Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int Microbiol ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363383

ABSTRACT

BACKGROUND: One of the causes of antibiotic resistance is the reduced accumulation of antibiotics in bacterial cells through pumping out the drugs. Silybin, a key component of the Silybum marianum plant, exhibits various beneficial properties, including anti-bacterial, anti-inflammatory, antioxidant, and hepatoprotective effects. METHODS AND RESULTS: Clinical isolates of E. coli were procured from 17 Shahrivar Children's Hospital in Rasht, Guilan, located in northern Iran. Their susceptibility to six antibiotics was assessed using disc diffusion and broth dilution (MIC) methods. The antibacterial effects of silybin-loaded polymersome nanoparticles (SPNs) were investigated with broth dilution (MIC) and biofilm assays. Molecular docking was utilized to evaluate silybin's (the antibacterial component) binding affinity to efflux pumps, porins, and their regulatory elements. Additionally, qRT-PCR analysis explored the expression patterns of acrA, acrB, tolC, ompC, and ompF genes in both SPNs (sub-MIC) and ciprofloxacin (sub-MIC)-treated and untreated E. coli isolates. The combined use of SPNs and ciprofloxacin exhibited a notable reduction in bacterial growth and biofilm formation, in ciprofloxacin-resistant isolates. The study identified eight overlapping binding sites of the AcrABZ-TolC efflux pump in association with silybin, demonstrating a binding affinity ranging from -7.688 to -10.33 Kcal/mol. Furthermore, the qRT-PCR analysis showed that silybin upregulated AcrAB-TolC efflux pump genes and downregulated ompC and ompF porin genes in combination with ciprofloxacin in transcriptional level in uropathogenic E. coli. CONCLUSIONS: Silybin, a safe herbal compound, exhibits potential in inhibiting antibiotic resistance within bacterial isolates, potentially through the regulation of gene expression and plausible binding to target proteins.

2.
J Appl Microbiol ; 133(2): 630-645, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35429103

ABSTRACT

AIMS: This work aimed to characterize the oxaliplatin removal potential of multispecies microbial populations using the suspended-biomass (SB) and moving bed biofilm (MBB) reactors. METHODS AND RESULTS: Bacterial strains were isolated from pharmaceutical wastewater, their oxaliplatin degrading potential was screened and oxaliplatin removal efficacy in multispecies bacterial populations was investigated using HPLC. Five bacterial strains able to degrade oxaliplatin with an oxaliplatin removal efficacy of 21%-52% were isolated. The synthetic consortium including Xenorhabdus spp., Pantoea agglomerans and Bacillus licheniformis showed the highest potential with an oxaliplatin removal efficacy of 88.6% and 94.0% using the SB and MBB reactors, respectively. Also, the consortium reduced the chemical oxygen demand (COD) by 91.6 and 33% in MBB and SB reactors, respectively. A kinetic study showed a faster oxaliplatin removal in MBB (0.134 kg-1 ) than in the SB reactor (0.101 kg-1 ). Based on the GS/MS analysis, the overall biochemical pathway of oxaliplatin degradation was hypothesized to be initiated through the oxygenation of diamino-dicyclohexan-platinium complex and the cleavage of the aromatic ring. CONCLUSION: Microbial removal of oxaliplatin using MBB and SB reactors seems to be an efficient and promising approach for oxaliplatin removal in pharmaceutical and hospital wastewater treatment plants. SIGNIFICANCE AND IMPACT OF THE STUDY: Employing bacterial populations using the MBB reactor is a promising way to treat pharmaceutical wastewater to reduce the discharge of anticancer drugs into the environment.


Subject(s)
Waste Disposal, Fluid , Wastewater , Bacteria , Biofilms , Biomass , Bioreactors/microbiology , Oxaliplatin , Pharmaceutical Preparations , Waste Disposal, Fluid/methods , Wastewater/microbiology
3.
Molecules ; 27(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35011469

ABSTRACT

The release of pharmaceutical wastewaters in the environment is of great concern due to the presence of persistent organic pollutants with toxic effects on environment and human health. Treatment of these wastewaters with microorganisms has gained increasing attention, as they can efficiently biodegrade and remove contaminants from the aqueous environments. In this respect, bacterial immobilization with inorganic nanoparticles provides a number of advantages, in terms of ease of processing, increased concentration of the pollutant in proximity of the cell surface, and long-term reusability. In the present study, MCM-41 mesoporous silica nanoparticles (MSN) were immobilized on a selected bacterial strain to remove alprazolam, a persistent pharmaceutical compound, from contaminated water. First, biodegrading microorganisms were collected from pharmaceutical wastewater, and Pseudomonas stutzeri was isolated as a bacterial strain showing high ability to tolerate and consume alprazolam as the only source for carbon and energy. Then, the ability of MSN-adhered Pseudomonas stutzeri bacteria was assessed to biodegrade alprazolam using quantitative HPLC analysis. The results indicated that after 20 days in optimum conditions, MSN-adhered bacterial cells achieved 96% biodegradation efficiency in comparison to the 87% biodegradation ability of Pseudomonas stutzeri freely suspended cells. Kinetic study showed that the degradation process obeys a first order reaction. In addition, the kinetic constants for the MSN-adhered bacteria were higher than those of the bacteria alone.


Subject(s)
Alprazolam/chemistry , Biodegradation, Environmental , Industrial Waste , Nanoparticles , Pseudomonas stutzeri/metabolism , Wastewater/chemistry , Wastewater/microbiology , Alprazolam/metabolism , Humans , Kinetics , Nanotechnology , Phylogeny , Pseudomonas stutzeri/classification , Pseudomonas stutzeri/genetics , Pseudomonas stutzeri/isolation & purification , RNA, Ribosomal, 16S , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL