Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Biometals ; 37(3): 609-629, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38277035

ABSTRACT

Cadmium (Cd) is an important environmental pollutant that poses a threat to human health and represents a critical component of air pollutants, food sources, and cigarette smoke. Cd is a known carcinogen and has toxic effects on the environment and various organs in humans. Heavy metals within an organism are difficult to biodegrade, and those that enter the respiratory tract are difficult to remove. Autophagy is a key mechanism for counteracting extracellular (microorganisms and foreign bodies) or intracellular (damaged organelles and proteins that cannot be degraded by the proteasome) stress and represents a self-protective mechanism for eukaryotes against heavy metal toxicity. Autophagy maintains cellular homeostasis by isolating and gathering information about foreign chemicals associated with other molecular events. However, autophagy may trigger cell death under certain pathological conditions, including cancer. Autophagy dysfunction is one of the main mechanisms underlying Cd-induced cytotoxicity. In this review, the toxic effects of Cd-induced autophagy on different human organ systems were evaluated, with a focus on hepatotoxicity, nephrotoxicity, respiratory toxicity, and neurotoxicity. This review also highlighted the classical molecular pathways of Cd-induced autophagy, including the ROS-dependent signaling pathways, endoplasmic reticulum (ER) stress pathway, Mammalian target of rapamycin (mTOR) pathway, Beclin-1 and Bcl-2 family, and recently identified molecules associated with Cd. Moreover, research directions for Cd toxicity regarding autophagic function were proposed. This review presents the latest theories to comprehensively reveal autophagy behavior in response to Cd toxicity and proposes novel potential autophagy-targeted prevention and treatment strategies for Cd toxicity and Cd-associated diseases in humans.


Subject(s)
Autophagy , Cadmium , Autophagy/drug effects , Humans , Cadmium/toxicity , Animals , Endoplasmic Reticulum Stress/drug effects , Signal Transduction/drug effects , Environmental Pollutants/toxicity
2.
Environ Res ; 242: 117733, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38000634

ABSTRACT

Carbon black nanoparticles (CBNPs) and cadmium (Cd) are major components of various air pollutants and cigarette smoke. Autophagy and inflammation both play critical roles in understanding the toxicity of particles and their components, as well as maintaining body homeostasis. However, the effects and mechanisms of CBNPs and Cd (CBNPs-Cd) co-exposure on the human respiratory system remain unclear. In this study, a CBNPs-Cd exposure model was constructed to explore the respiratory toxicity and combined mechanism of these chemicals on the autophagy-lysosome pathway in the context of respiratory inflammation. Co-exposure of CBNPs and Cd significantly increased the number of autophagosomes and lysosomes in human bronchial epithelial cells (16HBE) and mouse lung tissues compared to the control group, as well as the groups exposed to CBNPs and Cd alone. Autophagic markers, LC3II and P62 proteins, were up-regulated in 16HBE cells and mouse lung tissues after CBNPs-Cd co-exposure. However, treatment with Cq inhibitor (an indicator of lysosomal acid environment) resulted in a substantial decreased co-localization fluorescence of LC3 and lysosomes in the CBNPs-Cd combination group compared with the CBNPs-Cd single and control groups. No difference in LAMP1 protein expression was observed among the exposed groups. Adding 3 MA alleviated inflammatory responses, while applying the Baf-A1 inhibitor aggravated inflammation both in vitro and in vivo following CBNPs-Cd co-exposure. Factorial analysis showed no interaction between CBNPs and Cd in their effects on 16HBE cells. We demonstrated that co-exposure to CBNPs-Cd increases the synthesis of autophagosomes and regulates the acidic environment of lysosomes, thereby inhibiting autophagy-lysosome fusion and enhancing the inflammatory response in both 16HBE cells and mouse lung. These findings provide evidence for a comprehensive understanding of the interaction between CBNPs and Cd in mixed pollutants, as well as for the prevention and control of occupational exposure to these two chemicals.


Subject(s)
Cadmium , Nanoparticles , Mice , Humans , Animals , Cadmium/toxicity , Soot/toxicity , Autophagy , Inflammation/chemically induced , Inflammation/metabolism , Epithelial Cells , Lysosomes/metabolism , Nanoparticles/toxicity
3.
Environ Toxicol ; 39(1): 377-387, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37782690

ABSTRACT

Fine particulate matter (PM2.5 ) has been shown to induce lung injury. However, the pathophysiological mechanisms of PM2.5 -induced pulmonary injury after different exposure times are poorly understood. In this study, we exposed male ICR mice to a whole-body PM2.5 inhalation system at daily mean concentration range from 92.00 to 862.00 µg/m3 for 30, 60, and 90 days. We found that following prolonged exposure to PM2.5 , pulmonary injury was increasingly evident with significant histopathological alterations. Notably, the pulmonary inflammatory response and fibrosis caused by PM2.5 after different exposure times were closely associated with histopathological changes. In addition, PM2.5 exposure caused oxidative stress, DNA damage and impairment of DNA repair in a time-dependent manner in the lung. Importantly, exposure to PM2.5 eventually caused apoptosis in the lung through upregulation of cleaved-caspase-3 and downregulation of Bcl-2. Overall, our data demonstrated that PM2.5 led to pulmonary injury in a time-dependent manner via upregulation of proinflammatory and fibrosis-related genes, and activation of the DNA damage response. Our findings provided a novel perspective on the pathophysiology of respiratory diseases caused by airborne pollution.


Subject(s)
Lung Injury , Mice , Male , Animals , Lung Injury/chemically induced , Lung Injury/pathology , Mice, Inbred ICR , Particulate Matter/toxicity , Lung/pathology , Oxidative Stress/genetics , Fibrosis
4.
Arch Toxicol ; 95(10): 3235-3251, 2021 10.
Article in English | MEDLINE | ID: mdl-34402960

ABSTRACT

Fine particulate matter (PM2.5) has been shown to induce DNA damage. Circular RNAs (circRNAs) have been implicated in various disease processes related to environmental chemical exposure. However, the role of circRNAs in the regulation of DNA damage response (DDR) after PM2.5 exposure remains unclear. In this study, male ICR mice were exposed to PM2.5 at a daily mean concentration of 382.18 µg/m3 for 3 months in an enriched-ambient PM2.5 exposure system in Shijiazhuang, China, and PM2.5 collected form Shijiazhuang was applied to RAW264.7 cells at 100 µg/mL for 48 h. The results indicated that exposure to PM2.5 induced histopathological changes and DNA damage in the lung, kidney and spleen of male ICR mice, and led to decreased cell viability, increased LDH activity and DNA damage in RAW264.7 cells. Furthermore, circ_Cabin1 expression was significantly upregulated in multiple mouse organs as well as in RAW264.7 cells upon exposure to PM2.5. PM2.5 exposure also resulted in impairment of non-homologous end joining (NHEJ) repair via the downregulation of Lig4 or Dclre1c expression in vivo and in vitro. Importantly, circ_Cabin1 promoted PM2.5-induced DNA damage via inhibiting of NHEJ repair. Moreover, the expression of circ_Cabin1 and Lig4 or Dclre1c was strongly correlated in multiple mouse organs, as well as in the blood. In summary, our study provides a new perspective on circRNAs in the regulation of DDR after environmental chemical exposure.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , DNA Damage/drug effects , Particulate Matter/toxicity , RNA, Circular/genetics , Animals , Cell Survival/drug effects , DNA End-Joining Repair/genetics , DNA Ligase ATP/genetics , Endonucleases/genetics , Male , Mice , Mice, Inbred ICR , Nuclear Proteins/genetics , RAW 264.7 Cells
5.
Pancreatology ; 19(8): 1049-1053, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31590960

ABSTRACT

PURPOSE: This study was conducted to explore the diagnostic value of MUC2 gene methylation in pancreatic cancer. METHODS: Methylation restriction enzyme digestion (Msp I/Hap II) and polymerase chain reaction (PCR) were performed to detect methylation of the MUC2 gene in fecal and blood specimens from seven study subjects with pancreatic cancer (PC), chronic pancreatitis (CP), or normal controls (CON). Simultaneously, blood CA 19-9 levels were detected as a positive indicator of PC. RESULTS: MUC2 methylation was detected in 50% of PC cell lines. In fecal samples, the MUC2 methylation rate in PC (n = 30) was 43.3%, which was significantly higher than those in CP (n = 8, 0%, P < 0.05) and CON (n = 20, 5.0%, P < 0.05). In blood samples, the MUC2 methylation rate in PC (n = 40) was 52.5%, which was significantly higher than those in CP (n = 15, 0%, P < 0.01) and CON (n = 25, 4.0%, P < 0.01). For PC diagnosis, MUC2 gene methylation in blood samples showed higher specificity and positive predictive value than CA 19-9. The combined detection in the feces and blood showed a 60% MUC2 methylation rate in PC (n = 10), which was higher than those in the CP (n = 5, 0%, P < 0.01) and CON (n = 12, 0%, P < 0.01). CONCLUSIONS: The study can clearly indicate that combined detection of MUC2 gene methylation in the peripheral blood and feces could be used as a new screening and early diagnosis method for pancreatic cancer.


Subject(s)
Mucin-2/genetics , Mucin-2/metabolism , Pancreatic Neoplasms/diagnosis , Pancreatitis/blood , Cell Line , DNA Methylation , Gene Expression Regulation, Neoplastic , Humans , Pancreatic Neoplasms/genetics , Sensitivity and Specificity , Serologic Tests
6.
Toxicol Mech Methods ; 25(8): 637-44, 2015.
Article in English | MEDLINE | ID: mdl-26056851

ABSTRACT

Epidemiological evidence has shown associations between prevalence of Parkinson's disease (PD) and exposure to environmental pollutants, but the mechanisms of pathogensis are still unclear. The objective of this study is to investigate effects of methylmercury (MeHg) on a dopaminergic neuronal cell line, MN9D and compare that to 1-methyl-4-phenylpyridinium (MPP+), a well-established agent associated with pathogenesis of PD. MN9D cells were exposed to MeHg (1-10 µM) and MPP+ (10-400 µM) for 24 or 48 h. Our results showed that MeHg induced cell death dose-dependently. MeHg also decreased the release of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) similar to the effects of MPP+. There was an increase in DOPAC + HVA/DA ratio. At the same time, both MeHg and MPP+ decreased the synthesis of tyrosine hydroxylase and dopamine transporter at the mRNA and protein levels. Expression of the α-Synuclein (α-Syn), a hallmark neuropathological indicator of PD, was also up-regulated at the mRNA level but not at the protein level after both MeHg and MPP+ dosing. Monoamine oxidase-B activity was suppressed in all MeHg treatments and MPP+ (1 µM)-treated cells. These findings suggest that MeHg can disrupt the synthesis, the uptake of DA and the metabolism as well as alter the biology of α-Syn similar to MPP+. Exposure to MeHg may potentially be a risk factor for the development of PD.


Subject(s)
1-Methyl-4-phenylpyridinium/toxicity , Dopamine Plasma Membrane Transport Proteins/antagonists & inhibitors , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Environmental Pollutants/toxicity , Methylmercury Compounds/toxicity , Nerve Tissue Proteins/antagonists & inhibitors , 3,4-Dihydroxyphenylacetic Acid/antagonists & inhibitors , 3,4-Dihydroxyphenylacetic Acid/metabolism , Animals , Cell Line , Cell Survival/drug effects , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/metabolism , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Homovanillic Acid/antagonists & inhibitors , Homovanillic Acid/metabolism , Kinetics , Mice , Monoamine Oxidase/chemistry , Monoamine Oxidase/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , RNA, Messenger/metabolism , Tyrosine 3-Monooxygenase/antagonists & inhibitors , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism , alpha-Synuclein/agonists , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
7.
Heliyon ; 10(1): e23809, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38192820

ABSTRACT

From the perspective of the innovation value chain, this study divides the innovation efficiency of green technology into two stages: R&D efficiency and achievement transformation efficiency. Technology density is introduced as a threshold variable to examine the influence of environmental regulation on the efficiency of green technology innovation at both stages. The findings reveal that China's overall green technology innovation efficiency (GTIE) is improving. R&D efficiency initially declined, then increased, while the efficiency of achievement transformation experienced a three-stage pattern: rise-fall-rise. The GTIE distribution across the two stages progressively increases from the northwest to the southeast, resulting in a concentrated, contiguous "line-shaped" and "block-shaped" pattern. High-efficiency areas are primarily found in the eastern coastal regions. Nationally, Environmental regulation and R&D efficiency share an inverted U-shaped relationship, with a double threshold effect of technology density. Environmental regulation does not significantly affect achievement transformation efficiency, but there is a single threshold effect due to technology density.

8.
Environ Pollut ; 346: 123562, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38365078

ABSTRACT

Carbon black and cadmium (Cd) are important components of atmospheric particulate matter and cigarette smoke that are closely associated with the occurrence and development of lung diseases. Carbon black, particularly carbon black nanoparticles (CBNPs), can easily adsorbs metals and cause severe lung damage and even cell death. Therefore, this study aimed to explore the mechanisms underlying the combined toxicity of CBNPs and Cd. We found that the combined exposure to CBNPs and Cd promoted significantly greater autophagosome formation and ferroptosis (increased malonaldehyde (MDA), reactive oxygen species (ROS), and divalent iron ions (Fe2+) levels and altered ferroptosis-related proteins) compared with single exposure in both 16HBE cells (human bronchial epithelioid cells) and mouse lung tissues. The levels of ferroptosis proteins, transferrin receptor protein 1 (TFRC) and glutathione peroxidase 4 (GPX4), were restored by CBNPs-Cd exposure following treatment with a 3-MA inhibitor. Additionally, under CBNPs-Cd exposure, circPSEN1 overexpression inhibited increases in the autophagy proteins microtubule-associated protein 1 light chain 3 (LC3II/I) and sequestosome-1 (P62). Moreover, increases in TFRC and Fe2+, and decreases in GPX4were inhibited. Knockdown of circPSEN1 reversed these effects. circPSEN1 interacts with autophagy-related gene 5 (ATG5) protein and upregulates nuclear receptor coactivator 4 (NCOA4), the co-interacting protein of ATG5, thereby degrading ferritin heavy chain 1 (FTH1) and increasing Fe2+ in 16HBE cells. These results indicated that the combined exposure to CBNPs and Cd promoted the binding of circPSEN1 to ATG5, thereby increasing autophagosome synthesis and ATG5-NCOA4-FTH1 axis activation, ultimately inducing autophagy-dependent ferroptosis in 16HBE cells and mouse lung tissues. This study provides novel insights into the toxic effects of CBNPs and Cd in mixed pollutants.


Subject(s)
Cadmium , Ferroptosis , Humans , Mice , Animals , Cadmium/toxicity , Soot/toxicity , Autophagy , Epithelial Cells
9.
Environ Int ; 185: 108515, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38394914

ABSTRACT

Hexavalent chromium [Cr (VI)] is an important environmental pollutant and may cause lung injury when inhaled into the human body. Cr (VI) is genotoxic and can cause DNA damage, although the underlying epigenetic mechanisms remain unclear. To simulate the real-life workplace exposure to Cr (VI), we used a novel exposure dose calculation method. We evaluated the effect of Cr (VI) on DNA damage in human bronchial epithelial cells (16HBE and BEAS-2B) by calculating the equivalent real-time exposure dose of Cr (VI) (0 to 10 µM) in an environmental population. Comet experiments and olive tail moment measurements revealed increased DNA damage in cells exposed to Cr (VI). Cr (VI) treatment increased nuclear γ-H2AX foci and γ-H2AX protein expression, and caused DNA damage in the lung tissues of mice. An effective Cr (VI) dose (6 µM) was determined and used for cell treatment. Cr (VI) exposure upregulated circ_0008657, and knockdown of circ_0008657 decreased Cr (VI)-induced DNA damage, whereas circ_0008657 overexpression had the opposite effect. Mechanistically, we found that circ_0008657 binds to microRNA (miR)-203a-3p and subsequently regulates ATM serine/threonine kinase (ATM), a key protein involved in homologous recombination repair downstream of miR-203a-3p, thereby regulating DNA damage induced by Cr (VI). The present findings suggest that circ_0008657 competitively binds to miR-203a-3p to activate the ATM pathway and regulate the DNA damage response after environmental chemical exposure in vivo and in vitro.


Subject(s)
Chromium , MicroRNAs , Humans , Animals , Mice , Chromium/toxicity , DNA Damage , Lung , MicroRNAs/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism
10.
Biochem Biophys Res Commun ; 416(3-4): 270-6, 2011 Dec 16.
Article in English | MEDLINE | ID: mdl-22093819

ABSTRACT

Human plasma membrane-associated sialidase (Neu3) is one of several sialidases that hydrolyze sialic acids in the terminal position of the carbohydrate groups of glycolipids and glycoproteins. Neu3 is mainly localized in plasma membranes and plays crucial roles in the regulation of cell surface functions. In this study, we investigated the effects and molecular mechanisms of Neu3 on cell invasion and migration in vivo and in vitro. Initially, we found that the levels of Neu3 expression were higher in prostate cancer tissues and cell lines than in normal prostate tissues based on RT-PCR and Western blotting analyses. We then applied a Neu3 siRNA approach to block Neu3 signaling using PC-3M cells as model cells. Transwell invasion assays and wound assays showed significantly decreased invasion and migration potential in the Neu3 siRNA-transfected cells. RT-PCR and Western blotting analyses revealed that Neu3 knockdown decreased the expressions of the matrix metalloproteinases MMP-2 and MMP-9. In vivo, mice injected with PC-3M cell tumors were evaluated by SPECT/CT to determine the presence of bone metastases. Mice treated with attenuated Salmonella carrying the Neu3 siRNA developed fewer bone metastases than mice treated with attenuated Salmonella carrying a control Scramble siRNA, attenuated Salmonella alone or PBS. The results for bone metastasis detection by pathology were consistent with the data obtained by SPECT/CT. Tumor blocks were evaluated by histochemical, RT-PCR and Western blotting analyses. The results revealed decreased expressions of MMP-2 and MMP-9 at the mRNA and protein levels. Taken together, the present findings suggest that Neu3 is a promising molecular target for the prevention of prostate cancer metastasis.


Subject(s)
Genetic Therapy/methods , Neuraminidase/antagonists & inhibitors , Prostatic Neoplasms/therapy , RNA, Small Interfering/genetics , Salmonella typhimurium , Animals , Cell Line, Tumor , Cell Movement , Humans , Male , Mice , Mice, Inbred BALB C , Neoplasm Invasiveness , Neuraminidase/genetics , Prostatic Neoplasms/pathology , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/genetics , Transfection/methods
11.
J Pharmacol Exp Ther ; 338(1): 173-83, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21444629

ABSTRACT

Our objective was to evaluate cell growth and death effects by inhibiting Murine Double Minute 2 (MDM2) expression in human prostate cancer cells overexpressing the wild-type (WT) p53 gene. Prostate PC-3 tumor cells were transfected with a plasmid containing either mdm2 small interfering (Si-mdm2) or the WT p53 gene (Pp53) alone, or both (Pmp53), using Lipofectamine in vitro and attenuated Salmonella enterica serovar Typhi vaccine strain Ty21a (Salmonella Typhi Ty21a) in vivo. Cell growth, apoptosis, and the expression of related genes and proteins were examined in vitro and in vivo by flow cytometry and Western blot assays. We demonstrated that human prostate tumors had increased expression of MDM2 and mutant p53 proteins. Transfection of the PC-3 cells with the Pmp53 plasmid in vitro offered significant inhibition of cell growth and an increase in apoptotic cell death compared with that of the Si-mdm2 or Pp53 group. These effects were associated with up-regulation of p21 and down-regulation of hypoxia-inducible factor 1α expression in Pmp53-transfected cells. To validate the in vitro findings, the nude mice implanted with PC-3 cells were treated with attenuated Salmonella Typhi Ty21a carrying the plasmids, which showed that the Pmp53 plasmid significantly inhibited the tumor growth rate in vivo compared with that of the Si-mdm2 or Pp53 plasmid alone. Tumor tissues from mice treated with the Pmp53 plasmid showed increased expression of p21 and decreased expression of hypoxia-inducible factor 1α proteins, with an increased apoptotic effect. These results suggest that knockdown of mdm2 expression by its specific small interfering RNA with overexpression of the WT p53 gene offers synergistic inhibition of prostate cancer cell growth in vitro and in vivo.


Subject(s)
Gene Expression Regulation, Neoplastic , Genes, p53/physiology , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-mdm2/biosynthesis , Proto-Oncogene Proteins c-mdm2/genetics , RNA, Small Interfering/biosynthesis , RNA, Small Interfering/genetics , Animals , Cell Line, Tumor , Humans , Male , Mice , Mice, Nude , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Random Allocation , Xenograft Model Antitumor Assays/methods
12.
Toxicol Sci ; 179(2): 149-161, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33226422

ABSTRACT

Circular RNAs (circRNAs) are a type of closed, long, non-coding RNAs, which have attracted significant attention in recent years. CircRNAs exhibit unique functions and are characterized by stable expression in various tissues across different species. Because the identification of circRNA in plant viroids in 1976, numerous studies have been conducted to elucidate its generation as well as expression under normal and disease conditions. The rapid development of research focused on the roles of circRNAs as biomarkers in diseases such as cancers has led to increased interests in evaluating the effects of toxicants on the human genetics from a toxicological perspective. Notably, increasing amounts of chemicals are generated in the environment; however, their toxic features and interactions with the human body, particularly from the epigenetic viewpoint, remain largely unknown. Considering the unique features of circRNAs as potential prognostic biomarkers as well as their roles in evaluating health risks following exposure to toxicants, the aim of this review was to assess the latest progress in the research concerning circRNA, to address the role of the circRNA-miRNA-mRNA axis in diseases and processes occurring after exposure to toxic compounds. Another goal was to identify the gaps in understanding the interactions between toxic compounds and circRNAs as potential biomarkers. The review presents general information about circRNA (ie, biogenesis and functions) and provides insights into newly discovered exosome-contained circRNA. The roles of circRNAs as potential biomarkers are also explored. A comprehensive review of the available literature on the role of circRNA in toxicological research (ie, chemical carcinogenesis, respiratory toxicology, neurotoxicology, and other unclassified toxicological categories) is included.


Subject(s)
MicroRNAs , RNA, Circular , Biomarkers , Carcinogenesis , Humans , RNA, Messenger
13.
J Cancer ; 12(8): 2351-2358, 2021.
Article in English | MEDLINE | ID: mdl-33758611

ABSTRACT

Objective: The purpose of this study was to evaluate the prognostic value of computed tomography (CT) texture features of pancreatic cancer with liver metastases. Methods: We included 39 patients with metastatic pancreatic cancer (MPC) with liver metastases and performed texture analysis on primary tumors and metastases. The correlations between texture parameters were assessed using Pearson's correlation. Univariate Cox proportional hazards model was used to assess the correlations between clinicopathological characteristics, texture features and overall survival (OS). The univariate Cox regression model revealed four texture features potentially correlated with OS (P<0.1). A radiomics score (RS) was determined using a sequential combination of four texture features with potential prognostic value that were weighted according to their ß-coefficients. Furthermore, all variables with P<0.1 were included in the multivariate analysis. A nomogram,which was developed to predict OS according to independent prognostic factors, was internally validated using the C-index and calibration plots. Kaplan-Meier analysis and the log-rank test were performed to stratify OS according to the RS and nomogram total points (NTP). Results: Few significant correlations were found between texture features of primary tumors and those of liver metastases. However, texture features within primary tumors or liver metastases were significantly associated. Multivariate analysis showed that Eastern Cooperative Oncology Group performance status (ECOG PS), chemotherapy, Carbohydrate antigen 19-9 (CA19-9), and the RS were independent prognostic factors (P<0.05). The nomogram incorporating these factors showed good discriminative ability (C-index = 0.754). RS and NTP stratified patients into two potential risk groups (P<0.01). Conclusion: The RS derived from significant texture features of primary tumors and metastases shows promise as a prognostic biomarker of OS of patients with MPC. A nomogram based on the RS and other independent prognostic clinicopathological factors accurately predicts OS.

14.
Environ Pollut ; 268(Pt B): 115820, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33120140

ABSTRACT

Diet, age, and growth rate influences on fish mercury concentrations were investigated for Arctic char (Salvelinus alpinus) and brook trout (Salvelinus fontinalis) in lakes of the eastern Canadian Arctic. We hypothesized that faster-growing fish have lower mercury concentrations because of growth dilution, a process whereby more efficient growth dilutes a fish's mercury burden. Using datasets of 57 brook trout and 133 Arctic char, linear regression modelling showed fish age and diet indices were the dominant explanatory variables of muscle mercury concentrations for both species. Faster-growing fish (based on length-at-age) fed at a higher trophic position, and as a result, their mercury concentrations were not lower than slower-growing fish. Muscle RNA/DNA ratios were used as a physiological indicator of short-term growth rate (days to weeks). Slower growth of Arctic char, inferred from RNA/DNA ratios, was found in winter versus summer and in polar desert versus tundra lakes, but RNA/DNA ratio was (at best) a weak predictor of fish mercury concentration. Net effects of diet and age on mercury concentration were greater than any potential offset by biomass dilution in faster-growing fish. In these resource-poor Arctic lakes, faster growth was associated with feeding at a higher trophic position, likely due to greater caloric (and mercury) intake, rather than growth efficiency.


Subject(s)
Mercury , Salmonidae , Water Pollutants, Chemical , Animals , Arctic Regions , Canada , Diet , Environmental Monitoring , Lakes , Mercury/analysis , Water Pollutants, Chemical/analysis
15.
J Colloid Interface Sci ; 575: 78-87, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32361048

ABSTRACT

Simultaneous enhancement in water flux and removal efficiency during the filtration process remains a big challenge for separation membranes. The porous structure of the filter paper can provide many channels for water transportation, but the separation performance is generally poor. The purpose of this study is to develop a new kind of filter paper consisting of ultralong hydroxyapatite (HAP) nanowires, cellulose fibers (CFs) and double metal oxide (LDO) nanosheets, and to achieve the simultaneous enhancement of both water flux and removal efficiency for high-performance dye separation. In this work, a novel kind of LDO/HAP/CF nanocomposite filter paper consisting of ultralong HAP nanowires and CFs and LDO nanosheets has been developed for rapid water filtration and highly efficient dye adsorption. Positively charged LDO nanosheets can adsorb on the surface of negatively charged ultralong HAP nanowires and embed in the porous networked structure of the LDO/HAP/CF nanocomposite filter paper, which can provide a porous structure for rapid water transportation and can adjust the pore size of the nanocomposite filter paper. As a result, the pure water flux of the LDO/HAP/CF nanocomposite filter paper can be adjusted. The optimized pure water flux of the LDO/HAP/CF nanocomposite filter paper can reach 783.6 L m-2 h-1 bar-1, which is 1.51 times that of the HAP/CF filter paper without LDO nanosheets (518.6 L m-2 h-1 bar-1). More importantly, the adsorption capacity of LDO nanosheets is high for dye molecules, the rejection percentage of Congo red (CR) by the as-prepared HAP/CF filter paper is only 59.8%, and its water flux is 534.7 L m-2 h-1 bar-1. The optimized rejection percentage and water flux of the LDO/HAP/CF nanocomposite filter paper for CR are significantly enhanced (98.3% and 736.8 L m-2 h-1 bar-1, respectively) compared to those of the HAP/CF filter paper. The size of LDO nanosheets has a significant effect on the water flux and dye rejection percentage of the LDO/HAP/CF nanocomposite filter paper. The as-prepared LDO/HAP/CF nanocomposite filter paper is promising for the applications in highly efficient purification of wastewater containing dye molecules.

16.
Environ Int ; 143: 105976, 2020 10.
Article in English | MEDLINE | ID: mdl-32707273

ABSTRACT

Fine particulate matter (PM2.5) is one of the most important components of environmental pollutants, and is associated with pulmonary injury. However, the biological mechanisms of pulmonary damage caused by PM2.5 are poorly defined, especially the molecular pathways related to inflammation. Following system exposure to PM2.5 for 3 months in normal mice and in chronic obstructive pulmonary disease (COPD) model mice, it was found that PM2.5 exposure increased the expression of IL-1ß and IL-18 in lung tissues via NLRP3 activation, and these effects were more intense in COPD model mice. Circular RNA (circRNA) sequencing showed that the expression profiles of circRNAs were changed after PM2.5 exposure, and the positive roles of circBbs9 in inflammation induced by PM2.5 were verified. The circBbs9 knockdown alleviated PM2.5-induced inflammation via NLRP3 inflammasome inactivation, as well as IL-1ß and IL-18 inhibition in RAW264.7 cells, while overexpression of circBbs9 had the opposite effect. Bioinformatics and luciferase reporter assays showed that circBbs9 bound to microRNA-30e-5p (miR-30e-5p) and co-regulated the expression of Adar, a downstream target gene of miR-30e-5p. Taken together, these results revealed that PM2.5 induced pulmonary inflammation through NLRP3 inflammasome activation regulated by the circBbs9-miR-30e-5p-Adar pathway. Our findings provide a new target, circBbs9, for the assessment of lung inflammation and COPD exacerbation induced by PM2.5 exposure.


Subject(s)
Inflammasomes , Pneumonia , Animals , Inflammation/chemically induced , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Particulate Matter/toxicity , Pneumonia/chemically induced , RNA, Circular
17.
Methods Mol Biol ; 487: 161-87, 2009.
Article in English | MEDLINE | ID: mdl-19301647

ABSTRACT

RNAi is a powerful research tool for specific gene silencing and may also lead to promising novel therapeutic strategies. However, the development of RNAi-based therapies has been slow due to the lack of targeted delivery methods. The biggest challenge in the use of siRNA-based therapies is the delivery to target cells. There are many additional obstacles to in vivo delivery of siRNAs, such as degradation by endogenous enzymes and interaction with blood components leading to nonspecific uptake into cells, which govern biodistribution and availability of siRNA in the body. Naked unmodified synthetic siRNA including plasmid-carried-shRNA-expression constructs cannot penetrate cellular membranes, and therefore, systemic application is unlikely to be successful. The success of gene therapy by siRNAs relies on the development of safe, economical, and efficacious in vivo delivery systems into the target cells. Attenuated Salmonella have been employed recently as vectors to deliver silencing hairpin RNA (shRNA) expression plasmids into mammalian cells. This approach has achieved gene silencing in vitro and in vivo. The facultative anaerobic, invasive Salmonella have a natural tropism for solid tumors including metastatic tumors. Genetically modified, attenuated Salmonella have been used recently both as potential antitumor agents by themselves, and to deliver specific tumoricidal therapies. This chapter describes the use of attenuated bacteria as tumor-targeting delivery systems for cancer therapy.


Subject(s)
Drug Delivery Systems/methods , Genetic Therapy/methods , Liver Neoplasms/therapy , Prostatic Neoplasms/therapy , RNA, Small Interfering/administration & dosage , Salmonella typhi/genetics , Animals , Blotting, Northern , Blotting, Western , Gene Silencing , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Liver Neoplasms/microbiology , Liver Neoplasms/secondary , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Plasmids , Prostatic Neoplasms/microbiology , Prostatic Neoplasms/pathology , RNA, Messenger/analysis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transfection , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
18.
Clin Cancer Res ; 14(2): 559-68, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-18223232

ABSTRACT

PURPOSE: Persistent activation of signal transducers and activators of transcription 3 (Stat3) and its overexpression contribute to the progression and metastasis of several different tumor types. For this reason, Stat3 is a reasonable target for RNA interference-mediated growth inhibition. Blockade of Stat3 using specific short hairpin RNAs (shRNA) can significantly reduce prostate tumor growth in mice. However, RNA interference does not fully ablate target gene expression in vivo, owing to the idiosyncrasies associated with shRNAs and their targets. To enhance the therapeutic efficacy of Stat3-specific shRNA, we applied a combination treatment involving gene associated with retinoid-IFN-induced mortality 19 (GRIM-19), another inhibitor of STAT3, along with shRNA. EXPERIMENTAL DESIGN: The coding sequences for GRIM-19, a cellular STAT3-specific inhibitor, and Stat3-specific shRNAs were used to create a dual expression plasmid vector and used for prostate cancer therapy in vitro and in mouse xenograft models in vivo. RESULTS: The coexpressed Stat3-specific shRNA and GRIM-19 synergistically and more effectively suppressed prostate tumor growth and metastases when compared with treatment with either single agent alone. CONCLUSION: The simultaneous use of two specific, but mechanistically different, inhibitors of STAT3 activity exerts enhanced antitumor effects.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , NADH, NADPH Oxidoreductases/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , RNA, Small Interfering/metabolism , STAT3 Transcription Factor/metabolism , Animals , Apoptosis , Apoptosis Regulatory Proteins/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , NADH, NADPH Oxidoreductases/genetics , Plasmids , Prostate/metabolism , Prostatic Neoplasms/genetics , STAT3 Transcription Factor/genetics , Transcription, Genetic , Xenograft Model Antitumor Assays
19.
RSC Adv ; 9(69): 40750-40757, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-35542675

ABSTRACT

In the history of civilization, Xuan paper with its superior texture, durability and suitable characteristics for writing and painting, has played an important role in the dissemination of culture and art. Xuan paper has won the reputation of "the king of paper that lasts for 1000 years" and was inscribed on the Representative List of the Intangible Cultural Heritage of Humanity by the Educational, Scientific and Cultural Organization of the United Nations in 2009. However, the surface of the commercial unprocessed Xuan paper has a large number of large-sized pores with a poor resistance to water, allowing ink droplets to easily spread during the writing and painting process. In this study, we report a new kind of nanocomposite Xuan (HNXP) paper comprising ultralong hydroxyapatite (HAP) nanowires and plant cellulose fibers with unique ink wetting performance, high whiteness and excellent durability. The as-prepared HNXP paper sheets with various weight ratios of ultralong HAP nanowires ranging from 10% to 100% are all superhydrophilic with a water contact angle of zero. In contrast, the ink contact angle of the HNXP paper can be well controlled by adjusting the weight ratio of ultralong HAP nanowires, and the ink contact angle of the HNXP paper increases with increasing weight ratio of ultralong HAP nanowires. The experimental results show the unique ink wetting behavior of the as-prepared HNXP paper, which is absent in the traditional Xuan paper. This new kind of nanocomposite Xuan paper comprising ultralong hydroxyapatite nanowires and plant cellulose fibers is promising for applications in calligraphy and painting arts.

20.
Toxicol In Vitro ; 57: 96-104, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30776503

ABSTRACT

Methylmercury (MeHg) is a neurotoxicant, with the cerebellum as the main target of toxicity; however, the toxic effects of MeHg on specific cell types remain unclear. Here, primary cerebellar granule neurons (CGNs) and cerebellar astrocytes were isolated and analyzed for total mercury accumulation, cellular reactive oxygen species (ROS) production, and whole-cell proteome expression after exposure to 0-10 µM MeHg for 24 h. Intracellular mercury and ROS levels showed dose-dependent increases. Mercury accumulation was greater in CGNs than astrocytes. The proteomic analysis identified a total of 1966 and 3214 proteins in CGNs and astrocytes, among which 183 and 262 proteins were differentially expressed after mercury exposure, respectively. Enrichment analysis revealed mitochondrial-associated organelles as the main targets of MeHg in both cell types. Whereas multiple functions/pathways were affected in CGNs, the oxidation-reduction process was the most significantly changed function/pathway in astrocytes. CGNs were more sensitive to MeHg-mediated neurotoxicity than astrocytes. The two cell types showed distinct mechanistic responses to MeHg. In astrocytes, the mitochondrion was the primary target of toxicity, resulting in increases in oxidation-reduction process responses. In CGNs, the neurotrophin signaling pathway, cytoskeleton, cAMP signaling pathway, and thyroid hormone signaling pathway were affected.


Subject(s)
Astrocytes/drug effects , Environmental Pollutants/toxicity , Methylmercury Compounds/toxicity , Neurons/drug effects , Proteome/drug effects , Animals , Astrocytes/metabolism , Cells, Cultured , Cerebellum/cytology , Mice, Inbred BALB C , Neurons/metabolism , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL