, examination of cell-free DNA uncovered patterns of tumor evolution, including temozolomide-associated mutations. CONCLUSION: The study shows that CSF harbors clinically relevant genomic alterations in patients with CNS cancers and should be considered for liquid biopsies to monitor tumor evolution in the CNS.


Subject(s)
Brain Neoplasms/cerebrospinal fluid , DNA, Neoplasm/cerebrospinal fluid , High-Throughput Nucleotide Sequencing/methods , Adult , Aged , Brain Neoplasms/genetics , Cell-Free System , Female , Humans , Male , Middle Aged , Mutation
18.
Cancer Cytopathol ; 123(5): 289-97, 2015 May.
Article in English | MEDLINE | ID: mdl-25655233

ABSTRACT

BACKGROUND: Mutation analysis for personalized treatment has become increasingly important in the management of different types of cancer. The advent of new DNA extraction protocols and sequencing platforms with reduced DNA input requirements might allow the use of cytology specimens for high-throughput mutation analysis. In this study, the authors evaluated the use of effusion fluid for next-generation sequencing-based, multigene mutation profiling. METHODS: Four specimens from each of 5 patients who had at least stage III, high-grade serous ovarian carcinoma were selected: effusion fluid; frozen tumor; formalin-fixed, paraffin embedded tumor; and matched normal blood. Frozen tumors from each patient were previously characterized by The Cancer Genomic Atlas (TCGA). DNA was extracted from all specimens and was sequenced using a custom hybridization capture-based assay. Genomic alterations were compared among all specimens from each patient as well as with mutations reported in TCGA for the same tumors. RESULTS: In total, 17 distinct somatic mutations were identified in the cohort. Ten of 17 mutations were reported in TCGA and were called in all 3 malignant specimens procured from the patients. Of the remaining 7 mutations, 2 were called in all 3 specimens, and the other 5 were sample-specific. Two mutations were detected only in the cytology specimens. Copy number profiles were concordant among the tumors analyzed. CONCLUSIONS: Cytology specimens represent suitable material for high-throughput sequencing, because all mutations described by TCGA were independently identified in the effusion fluid. Differences in mutations detected in samples procured from the same patient may reflect tumor heterogeneity.


Subject(s)
Cystadenocarcinoma, Serous/genetics , DNA, Neoplasm/genetics , Gene Expression Profiling/methods , Genetic Predisposition to Disease , Ovarian Neoplasms/genetics , Aged , Ascitic Fluid/pathology , Case-Control Studies , Cystadenocarcinoma, Serous/pathology , DNA Mutational Analysis , Female , Frozen Sections/methods , Genomics , High-Throughput Nucleotide Sequencing/methods , Humans , Middle Aged , Mutation , Neoplasm Invasiveness/pathology , Neoplasm Staging , Ovarian Neoplasms/pathology , Reference Values , Sampling Studies , Sensitivity and Specificity , Sequence Analysis, DNA , Tissue Embedding/methods
19.
J Mol Diagn ; 17(3): 251-64, 2015 May.
Article in English | MEDLINE | ID: mdl-25801821

ABSTRACT

The identification of specific genetic alterations as key oncogenic drivers and the development of targeted therapies are together transforming clinical oncology and creating a pressing need for increased breadth and throughput of clinical genotyping. Next-generation sequencing assays allow the efficient and unbiased detection of clinically actionable mutations. To enable precision oncology in patients with solid tumors, we developed Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT), a hybridization capture-based next-generation sequencing assay for targeted deep sequencing of all exons and selected introns of 341 key cancer genes in formalin-fixed, paraffin-embedded tumors. Barcoded libraries from patient-matched tumor and normal samples were captured, sequenced, and subjected to a custom analysis pipeline to identify somatic mutations. Sensitivity, specificity, reproducibility of MSK-IMPACT were assessed through extensive analytical validation. We tested 284 tumor samples with previously known point mutations and insertions/deletions in 47 exons of 19 cancer genes. All known variants were accurately detected, and there was high reproducibility of inter- and intrarun replicates. The detection limit for low-frequency variants was approximately 2% for hotspot mutations and 5% for nonhotspot mutations. Copy number alterations and structural rearrangements were also reliably detected. MSK-IMPACT profiles oncogenic DNA alterations in clinical solid tumor samples with high accuracy and sensitivity. Paired analysis of tumors and patient-matched normal samples enables unambiguous detection of somatic mutations to guide treatment decisions.


Subject(s)
DNA Mutational Analysis/methods , High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , DNA/genetics , Genotype , Humans , Mutation , Paraffin Embedding , Reproducibility of Results
20.
Eur Urol ; 68(6): 970-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26278805

ABSTRACT

BACKGROUND: Despite a similar histologic appearance, upper tract urothelial carcinoma (UTUC) and urothelial carcinoma of the bladder (UCB) tumors have distinct epidemiologic and clinicopathologic differences. OBJECTIVE: To investigate whether the differences between UTUC and UCB result from intrinsic biological diversity. DESIGN, SETTING, AND PARTICIPANTS: Tumor and germline DNA from patients with UTUC (n=83) and UCB (n=102) were analyzed using a custom next-generation sequencing assay to identify somatic mutations and copy number alterations in 300 cancer-associated genes. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We described co-mutation patterns and copy number alterations in UTUC. We also compared mutation frequencies in high-grade UTUC (n=59) and high-grade UCB (n=102). RESULTS AND LIMITATIONS: Comparison of high-grade UTUC and UCB revealed significant differences in the prevalence of somatic alterations. Genes altered more commonly in high-grade UTUC included FGFR3 (35.6% vs 21.6%; p=0.065), HRAS (13.6% vs 1.0%; p=0.001), and CDKN2B (15.3% vs 3.9%; p=0.016). Genes less frequently mutated in high-grade UTUC included TP53 (25.4% vs 57.8%; p<0.001), RB1 (0.0% vs 18.6%; p<0.001), and ARID1A (13.6% vs 27.5%; p=0.050). Because our assay was restricted to genomic alterations in a targeted panel, rare mutations and epigenetic changes were not analyzed. CONCLUSIONS: High-grade UTUC tumors display a spectrum of genetic alterations similar to high-grade UCB. However, there were significant differences in the prevalence of several recurrently mutated genes including HRAS, TP53, and RB1. As relevant targeted inhibitors are being developed and tested, these results may have important implications for the site-specific management of patients with urothelial carcinoma. PATIENT SUMMARY: Comparison of next-generation sequencing of upper tract urothelial carcinoma (UTUC) with urothelial bladder cancer identified that similar mutations were present in both cancer types but at different frequencies, indicating a potential need for unique management strategies. UTUC tumors were found to have a high rate of mutations that could be targeted with novel therapies.


Subject(s)
Carcinoma, Transitional Cell/genetics , Genomics , Kidney Neoplasms/genetics , Mutation , Ureteral Neoplasms/genetics , Urinary Bladder Neoplasms/genetics , Aged , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL