Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Am Chem Soc ; 132(11): 3932-8, 2010 Mar 24.
Article in English | MEDLINE | ID: mdl-20178323

ABSTRACT

The outer walls of double-walled carbon nanotubes (DWNTs) were selectively oxidized using a combination of oleum and nitric acid. Intercalation of oleum between bundled DWNTs enabled a homogeneous reaction by equally exposing all outer wall surfaces to the oxidants. At optimized reaction conditions, this double-wall chemistry enabled high water solubility through carboxylic acid functional groups introduced to the outer wall, while leaving the inner tube intact, as shown by Raman scattering and high resolution TEM. These outer wall selectively oxidized DWNTs retained electrical conductivity up to 65% better than thin films of similarly functionalized single-walled carbon nanotubes, which can be attributed to enhanced electrical percolation via the nonoxidized inner tubes.


Subject(s)
Nanotubes, Carbon/chemistry , Water/chemistry , Electricity , Kinetics , Mechanical Phenomena , Microscopy, Electron, Transmission , Oxidation-Reduction , Solubility , Spectrum Analysis , Substrate Specificity , Temperature
2.
Chem Sci ; 9(5): 1101-1111, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29675155

ABSTRACT

Conjugated polymers (CPs) possess a wide range of desirable properties, including accessible energetic bandgaps, synthetic versatility, and mechanical flexibility, which make them attractive for flexible and wearable optoelectronic devices. An accurate and comprehensive understanding about the morphology-photophysics relations in CPs lays the groundwork for their development in these applications. However, due to the complex roles of chemical structure, side-chains, backbone, and intramolecular interactions, CPs can exhibit heterogeneity in both their morphology and optoelectronic properties even at the single chain level. This molecular level heterogeneity together with complicated intermolecular interactions found in bulk CP materials severely obscures the deterministic information about the morphology and photophysics at different hierarchy levels. To counter this complexity and offer a clearer picture for the properties of CP materials, we highlight the approach of probing material systems with specific structural features via single molecule/aggregate spectroscopy (SMS). This review article covers recent advances achieved through such an approach regarding the important morphological and photophysical properties of CPs. After a brief review of the typical characteristics of CPs, we present detailed discussions of structurally well-defined model systems of CPs, from manipulated backbones and side-chains, up to nano-aggregates, studied with SMS to offer deterministic relations between morphology and photophysics from single chains building up to bulk states.

SELECTION OF CITATIONS
SEARCH DETAIL