Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
J Med Virol ; 95(7): e28914, 2023 07.
Article in English | MEDLINE | ID: mdl-37394776

ABSTRACT

The Omicron variant of concern (VOC) has surged in many countries and replaced the previously reported VOC. To identify different Omicron strains/sublineages on a rapid, convenient, and precise platform, we report a novel multiplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) method in one tube based on the Omicron lineage sequence variants' information. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) subvariants were used in a PCR-based assay for rapid identification of Omicron sublineage genotyping in 1000 clinical samples. Several characteristic mutations were analyzed using specific primers and probes for the spike gene, del69-70, and F486V. To distinguish Omicron sublineages (BA.2, BA.4, and BA.5), the NSP1:141-143del in the ORF1a region and D3N mutation in membrane protein occurring outside the spike protein region were analyzed. Results from the real-time PCR assay for one-tube accuracy were compared to those of whole genome sequencing. The developed PCR assay was used to analyze 400 SARS-CoV-2 positive samples. Ten samples determined as BA.4 were positive for NSP1:141-143del, del69-70, and F486V mutations; 160 BA.5 samples were positive for D3N, del69-70, and F486V mutations, and 230 BA.2 samples were without del69-70. Screening these samples allowed the identification of epidemic trends at different time intervals. Our novel one-tube multiplex PCR assay was effective in identifying Omicron sublineages.


Subject(s)
COVID-19 , Humans , Reverse Transcriptase Polymerase Chain Reaction , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2/genetics , Pandemics , COVID-19 Testing , Multiplex Polymerase Chain Reaction , Spike Glycoprotein, Coronavirus
2.
J Formos Med Assoc ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097432

ABSTRACT

The study aimed to describe respiratory syncytial virus infections among hospitalized adults between January 2021 and February 2023 from a single medical center in Taiwan. Clinical information from infected patients with RSV was via medical charts review. The incidence of RSV during the study period among adult inpatients showed seasonal variation and could be up to around 2 % in peak season. Among 19 patients identified, the major comorbidity was chronic heart disease (10/19; 52.6 %) followed by chronic pulmonary disease (5/19; 26.3 %) and diabetes mellitus (5/19; 26.3 %). A quarter of infected patients required intensive care with overall mortality reached 26.3 % and the readmission rates within 30 days after was 15.8 %. Our study results suggests that RSV infections among adults could cause a substantial disease burden on healthcare systems.

3.
Environ Toxicol ; 37(10): 2388-2397, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35735092

ABSTRACT

Human glioblastoma (GBM) is one of the common cancer death in adults worldwide, and its metastasis will lead to difficult treatment. Finding compounds for future to develop treatment is urgent. Bisdemethoxycurcumin (BDMC), a natural product, was isolated from the rhizome of turmeric (Curcuma longa), which has been shown to against many human cancer cells. In the present study, we evaluated the antimetastasis activity of BDMC in human GBM cells. Cell proliferation, cell viability, cellular uptake, wound healing, migration and invasion, and western blotting were analyzed. Results indicated that BDMC at 1.5-3 µM significantly decreased the cell proliferation by MTT assay. BDMC showed the highest uptake by cells at 3 h. After treatment of BDMC at 12-48 h significantly inhibited cell motility in GBM 8401 cells by wound healing assay. BDMC suppressed cell migration and invasion at 24 and 48 h treatment by transwell chamber assay. BDMC significantly decreased the levels of proteins associated with PI3K/Akt, Ras/MEK/ERK pathways and resulted in the decrease in the expressions of NF-κB, MMP-2, MMP-9, and N-cadherin, leading to the inhibition of cell migration and invasion. These findings suggest that BDMC may be a potential candidate for the antimetastasis of human GBM cells in the future.


Subject(s)
Brain Neoplasms , Curcumin , Glioblastoma , Brain/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Curcumin/pharmacology , Diarylheptanoids , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , NF-kappa B/metabolism , Neoplasm Invasiveness/pathology , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction
4.
FASEB J ; 34(10): 13284-13299, 2020 10.
Article in English | MEDLINE | ID: mdl-32813287

ABSTRACT

Using honokiol (HNK), a major anti-inflammatory bioactive compound in Magnolia officinalis, we show a potent therapeutic outcome against an accelerated, severe form of lupus nephritis (ASLN). The latter may follow infectious insults that act as environmental triggers in the patients. In the current study, an ASLN model in NZB/W F1 mice was treated with HNK by daily gavage after onset of the disease. We show that HNK ameliorated the ASLN by improving renal function, albuminuria, and renal pathology, especially reducing cellular crescents, neutrophil influx, fibrinoid necrosis in glomeruli, and glomerulonephritis activity scores. Meanwhile, HNK differentially regulated T cell functions, reduced serum anti-dsDNA autoantibodies, and inhibited NLRP3 inflammasome activation in the mice. The latter involved: (a) suppressed production of reactive oxygen species and NF-κB activation-mediated priming signal of the inflammasome, (b) reduced mitochondrial damage, and (c) enhanced sirtuin 1 (SIRT1)/autophagy axis activation. In conclusion, HNK represents a new drug candidate for acute, severe episodes of LN capable of alleviating renal lesions in ASLN mice by negatively regulating T cell functions and by enhancing SIRT1/autophagy axis-lessened NLRP3 inflammasome activation.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Autophagy , Biphenyl Compounds/therapeutic use , Inflammasomes/metabolism , Lignans/therapeutic use , Lupus Nephritis/drug therapy , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Cells, Cultured , Female , Inflammasomes/drug effects , Kidney/drug effects , Kidney/metabolism , Lupus Nephritis/metabolism , Mice , Reactive Oxygen Species/metabolism , Sirtuin 1/metabolism , T-Lymphocytes/drug effects
5.
Environ Toxicol ; 36(1): 77-85, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32889744

ABSTRACT

Mangiferin is a naturally occurring polyphenol, widely distributed in Thymeraceae families, and presents pharmacological activity, including anti-cancer activities in many human cancer cell lines. Mangiferin has also been reported to affect immune responses; however, no available information concerning the effects of mangiferin on immune reactions in leukemia mice in vivo. In the present study, we investigated the effects of mangiferin on leukemia WEHI-3 cell generated leukemia BLAB/c mice. Overall, the experiments were divided into two parts, one part was immune responses experiment and the other was the survival rate experiment. The immune responses and survival rate study, 40 mice for each part, were randomly separated into five groups (N = 8): Group I was normal animals and groups II-V WEHI-3 cell generated leukemia mice. Group II mice were fed normal diet as a positive control; group III, IV, and V mice received mangiferin at 40, 80, and 120 mg/kg, respectively, by intraperitoneal injection every 2 days for 20 days. Leukocytes cell population, macrophage phagocytosis, and NK cell activities were analyzed by flow cytometry. Isolated splenocytes stimulated with lipopolysaccharide (LPS) and concanavalin A (Con A) were used to determine the proliferation of B and T cells, respectively, and subsequently were analyzed by flow cytometry. Results indicated that mangiferin significantly increased body weight, decreased the liver and spleen weights of leukemia mice. Mangiferin also increased CD3 T-cell and CD19 B cell population but decreased Mac-3 macrophage and CD11b monocyte. Furthermore, mangiferin decreased phagocytosis of macrophages from PBMC and peritoneal cavity at 40, 80, and 120 mg/kg treatment. However, it also increased NK cell activity at 40 and 120 mg/kg treatment. There were no effects on T and B cell proliferation at three examined doses. In survival rate studies, mangiferin significantly elevated survival rate at 40 and 120 mg/kg treatment of leukemia mice in vivo.

6.
J Antimicrob Chemother ; 74(6): 1503-1510, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30830171

ABSTRACT

BACKGROUND: MDR Elizabethkingia anophelis strains are implicated in an increasing number of healthcare-associated infections worldwide, including a recent cluster of E. anophelis infections in the Midwestern USA associated with significant morbidity and mortality. However, there is minimal information on the antimicrobial susceptibilities of E. anophelis strains or their antimicrobial resistance to carbapenems and fluoroquinolones. OBJECTIVES: Our aim was to examine the susceptibilities and genetic profiles of clinical isolates of E. anophelis from our hospital, characterize their carbapenemase genes and production of MBLs, and determine the mechanism of fluoroquinolone resistance. METHODS: A total of 115 non-duplicated isolates of E. anophelis were examined. MICs of antimicrobial agents were determined using the Sensititre 96-well broth microdilution panel method. QRDR mutations and MBL genes were identified using PCR. MBL production was screened for using a combined disc test. RESULTS: All E. anophelis isolates harboured the blaGOB and blaB genes with resistance to carbapenems. Antibiotic susceptibility testing indicated different resistance patterns to ciprofloxacin and levofloxacin in most isolates. Sequencing analysis confirmed that a concurrent GyrA amino acid substitution (Ser83Ile or Ser83Arg) in the hotspots of respective QRDRs was primarily responsible for high-level ciprofloxacin/levofloxacin resistance. Only one isolate had no mutation but a high fluoroquinolone MIC. CONCLUSIONS: Our study identified a strong correlation between antibiotic susceptibility profiles and mechanisms of fluoroquinolone resistance among carbapenem-resistant E. anophelis isolates, providing an important foundation for continued surveillance and epidemiological analyses of emerging E. anophelis opportunistic infections. Minocycline or ciprofloxacin has the potential for treatment of severe E. anophelis infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , DNA Topoisomerases/genetics , Drug Resistance, Bacterial , Flavobacteriaceae Infections/microbiology , Flavobacteriaceae/drug effects , Aged , Aged, 80 and over , Female , Fluoroquinolones/pharmacology , Gene Expression Regulation, Bacterial , Genome, Bacterial , Genomics , Humans , Male , Middle Aged , Whole Genome Sequencing
7.
Environ Toxicol ; 34(5): 659-665, 2019 May.
Article in English | MEDLINE | ID: mdl-30761740

ABSTRACT

Ouabain, a cardiotonic steroid, was used for the treatment of heart failure and atrial fibrillation and induces cancer cell apoptosis in many human cancer cells including human leukemia cells. However, there are no reports to show the effects on immune responses in a leukemia mouse model. In this study, WEHI-3 cell generated leukemia mice were developed and treated by oral ouabain at 0, 0.75, 1.5, and 3 mg/kg for 15 days. Results indicated that ouabain did not affect body appearance, but decreased liver and spleen weights, B- and T-cell proliferation at all three doses treatment and increased CD19 cells at 3.0 mg/kg treatment, decreased CD3, CD11b, and Mac-3 cells levels compared with positive control. Furthermore, ouabain increased the macrophage phagocytosis from peripheral blood mononuclear cell and peritoneal cavity at all three doses treatment and increased NK cell activities. Ouabain restored GOT, GPT and LDH levels in WEHI-3 leukemia mice in vivo.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Cytotoxicity, Immunologic/drug effects , Killer Cells, Natural/drug effects , Leukemia, Experimental/drug therapy , Lymphocyte Activation/drug effects , Ouabain/therapeutic use , Phagocytosis/drug effects , Animals , Cell Line, Tumor , Killer Cells, Natural/immunology , Leukemia, Experimental/immunology , Leukemia, Experimental/pathology , Lymphocyte Activation/immunology , Mice , Mice, Inbred BALB C , Neoplasm Transplantation , Phagocytosis/immunology
8.
Environ Toxicol ; 33(11): 1168-1181, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30152185

ABSTRACT

Quercetin is one of the natural components from natural plant and it induces cell apoptosis in many human cancer cell lines. However, no available reports show that quercetin induces apoptosis and altered associated gene expressions in human gastric cancer cells, thus, we investigated the effect of quercetin on the apoptotic cell death and associated gene expression in human gastric cancer AGS cells. Results indicated that quercetin induced cell morphological changes and reduced total viability via apoptotic cell death in AGS cells. Furthermore, results from flow cytometric assay indicated that quercetin increased reactive oxygen species (ROS) production, decreased the levels of mitochondrial membrane potential (ΔΨm ), and increased the apoptotic cell number in AGS cells. Results from western blotting showed that quercetin decreased anti-apoptotic protein of Mcl-1, Bcl-2, and Bcl-x but increased pro-apoptotic protein of Bad, Bax, and Bid. Furthermore, quercetin increased the gene expressions of TNFRSF10D (Tumor necrosis factor receptor superfamily, member 10d, decoy with truncated death domain), TP53INP1 (tumor protein p53 inducible nuclear protein 1), and JUNB (jun B proto-oncogene) but decreased the gene expression of VEGFB (vascular endothelial growth factor B), CDK10 (cyclin-dependent kinase 10), and KDELC2 (KDEL [Lys-Asp-Glu-Leu] containing 2) that are associated with apoptosis pathways. Thus, those findings may offer more information regarding the molecular, gene expression, and signaling pathway for quercetin induced apoptotic cell death in human gastric cancer cells.


Subject(s)
Apoptosis/drug effects , Quercetin/pharmacology , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Apoptosis/genetics , Cell Line, Tumor , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects , Membrane Potential, Mitochondrial/genetics , Microarray Analysis , Mitochondria/drug effects , Mitochondria/metabolism , Proto-Oncogene Mas , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Stomach Neoplasms/metabolism , Up-Regulation/drug effects , Up-Regulation/genetics
9.
Environ Toxicol ; 32(9): 2097-2112, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28444820

ABSTRACT

Casticin, a polymethoxyflavone, is one of the major active components obtained from Fructus viticis, which have been shown to have anticancer activities including induce cell apoptosis in human cancer cells. The aim of this study was to investigate the molecular mechanisms by which casticin inhibits cell migration and invasion of mouse melanoma B16F10 cells. Cell viability was examined by MTT assay and the results indicated that casticin decreased the total percentages of viable cells in dose-dependent manners. Casticin affected cell migration and invasion in B16F10 cells were examined by wound healing mobility assay and Boyden chamber migration and invasion assay and results indicated that casticin inhibited cell migration and invasion in dose-dependent manners. Western blotting was used to examine the protein expression of B16F10 cells after exposed to casticin and the results showed that casticin decreased the expressions of MMP-9, MMP-2, MMP-1, FAK, 14-3-3, GRB2, Akt, NF-κB p65, SOS-1, p-EGFR, p-JNK 1/2, uPA, and Rho A in B16F10 cells. Furthermore, cDNA microarray assay was used to show that casticin affected associated gene expression of cell migration and invasion and the results indicated that casticin affected some of the gene expression such as increased SCN1B (cell adhesion molecule 1) and TIMP2 (TIMP metallopeptidase inhibitor 2) and decreased NDUFS4 (NADH dehydrogenase (ubiquinone) Fe-S protein4), VEGFA (vascular endothelial growth factor A), and DDIT3 (DNA-damage-inducible transcript 3) which associated cell migration and invasion in B16F10 cells. Based on those observations, we suggest that casticin could be used as a novel anticancer metastasis of melanoma cancer in the future.


Subject(s)
Antineoplastic Agents/pharmacology , Flavonoids/pharmacology , Melanoma, Experimental/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Apoptosis , Cell Line, Tumor , Cell Movement/drug effects , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Mice , NF-kappa B/metabolism , Neoplasm Invasiveness , Signal Transduction
10.
Environ Toxicol ; 32(8): 2041-2052, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27862857

ABSTRACT

Casticin, a polymethoxyflavone, derived from natural plant Fructus Viticis exhibits biological activities including anti-cancer characteristics. The anti-cancer and alter gene expression of casticin on human colon cancer cells and the underlying mechanisms were investigated. Flow cytometric assay was used to measure viable cell, cell cycle and sub-G1 phase, reactive oxygen species (ROS) and Ca2+ productions, level of mitochondria membrane potential (ΔΨm ) and caspase activity. Western blotting assay was used to detect expression of protein level associated with cell death. Casticin induced cell morphological changes, decreased cell viability and induced G2/M phase arrest in colo 205 cells. Casticin increased ROS production but decreased the levels of ΔΨm , and Ca2+ , increased caspase-3, -8, and -9 activities. The cDNA microarray indicated that some of the cell cycle associated genes were down-regulated such as cyclin-dependent kinase inhibitor 1A (CDKN1A) (p21, Cip1) and p21 protein (Cdc42/Rac)-activated kinase 3 (PAK3). TNF receptor-associated protein 1 (TRAP1), CREB1 (cAMP responsive element binding protein 1) and cyclin-dependent kinase inhibitor 1B (CDKN1B) (p27, Kip1) genes were increased but matrix metallopeptidase 2 (MMP-2), toll-like receptor 4 (TLR4), PRKAR2B (protein kinase, cAMP-dependent, regulatory, type II, bet), and CaMK4 (calcium/calmodulin-dependent protein kinase IV) genes were inhibited. Results suggest that casticin induced cell apoptosis via the activation of the caspase- and/or mitochondria-dependent signaling cascade, the accumulation of ROS and altered associated gene expressions in colo 205 human colon cancer cells.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Flavonoids/pharmacology , Calcium/metabolism , Caspases/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Colonic Neoplasms , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism
11.
Environ Toxicol ; 32(1): 311-328, 2017 Jan.
Article in English | MEDLINE | ID: mdl-26833863

ABSTRACT

Sulforaphane (SFN), one of the isothiocyanates, is a biologically active compound extracted from cruciferous vegetables, and has been shown to induce cytotoxic effects on many human cancer cells including human leukemia cells. However, the exact molecular mechanism and altered gene expression associated with apoptosis is unclear. In this study, we investigated SFN-induced cytotoxic effects and whether or not they went through cell-cycle arrest and induction of apoptosis and further examined molecular mechanism and altered gene expression in human leukemia HL-60 cells. Cell viability, cell-cycle distribution, sub-G1 (apoptosis), reactive oxygen species (ROS) and Ca2+ production, levels of mitochondrial membrane potential (ΔΨm ), and caspase-3, -8, and -9 activities were assayed by flow cytometry. Apoptosis-associated proteins levels and gene expressions were examined by Western blotting and cDNA microarray assays, respectively. Results indicated that SFN decreased viable cells, induced G2/M phase arrest and apoptosis based on sub-G1 phase development. Furthermore, SFN increased ROS and Ca2+ production and decreased the levels of ΔΨm and activated caspase-3, -8, and -9 activities in HL-60 cells. SFN significantly upregulated the expression of BAX, Bid, Fas, Fas-L, caspase-8, Endo G, AIF, and cytochrome c, and inhibited the antiapoptotic proteins such as Bcl-x and XIAP, that is associated with apoptosis. We also used cDNA microarray to confirm several gene expressions such as caspase -8, -3, -4, -6, and -7 that are affected by SFN. Those results indicated that SFN induced apoptosis in HL-60 cells via Fas- and mitochondria-dependent pathways. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 311-328, 2017.


Subject(s)
Apoptosis/drug effects , Gene Expression/drug effects , Isothiocyanates/toxicity , Signal Transduction/drug effects , Calcium/metabolism , Caspase 3/metabolism , Caspase 8/metabolism , Caspase 9/metabolism , Cell Cycle Checkpoints/drug effects , Cell Division/drug effects , Cell Survival/drug effects , Cytochromes c/metabolism , Fas Ligand Protein , HL-60 Cells , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Oligonucleotide Array Sequence Analysis , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/metabolism , Sulfoxides , X-Linked Inhibitor of Apoptosis Protein/metabolism , bcl-2-Associated X Protein/metabolism
12.
Environ Toxicol ; 31(12): 1751-1760, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28675694

ABSTRACT

Benzyl isothiocyanate (BITC) is one of member of the isothiocyanate family which has been shown to induce cancer cell apoptosis in many human cancer cells. In the present study, we investigated the effects of BITC on the growth of GBM 8401 human brain glioblastoma multiforms cells. Results indicated that BITC-induced cell morphological changes decreased in the percentage of viable GBM8401 cells and these effects are dose-dependent manners. Results from flow cytometric assay indicated that BITC induced sub-G1 phase and induction of apoptosis of GBM 8401 cells. Furthermore, results also showed that BITC promoted the production of reactive oxygen species (ROS) and Ca2+ release, but decreased the mitochondrial membrane potential (ΔΨm ) and promoted caspase-8, -9, and -3 activates. After cells were pretreated with Z-IETD-FMK, Z-LEHD-FMK, and Z-DEVD-FMK (caspase-8, -9, and -3 inhibitors, respectively) led to decrease in the activities of caspase-8, -9, and -3 and increased the percentage of viable GBM 8401 cells that indicated which BITC induced cell apoptosis through caspase-dependent pathways. Western blotting indicated that BITC induced Fas, Fas-L, FADD, caspase-8, caspase -3, and pro-apoptotic protein (Bax, Bid, and Bak), but inhibited the ant-apoptotic proteins (Bcl-2 and Bcl-x) in GBM 8401 cells. Furthermore, BITC increased the release of cytochrome c, AIF, and Endo G from mitochondria that led to cell apoptosis. Results also showed that BITC increased GADD153, GRP 78, XBP-1, and ATF-6ß, IRE-1α, IRE-1ß, Calpain 1 and 2 in GBM 8401 cells, which is associated with ER stress. Based on these observations, we may suggest that BITC-induced apoptosis might be through Fas receptor, ROS induced ER stress, caspase-3, and mitochondrial signaling pathways. Taken together, these molecular alterations and signaling pathways offer an insight into BITC-caused growth inhibition and induced apoptotic cell death of GBM 8401 cells. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1751-1760, 2016.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Brain Neoplasms/drug therapy , Caspase 8/metabolism , Glioblastoma/drug therapy , Isothiocyanates/pharmacology , Mitochondria/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Caspase Inhibitors/pharmacology , Cell Line, Tumor , Enzyme Activation , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
13.
Environ Toxicol ; 30(11): 1343-53, 2015 Nov.
Article in English | MEDLINE | ID: mdl-24890016

ABSTRACT

Diallyl trisulfide (DATS), a chemopreventive dietary constituent and extracted from garlic, has been shown to against cultured many types of human cancer cell liens but the fate of apoptosis in murine leukemia cells in vitro and immune responses in leukemic mice remain elusive. Herein, we clarified the actions of DATS on growth inhibition of murine leukemia WEHI-3 cells in vitro and used WEHI-3 cells to generate leukemic mice in vivo, following to investigate the effects of DATS in animal model. In in vitro study, DATS induced apoptosis of WEHI-3 cells through the G0/G1 phase arrest and induction of caspase-3 activation. In in vivo study DATS decreased the weight of spleen of leukemia mice but did not affect the spleen weight of normal mice. DATS promoted the immune responses such as promotions of the macrophage phagocytosis and NK cell activities in WEHI-3 leukemic and normal mice. However, DATS only promotes NK cell activities in normal mice. DATS increases the surface markers of CD11b and Mac-3 in leukemia mice but only promoted CD3 in normal mice. In conclusion, the present study indicates that DATS induces cell death through induction of apoptosis in mice leukemia WHEI-3 cells. DATS also promotes immune responses in leukemia and normal mice in vivo.


Subject(s)
Allyl Compounds/pharmacology , Anticarcinogenic Agents/pharmacology , Apoptosis/drug effects , Leukemia, Experimental/immunology , Leukemia, Experimental/prevention & control , Sulfides/pharmacology , Allyl Compounds/therapeutic use , Animals , Anticarcinogenic Agents/therapeutic use , Antigens, Differentiation/immunology , Caspase 3/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cytotoxicity, Immunologic/drug effects , Garlic/chemistry , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Lymphocyte Activation/drug effects , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/immunology , Mice , Mice, Inbred BALB C , Neoplasm Transplantation , Phagocytosis/drug effects , Phagocytosis/immunology , Spleen/drug effects , Spleen/immunology , Sulfides/therapeutic use
14.
Molecules ; 19(10): 16588-608, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25322282

ABSTRACT

Osteosarcoma is the most common malignant primary bone tumor in children and young adults and lung metastasis is the main cause of death in those patients. Deguelin, a naturally occurring rotenoid, is known to be an Akt inhibitor and to exhibit cytotoxic effects, including antiproliferative and anticarcinogenic activities, in several cancers. In the present study, we determined if deguelin would inhibit migration and invasion in U-2 OS human osteosarcoma cells. Deguelin significantly inhibited migration and invasion of U-2 OS human osteosarcoma cells which was associated with a reduction of activities of matrix metalloproteinases-2 (MMP-2) and matrix metalloproteinases-9 (MMP-9). Furthermore, results from western blotting indicated that deguelin decreased the cell proliferation and cell growth-associated protein levels, such as SOS1, PKC, Ras, PI3K, p-AKT(Ser473), IRE-1α, MEKK3, iNOS, COX2, p-ERK1/2, p-JNK1/2, p-p38; the cell motility and focal adhesion-associated protein levels, such as Rho A, FAK, ROCK-1; the invasion-associated protein levels, such as TIMP1, uPA, MMP-2. MMP-9, MMP-13, MMP-1 and VEGF in U-2 OS cells. Confocal microscopy revealed that deguelin reduced NF-κB p65, Rho A and ROCK-1 protein levels in cytosol. MMP-7, MMP-9 and Rho A mRNA levels were suppressed by deguelin. These in vitro results provide evidence that deguelin may have potential as a novel anti-cancer agent for the treatment of osteosarcoma and provides the rationale for in vivo studies in animal models.


Subject(s)
Bone Neoplasms/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Osteosarcoma/metabolism , Rotenone/analogs & derivatives , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , In Vitro Techniques , Neoplasm Invasiveness , Osteosarcoma/pathology , Rotenone/pharmacology
15.
Diagnostics (Basel) ; 14(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38396454

ABSTRACT

BACKGROUND: Klebsiella pneumoniae (K. pneumoniae) urinary tract infections pose a significant challenge in Taiwan. The significance of this issue arises because of the growing concerns about the antibiotic resistance of K. pneumoniae. Therefore, this study aimed to uncover potential genomic risk factors in Taiwanese patients with K. pneumoniae urinary tract infections through genome-wide association studies (GWAS). METHODS: Genotyping data are obtained from participants with a history of urinary tract infections enrolled at the Tri-Service General Hospital as part of the Taiwan Precision Medicine Initiative (TPMI). A case-control study employing GWAS is designed to detect potential susceptibility single-nucleotide polymorphisms (SNPs) in patients with K. pneumoniae-related urinary tract infections. The associated genes are determined using a genome browser, and their expression profiles are validated via the GTEx database. The GO, Reactome, DisGeNET, and MalaCards databases are also consulted to determine further connections between biological functions, molecular pathways, and associated diseases between these genes. RESULTS: The results identified 11 genetic variants with higher odds ratios compared to controls. These variants are implicated in processes such as adhesion, protein depolymerization, Ca2+-activated potassium channels, SUMOylation, and protein ubiquitination, which could potentially influence the host immune response. CONCLUSIONS: This study implies that certain risk variants may be linked to K. pneumoniae infections by affecting diverse molecular functions that can potentially impact host immunity. Additional research and follow-up studies are necessary to elucidate the influence of these risk variants on infectious diseases and develop targeted interventions for mitigating the spread of K. pneumoniae urinary tract infections.

16.
Clin Chim Acta ; 560: 119731, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38754576

ABSTRACT

BACKGROUND: The viral load (VL) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals is critical for improving clinical treatment strategies, care, and decisions. Several studies have reported that the initial SARS-CoV-2 VL is associated with disease severity and mortality. Cycle threshold (Ct) values and/or copies/mL are often used to quantify VL. However, a multitude of platforms, primer/probe sets of different SARS-CoV-2 target genes, and reference material manufacturers may cause inconsistent interlaboratory interpretations. The first International Standard for SARS-CoV-2 RNA quantitative assays has allowed diagnostic laboratories to transition SARS-CoV-2 VL results into international units per milliliter (IU/mL). The Cobas SARS-CoV-2 Duo quantitative assay provides VL results expressed in IU/mL. MATERIALS AND METHODS: We enrolled 145 and 50 SARS-CoV-2-positive, hospitalized and 50-negative individuals at the Tri-Service General Hospital, Taiwan from January to May 2022. Each participant's electronic medical record was reviewed to determine asymptomatic, mild, moderate, and severe cases. Nasopharyngeal swabs were collected using universal transport medium. We investigated the association of SARS-CoV-2 VL with disease severity using the Cobas SARS-CoV-2 Duo quantitative assay and its functionality in clinical assessment and decision making to further improve clinical treatment strategies. Limit of detection (LOD) was assessed. RESULTS: All 50 SARS-CoV-2-negative samples confirmed negative for SARS-CoV-2, demonstrating 100 % specificity of the Cobas SARS-CoV-2 Duo assay. Patients with severe symptoms had longer hospital stays, and the length of hospital stay (30.56 days on average) positively correlated with the VL (8.22 ± 1.21 log10 IU/mL). Asymptomatic patients had the lowest VL (5.54 ± 2.06 log10 IU/mL) at admission and the shortest hospital stay (14.1 days on average). CONCLUSIONS: VL is associated with disease severity and duration of hospitalization; therefore, its quantification should be considered when making clinical care decisions and treatment strategies. The Cobas SARS-CoV-2 Duo assay provides a commutable unitage IU/mL for interlaboratory interpretations.


Subject(s)
COVID-19 , Disease Progression , SARS-CoV-2 , Viral Load , Humans , COVID-19/diagnosis , COVID-19/virology , SARS-CoV-2/isolation & purification , Male , Female , Middle Aged , Adult , Aged , RNA, Viral/analysis
17.
Article in English | MEDLINE | ID: mdl-38909685

ABSTRACT

OBJECTIVES: The World Health Organization named Stenotrophomonas maltophilia a critical multi-drug resistant threat, necessitating rapid diagnostic strategies. Traditional culturing methods require up to 96 hours, including 72 hours for bacterial growth, identification with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) through protein profile analysis, and 24 hours for antibiotic susceptibility testing. In this study, we aimed at developing an artificial intelligence-clinical decision support system (AI-CDSS) by integrating MALDI-TOF MS and machine learning to quickly identify levofloxacin and trimethoprim/sulfamethoxazole resistance in S. maltophilia, optimizing treatment decisions. METHODS: We selected 8,662 S. maltophilia from 165,299 MALDI-TOF MS-analyzed bacterial specimens, collected from a major medical center and four secondary hospitals. We exported mass-to-charge values and intensity spectral profiles from MALDI-TOF MS .mzML files to predict antibiotic susceptibility testing results, obtained with the VITEK-2 system using machine learning algorithms. We optimized the models with GridSearchCV and 5-fold cross-validation. RESULTS: We identified distinct spectral differences between resistant and susceptible S. maltophilia strains, demonstrating crucial resistance features. The machine learning models, including random forest, light-gradient boosting machine, and XGBoost, exhibited high accuracy. We established an AI-CDSS to offer healthcare professionals swift, data-driven advice on antibiotic use. CONCLUSIONS: MALDI-TOF MS and machine learning integration into an AI-CDSS significantly improved rapid S. maltophilia resistance detection. This system reduced the identification time of resistant strains from 24 hours to minutes after MALDI-TOF MS identification, providing timely and data-driven guidance. Combining MALDI-TOF MS with machine learning could enhance clinical decision-making and improve S. maltophilia infection treatment outcomes.

18.
Diagnostics (Basel) ; 13(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38132252

ABSTRACT

The emergence of the Omicron (B.1.1.529) variant of SARS-CoV-2 has precipitated a new global wave of the COVID-19 pandemic. The rapid identification of SARS-CoV-2 infection is imperative for the effective mitigation of transmission. Diagnostic modalities such as rapid antigen testing and real-time reverse transcription polymerase chain reaction (RT-PCR) offer expedient turnaround times of 10-15 min and straightforward implementation. This preliminary study assessed the correlation between outcomes of commercially available rapid antigen tests for home use and conventional reverse transcription polymerase chain reaction (RT-PCR) assays using a limited set of clinical specimens. Patients aged 5-99 years presenting to the emergency department for SARS-CoV-2 testing were eligible for enrollment (n = 5652). Direct PCR and conventional RT-PCR were utilized for the detection of SARS-CoV-2. The entire cohort of 5652 clinical specimens was assessed by both modalities to determine the clinical utility of the direct RT-PCR assay. Timely confirmation of SARS-CoV-2 infection may attenuate viral propagation and guide therapeutic interventions. Additionally, direct RT-PCR as a secondary confirmatory test for at-home rapid antigen test results demonstrated sensitivity comparable to conventional RT-PCR, indicating utility for implementation in laboratories globally, especially in resource-limited settings with constraints on reagents, equipment, and skilled personnel. In summary, direct RT-PCR enables the detection of SARS-CoV-2 with a sensitivity approaching that of conventional RT-PCR while offering expedient throughput and shorter turnaround times. Moreover, direct RT-PCR provides an open-source option for diagnostic laboratories worldwide, particularly in low- and middle-income countries.

19.
PeerJ ; 11: e14666, 2023.
Article in English | MEDLINE | ID: mdl-36710871

ABSTRACT

Purpose: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major healthcare threat worldwide. Since it was first identified in November 2021, the Omicron (B.1.1.529) variant of SARS-CoV-2 has evolved into several lineages, including BA.1, BA.2-BA.4, and BA.5. SARS-CoV-2 variants might increase transmissibility, pathogenicity, and resistance to vaccine-induced immunity. Thus, the epidemiological surveillance of circulating lineages using variant phenotyping is essential. The aim of the current study was to characterize the clinical outcome of Omicron BA.2 infections among hospitalized COVID-19 patients and to perform an immunological assessment of such cases against SARS-CoV-2. Patients and Methods: We evaluated the analytical and clinical performance of the BioIC SARS-CoV-2 immunoglobulin (Ig)M/IgG detection kit, which was used for detecting antibodies against SARS-CoV-2 in 257 patients infected with the Omicron variant. Results: Poor prognosis was noted in 38 patients, including eight deaths in patients characterized by comorbidities predisposing them to severe COVID-19. The variant-of-concern (VOC) typing and serological analysis identified time-dependent epidemic trends of BA.2 variants emerging in the outbreak of the fourth wave in Taiwan. Of the 257 specimens analyzed, 108 (42%) and 24 (9.3%) were positive for anti-N IgM and IgG respectively. Conclusion: The VOC typing of these samples allowed for the identification of epidemic trends by time intervals, including the B.1.1.529 variant replacing the B.1.617.2 variant. Moreover, antibody testing might serve as a complementary method for COVID-19 diagnosis. The combination of serological testing results with the reverse transcription-polymerase chain reaction cycle threshold value has potential value in disease prognosis, thereby aiding in epidemic investigations conducted by clinicians or the healthcare department.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19 Testing , Algorithms , Antibodies, Viral , Immunoglobulin G , Immunoglobulin M
20.
Int J Infect Dis ; 127: 56-62, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36455809

ABSTRACT

OBJECTIVES: We have established a novel 5-in-1 VOC assay to rapidly detect SARS-CoV-2 and immediately distinguish whether positive samples represent variants of concern (VOCs). METHODS: This assay could distinguish among five VOCs: Alpha, Beta, Gamma, Delta, and Omicron, in a single reaction tube. The five variants exhibit different single nucleotide polymorphisms (SNPs) in their viral genome, which can be used to distinguish them. We selected target SNPs in the spike gene, including N501Y, P681R, K417N, and deletion H69/V70 for the assay. RESULTS: The limit of detection of each gene locus was 80 copies per polymerase chain reaction. We observed a high consistency among the results when comparing the performance of our 5-in-1 VOC assay, whole gene sequencing, and the Roche VirSNiP SARS-CoV-2 test in retrospectively analyzing 150 clinical SARS-CoV-2 variant positive samples. The 5-in-1 VOC assay offers an alternative and rapid high-throughput test for most diagnostic laboratories in a flexible sample-to-result platform. CONCLUSION: The assay can also be applied in a commercial platform with the completion of the SARS-CoV-2 confirmation test and identification of its variant within 2.5 hours.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Retrospective Studies , COVID-19/diagnosis , Polymerase Chain Reaction , RNA-Directed DNA Polymerase , COVID-19 Testing
SELECTION OF CITATIONS
SEARCH DETAIL