Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Toxicol Mech Methods ; : 1-14, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38699799

ABSTRACT

Bisphenol A (BPA), a common plasticizer, is categorized as a neurotoxic compound. Its impact on individuals exhibits sex-linked variations. Several biological and environmental factors impact the degree of toxicity. Moreover, nutritional factors have profound influence on toxicity outcome. BPA has been demonstrated to be an obesogen. However, research on the potential role of obesity as a confounding factor in BPA toxicity is lacking. We studied the neurodegenerative effects in high-fat diet (HFD)-induced obese female rats after exposure to BPA (10 mg/L via drinking water for 90 days). Four groups were taken in this study - Control, HFD, HFD + BPA and BPA. Cognitive function was evaluated through novel object recognition (NOR) test. Inflammatory changes in brain, and changes in hormonal level, lipid profile, glucose tolerance, oxidative stress, and antioxidants were also determined. HFD + BPA group rats showed a significant decline in memory function in NOR test. The cerebral cortex (CC) of the brain showed increased neurodegenerative changes as measured by microtubule-associated protein-2 (MAP-2) accompanied by histopathological confirmation. The increased level of neuroinflammation was demonstrated by microglial activation (Iba-1) and protein expression of nuclear factor- kappa B (NF-КB) in the brain. Obesity also caused significant (p < 0.05) increase in lipid peroxidation accompanied by reduced activities of antioxidant enzymes (glutathione S-transferase, catalase and glutathione peroxidase) and decrease in reduced-glutathione (p < 0.05) when compared to non-obese rats with BPA treatment. Overall, study revealed that obesity serves as a risk factor in the toxicity of BPA which may exacerbate the progression of neurological diseases.

2.
Plant Cell Rep ; 42(7): 1133-1146, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37195503

ABSTRACT

KEY MESSAGE: F-box E3-ubiquitin ligases regulate critical biological processes in plant development and stress responses. Future research could elucidate why and how plants have acquired a large number of F-box genes. The ubiquitin-proteasome system (UPS) is a predominant regulatory mechanism employed by plants to maintain the protein turnover in the cells and involves the interplay of three classes of enzymes, E1 (ubiquitin-activating), E2 (ubiquitin-conjugating), and E3 ligases. The diverse and most prominent protein family among eukaryotes, F-box proteins, are a vital component of the multi-subunit SCF (Skp1-Cullin 1-F-box) complex among E3 ligases. Several F-box proteins with multifarious functions in different plant systems have evolved rapidly over time within closely related species, but only a small part has been characterized. We need to advance our understanding of substrate-recognition regulation and the involvement of F-box proteins in biological processes and environmental adaptation. This review presents a background of E3 ligases with particular emphasis on the F-box proteins, their structural assembly, and their mechanism of action during substrate recognition. We discuss how the F-box proteins regulate and participate in the signaling mechanisms of plant development and environmental responses. We highlight an urgent need for research on the molecular basis of the F-box E3-ubiquitin ligases in plant physiology, systems biology, and biotechnology. Further, the developments and outlooks of the potential technologies targeting the E3-ubiquitin ligases for developing crop improvement strategies have been discussed.


Subject(s)
F-Box Proteins , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , F-Box Proteins/genetics , F-Box Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitins/metabolism , Plant Development/genetics
3.
Microb Pathog ; 168: 105591, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35609767

ABSTRACT

AIMS: How recoding of fnr, an anaerobic regulatory gene, affects pathogenicity related parameters of Salmonella Typhimurium (STM). METHODS AND RESULTS: The fnr gene was recoded by substituting all of it's codons with synonymous rare codons of STM. Recoding fnr gene severely reduced the ability of the recoded mutant to compete with wild strain under nutrient depletion condition. Mutants were also less motile than the wild strain and their biofilm forming ability was significantly decreased as compared to wild strain. The recoded strain showed significant reduced survival within murine macrophages (RAW264.7) and monocyte derived macrophage of poultry origin. The colonisation ability of recoded mutant in liver and spleen of mice on day 5 of post infection was significantly reduced. The recoded strain exhibited significant reduction in faecal shedding on day 1 and 5 after infection. CONCLUSIONS: Our study showed that recoding the anaerobic regulator fnr of STM significantly compromised its growth, decreased motility, biofilm forming ability and survival within macrophages. Further, the recoded fnr strain showed reduced colonisation ability and faecal shedding in mice. Thus, these findings highlight that recoding the global anaerobic regulator fnr of Salmonella Typhimurium attenuates its pathogenicity.


Subject(s)
Genes, Regulator , Salmonella typhimurium , Anaerobiosis , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Codon , Mice , Virulence
4.
Microb Pathog ; 140: 103936, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31862389

ABSTRACT

AIM: The aim of this study was to understand the role of anaerobic regulator FNR (Fumarate Nitrate Reduction) in Salmonella Typhimurium through proteomic approach. METHODS AND RESULTS: We did label free quantitative proteomic analysis of Salmonella Typhimurium PM45 wild type and the fnr null mutant cultured under anaerobic conditions. The data revealed 153 significantly differentially expressed proteins (DEPs) in the mutant out of 1798 total proteins identified. Out of 153 DEPs, 94 proteins were up-regulated (repressed by FNR) and 59 proteins were down-regulated (activated by FNR) in the mutant. The network analysis indicated up-regulation of TCA cycle, electron transport chain and ethanolamine metabolism and down regulation of pyruvate metabolism and glycerol and glycerophospholipid metabolism. CONCLUSIONS: Our study showed that FNR represses ethanolamine utilization. The different metabolic pathways such as pyruvate metabolism, glycerol metabolism and glycerophospholipid metabolism were activated by FNR. Further, FNR positively regulated the DNA binding protein Fis, one of the global regulators of virulence in Salmonella Typhimurium. Thus, our finding highlights the pivotal role of FNR in regulating bacterial metabolism and virulence during anaerobiosis for systemic infection of the host.


Subject(s)
Anaerobiosis/genetics , Escherichia coli Proteins , Iron-Sulfur Proteins , Metabolic Networks and Pathways/genetics , Salmonella typhimurium , Virulence/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA-Binding Proteins/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression , Gene Expression Regulation, Bacterial , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Mutation , Proteomics , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
5.
J Am Chem Soc ; 139(10): 3685-3696, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28206761

ABSTRACT

We report here on a new series of CO2-reducing molecular catalysts based on Earth-abundant elements that are very selective for the production of formic acid in dimethylformamide (DMF)/water mixtures (Faradaic efficiency of 90 ± 10%) at moderate overpotentials (500-700 mV in DMF measured at the middle of the catalytic wave). The [CpCo(PR2NR'2)I]+ compounds contain diphosphine ligands, PR2NR'2, with two pendant amine residues that act as proton relays during CO2-reduction catalysis and tune their activity. Four different PR2NR'2 ligands with cyclohexyl or phenyl substituents on phosphorus and benzyl or phenyl substituents on nitrogen were employed, and the compound with the most electron-donating phosphine ligand and the most basic amine functions performs best among the series, with turnover frequency >1000 s-1. State-of-the-art benchmarking of catalytic performances ranks this new class of cobalt-based complexes among the most promising CO2-to-formic acid reducing catalysts developed to date; addressing the stability issues would allow further improvement. Mechanistic studies and density functional theory simulations confirmed the role of amine groups for stabilizing key intermediates through hydrogen bonding with water molecules during hydride transfer from the Co center to the CO2 molecule.

6.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt A): 1406-1415, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28844748

ABSTRACT

Enzyme gates are important dynamic features that regulate function. Study of these features is critical for understanding of enzyme mechanism. In this study, the active-site gate of M32 carboxypeptidases (M32CP) is illuminated. Only a handful of members of this family have been structurally and functionally characterized and various aspects of their activity and mechanism are yet not clarified. Here, crystal structure of putative M32CP from Deinococcus radiodurans (M32dr) was solved to 2.4Å resolution. Enzymatic assays confirmed its identity as a carboxypeptidase. Open and relatively closed conformations observed in the structure provided supporting evidence for previously hypothesized hinge motion in this family of enzymes. Molecular dynamics simulations of 1.5µs displayed distinct open and closed conformations revealing amplitude of the motion to be beyond what was observed in the crystal structure. Hinge region and anchoring region of this shell-type gate were identified. A small displacement of 3Å and a helical tilt of 9° propagated by the hinge region translates into a 10Å motion at the top of the gate. The dynamics of the gate was supported by our mutagenesis experiment involving formation of disulphide bond across helices of the gate. The nearly inactive mutant enzyme showed 65-fold increase in the enzymatic activity in presence of reducing agent. Further, while a previously proposed structural basis would have led to its classification in subfamily II, experimentally observed substrate length restriction places M32dr in subfamily I of M32CPs.


Subject(s)
Bacterial Proteins/chemistry , Carboxypeptidases/chemistry , Deinococcus/chemistry , Molecular Dynamics Simulation , Amino Acid Motifs , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carboxypeptidases/genetics , Carboxypeptidases/metabolism , Catalytic Domain , Cloning, Molecular , Crystallography, X-Ray , Deinococcus/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Kinetics , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Thermodynamics
7.
J Comput Chem ; 37(11): 992-1004, 2016 Apr 30.
Article in English | MEDLINE | ID: mdl-26833683

ABSTRACT

Quantum chemical calculations have been performed at CCSD(T)/def2-TZVP level to investigate the strength and nature of interactions of ammonia (NH3 ), water (H2 O), and benzene (C6 H6 ) with various metal ions and validated with the available experimental results. For all the considered metal ions, a preference for C6 H6 is observed for dicationic ions whereas the monocationic ions prefer to bind with NH3 . Density Functional Theory-Symmetry Adapted Perturbation Theory (DFT-SAPT) analysis has been employed at PBE0AC/def2-TZVP level on these complexes (closed shell), to understand the various energy terms contributing to binding energy (BE). The DFT-SAPT result shows that for the metal ion complexes with H2 O electrostatic component is the major contributor to the BE whereas, for C6 H6 complexes polarization component is dominant, except in the case of alkali metal ion complexes. However, in case of NH3 complexes, electrostatic component is dominant for s-block metal ions, whereas, for the d and p-block metal ion complexes both electrostatic and polarization components are important. The geometry (M(+) -N and M(+) -O distance for NH3 and H2 O complexes respectively, and cation-π distance for C6 H6 complexes) for the alkali and alkaline earth metal ion complexes increases down the group. Natural population analysis performed on NH3 , H2 O, and C6 H6 complexes shows that the charge transfer to metal ions is higher in case of C6 H6 complexes.


Subject(s)
Ammonia/chemistry , Benzene/chemistry , Metals/chemistry , Quantum Theory , Water/chemistry , Ions/chemistry , Molecular Structure
8.
Curr Microbiol ; 72(3): 288-96, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26620536

ABSTRACT

Genome recoding with bias codons (synonymous rare codons) or codon pair bias is being used as a method to attenuate virulence mostly in viruses. The target gene chosen for attenuation in general in bacteria is mostly toxin or virulence gene. We have used RNA chaperone hfq, a global post-transcriptional regulator of bacterial gene expression that regulates about 20 % genes in Salmonella, as the target of recoding. The hfq gene was recoded by replacing the codons of hfq gene with synonymous rare codons. Recoding decreased the expression of Hfq protein about two-fold in the mutant as compared to the parent strain. Recoding did not affect growth kinetics, but in growth competition the mutant strain was outcompeted by the parent strain. There was significant decrease in survivability of mutant strain in macrophage as compared to the parent strain. The biofilm formation was significantly impaired in case of recoded mutant. The mutants were also less motile as compared to the parent strain. Intraperitoneal infection of mice with the mutant strain had shown better survival as compared to parent strain. The results show that recoding is an effective method of reducing virulence.


Subject(s)
Codon , Host Factor 1 Protein/genetics , Phenotype , Salmonella typhimurium/physiology , Salmonella typhimurium/pathogenicity , Animals , Biofilms/growth & development , Gene Expression , Host Factor 1 Protein/metabolism , Locomotion , Macrophages/microbiology , Mice , Microbial Viability , Salmonella Infections, Animal , Salmonella typhimurium/genetics , Salmonella typhimurium/growth & development , Survival Analysis
9.
Curr Microbiol ; 73(1): 99-103, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27040823

ABSTRACT

Peste des petits ruminants virus (PPRV) one of the most important viruses of small ruminants has a restricted host range. We report here the presence of PPRV virus in the nasal swabs of 3 out of 12 dogs in a routine microarray screening. The presence of PPRV sequence was further confirmed by PCR and sequencing. The sequence analysis revealed that the PPRV virus has close similarities with the viruses present in Indian subcontinent but was not identical to the vaccine virus used in India. Results suggest possible crossing of species barrier but requires further serological evidences.


Subject(s)
Dog Diseases/virology , Genome, Viral , Nose/virology , Peste-des-petits-ruminants virus/genetics , Peste-des-petits-ruminants virus/isolation & purification , Animals , Dog Diseases/diagnosis , Dogs , India , Peste-des-petits-ruminants virus/classification
10.
Curr Microbiol ; 72(4): 420-5, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26719189

ABSTRACT

Immediate early (IE) genes are transcribed immediately after infection in BHV1 from two different immediate early transcription units. It is reported that the immediate early transcription unit I (IE TU1) of Bovine herpesvirus 1 (BHV1) transcribes two proteins BICP0 and BICP4 from a single promoter by alternative splicing but with identical 5'UTR. We found that the transcripts of BICP0 and BICP4 have different 5'UTRs. The bioinformatics analysis shows two similar spatially arranged TATA less promoter for the two transcripts. The bioinformatics analysis also showed a similar promoter for the IE TU2 which transcribes BICP22. The data strongly suggest that BICP0 and BICP4 are transcribed from two different promoters. The transcript produced by each promoter is spliced specifically as opposed to what has been reported earlier. The BICP0 and BICP4 also show different levels of expression. The expression level of BICP4 continuously declines after attaining a peak level at 1 h, while BICP0 shows biphasic expression supporting the earlier observation that it is expressed from two different promoters.


Subject(s)
Gene Expression Regulation, Viral , Genes, Immediate-Early , Herpesvirus 1, Bovine/genetics , Promoter Regions, Genetic , Trans-Activators/genetics , Transcription, Genetic , Ubiquitin-Protein Ligases/genetics , Viral Envelope Proteins/genetics , Animals , Cattle , Cell Line , Computational Biology/methods , Transcription Initiation Site , Untranslated Regions
11.
J Comput Chem ; 36(8): 529-38, 2015 Mar 30.
Article in English | MEDLINE | ID: mdl-25581071

ABSTRACT

This study probes the nature of noncovalent interactions, such as cation-π, metal ion-lone pair (M-LP), hydrogen bonding (HB), charge-assisted hydrogen bonding (CAHB), and π-π interactions, using energy decomposition schemes-density functional theory (DFT)-symmetry-adapted perturbation theory and reduced variational space. Among cation-π complexes, the polarization and electrostatic components are the major contributors to the interaction energy (IE) for metal ion-π complexes, while for onium ion-π complexes (NH4+, PH4+, OH3+, and SH3+) the dispersion component is prominent. For M-LP complexes, the electrostatic component contributes more to the IE except the dicationic metal ion complexes with H2 S and PH3 where the polarization component dominates. Although electrostatic component dominates for the HB and CAHB complexes, dispersion is predominant in π-π complexes.

12.
Trop Anim Health Prod ; 47(1): 103-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25433646

ABSTRACT

The present study aimed to assess hyperglycaemia with special reference to diabetes mellitus in cattle by clinico-biochemical estimation and evaluation of oxidative stress indices. A total of 256 cattle exhibiting weakness, poor body condition and reduced milk yield in lactating cattle were included in the study. These animals were screened with blood glucose level, urine glucose and ketone bodies. Out of these, 32 (12.5%) cattle showed hyperglycaemia and glycosuria, of which 25% exhibited ketonuria. Diabetes was confirmed in five cattle by estimation of fasting blood glucose, glycated haemoglobin, serum fructosamine, intravenous glucose tolerance test and insulin level. This reports first confirmation of diabetes in cattle in India. All these five animals revealed low level of serum insulin suggestive of insulin-dependent diabetes mellitus in cattle. The level of aspartate aminotransferase (AST) and gamma glutamyl transferase (GGT) was found to be increased in diabetic cattle. Oxidant/antioxidant balance was assessed in hyperglycaemic cattle and five age-matched Holstein Friesian (HF) cross-bred healthy control animals. Diabetic cattle revealed significantly higher (P ≤ 0.01) levels of erythrocytic lipid peroxides in comparison with other hyperglycaemic cattle and healthy controls whereas the level of superoxide dismutase (SOD) and catalase was found to be significantly lower in diabetes-affected animals in comparison to healthy controls. Reduced glutathione did not show a significant difference between hyperglycaemic and control groups. It is concluded from the present study that oxidative stress associated with diabetes in cattle is obvious compared with other hyperglycaemic cattle.


Subject(s)
Diabetes Mellitus/veterinary , Hyperglycemia/blood , Hyperglycemia/veterinary , Oxidative Stress , Animals , Antioxidants/chemistry , Aspartate Aminotransferases/blood , Catalase/blood , Cattle , Erythrocytes , Female , Glutathione/metabolism , India , Insulin/chemistry , Lactation , Oxidants/chemistry , Pilot Projects , Superoxide Dismutase/blood , gamma-Glutamyltransferase/blood
13.
Phys Chem Chem Phys ; 16(32): 17266-71, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25017098

ABSTRACT

The cation binding strength of calix[4]pyrroles in the gas phase has been evaluated by computational studies and further substantiated by ESI mass spectrometry experiments. The DFT optimized geometries of [CP + X](+) complexes are found to be stable in a 1,3-alternate conformation through cation-π interactions and interestingly CPs are found to be better cation receptor than calix[4]arenes. The binding energy values of [CP + X](+) complexes computed at B2PLYP/TZVP//M05-2X/TZVP follows the binding order, Li(+) > Na(+) > K(+) > Rb(+) > Cs(+). The diameter of Li(+) matches very well with the cavity size of CP and thus is optimally disposed to interact simultaneously with all four pyrrole rings through multiple cation-π interactions. However, other cations, due to the increase in their size, drift away from the cavity center towards the rim of the cavity exhibiting weak cation-π interactions. Energy decomposition analysis (EDA) reveals that the electrostatic and polarization effects act as the major driving force in these interactions. The important outcome of the current study is that the stability of precursor and product ions is found to be crucial in the experimental evaluation of binding affinity of Li(+) and Na(+) complexes of CP. The ESI-MS/MS experiments on the cation complexes of different substituted CPs revealed that the binding strength of CPs towards cations is also dependant on the substituents at the meso-position.

14.
Curr Microbiol ; 68(1): 127-31, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24026447

ABSTRACT

Bovine herpesvirus 1 (BHV1) and bovine viral diarrhea virus 2 (BVD2) are endemic in India although no mixed infection with these viruses has been reported from India. We report first mixed infection of these viruses in cattle during routine screening with a microarray chip. 62 of the 69 probes of BHV1 and 42 of the 57 BVD2 probes in the chip gave positive signals for the virus. The virus infections were subsequently confirmed by RT-PCR. We also discuss the implications of these findings.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease/virology , Cattle Diseases/virology , Coinfection/virology , Diarrhea Virus 2, Bovine Viral/genetics , Herpesvirus 1, Bovine/genetics , Infectious Bovine Rhinotracheitis/virology , Oligonucleotide Array Sequence Analysis/methods , Animals , Cattle , Coinfection/veterinary , Diarrhea Virus 2, Bovine Viral/isolation & purification , Herpesvirus 1, Bovine/isolation & purification , India , RNA, Viral/genetics , RNA, Viral/isolation & purification , Reproducibility of Results
15.
Curr Microbiol ; 68(3): 301-4, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24129840

ABSTRACT

AVPDS (Animal Viruses Probe dataset) is a dataset of virus-specific and conserve oligonucleotides for identification and diagnosis of viruses infecting animals. The current dataset contain 20,619 virus specific probes for 833 viruses and their subtypes and 3,988 conserved probes for 146 viral genera. Dataset of virus specific probe has been divided into two fields namely virus name and probe sequence. Similarly conserved probes for virus genera table have genus, and subgroup within genus name and probe sequence. The subgroup within genus is artificially divided subgroups with no taxonomic significance and contains probes which identifies viruses in that specific subgroup of the genus. Using this dataset we have successfully diagnosed the first case of Newcastle disease virus in sheep and reported a mixed infection of Bovine viral diarrhea and Bovine herpesvirus in cattle. These dataset also contains probes which cross reacts across species experimentally though computationally they meet specifications. These probes have been marked. We hope that this dataset will be useful in microarray-based detection of viruses. The dataset can be accessed through the link https://dl.dropboxusercontent.com/u/94060831/avpds/HOME.html.


Subject(s)
Databases, Nucleic Acid , Microarray Analysis/methods , Veterinary Medicine/methods , Virology/methods , Virus Diseases/veterinary , Viruses/classification , Viruses/isolation & purification , Animals , Oligonucleotide Array Sequence Analysis/methods , Oligonucleotide Probes , Virus Diseases/virology , Viruses/genetics
16.
Article in English | MEDLINE | ID: mdl-38752675

ABSTRACT

Biological Evaluations support Endangered Species Act (ESA) consultation with the US Fish and Wildlife Service and National Marine Fisheries Service by federal action agencies, such as the USEPA, regarding impacts of federal activities on threatened or endangered species. However, they are often time-consuming and challenging to conduct. The identification of pollutant benchmarks or guidance to protect taxa for states and tribes when USEPA has not yet developed criteria recommendations is also of importance to ensure a streamlined approach to Clean Water Act program implementation. Due to substantial workloads, tight regulatory timelines, and the often-protracted length of ESA consultations, there is a need to streamline the development of biological evaluation toxicity assessments for determining the impact of chemical pollutants on ESA-listed species. Moreover, there is limited availability of species-specific toxicity data for many contaminants, further complicating the consultation process. New approach methodologies are being increasingly used in toxicology and chemical safety assessment to rapidly and cost-effectively provide data that can fill gaps in hazard and/or exposure characterization. Here, we present the development of an automated computational pipeline-RASRTox (Rapidly Acquire, Score, and Rank Toxicological data)-to rapidly extract and categorize ecological toxicity benchmark values from curated data sources (ECOTOX, ToxCast) and well-established quantitative structure-activity relationships (TEST, ECOSAR). As a proof of concept, points-of-departure (PODs) generated in RASRTox for 13 chemicals were compared against benchmark values derived using traditional methods-toxicity reference values (TRVs) and water quality criteria (WQC). The RASRTox PODs were generally within an order of magnitude of corresponding TRVs, though less concordant compared with WQC. The greatest utility of RASRTox, however, lies in its ability to quickly and systematically identify critical studies that may serve as a basis for screening value derivation by toxicologists as part of an ecological hazard assessment. As such, the strategy described in this case study can potentially be adapted for other risk assessment contexts and stakeholder needs. Integr Environ Assess Manag 2024;00:1-15. © 2024 Society of Environmental Toxicology & Chemistry (SETAC). This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

17.
Anim Biotechnol ; 24(1): 31-43, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23394368

ABSTRACT

Matrix metalloproteinases (MMPs) are reported to be involved in tumor growth, apoptosis, angiogenesis, invasion, and development of metastases. These are zinc containing metalloproteases, known for their role in extracellular matrix degradation. MMP-11 (stromelysin3) is reported to be highly expressed in breast cancer, therefore it may act as marker enzyme for breast cancer progression. The present work was carried out to produce recombinant canine (Canis lupus familiaris) MMP-11 lacking the signal and propeptide in E. coli by optimizing its expression and purification in biologically active form and to functionally characterize it. A bacterial protein expression vector pPROEX HTc was used. The MMP-11 mature peptide encoding gene was successfully cloned and expressed in E. coli and the purified recombinant enzyme was found to be functionally active. The recombinant enzyme exhibited caseinolytic activity and could be activated by Trypsin and 4-Amino phenyl mercuric acetate (APMA). However Ethylene diamine tertra acetate (EDTA) inhibited the enzyme's caseinolytic activity. The recombinant enzyme degraded extracellular matrix constituents and facilitated migration of MDCK (Madin-Darby canine kidney) cells through BD Biocoat Matrigel invasion chambers. These results suggest that in vivo MMP-11 could play a significant role in the turnover of extracellular matrix constituents.


Subject(s)
Dogs/genetics , Mammary Neoplasms, Animal/genetics , Matrix Metalloproteinase 11/biosynthesis , Recombinant Proteins/metabolism , Animals , Blotting, Western , Cloning, Molecular , Cytological Techniques , DNA, Complementary/chemistry , DNA, Complementary/genetics , DNA, Complementary/isolation & purification , DNA, Neoplasm/chemistry , DNA, Neoplasm/genetics , DNA, Neoplasm/isolation & purification , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Female , Madin Darby Canine Kidney Cells , Mammary Neoplasms, Animal/chemistry , Mammary Neoplasms, Animal/enzymology , Mammary Neoplasms, Animal/metabolism , Matrix Metalloproteinase 11/chemistry , Matrix Metalloproteinase 11/genetics , Matrix Metalloproteinase 11/metabolism , Polymerase Chain Reaction , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Transfection
18.
Tissue Cell ; 83: 102140, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37329686

ABSTRACT

This paper reports on glycogen store in the retinal horizontal cells (HC) of the African mud catfish Clarias gariepinus, as seen by histochemical reaction with periodic acid Schiff (PAS) and transmission electron microscopy in light- as well as dark-adapted state. Glycogen is abundant in the large somata and less in their axons, characterised ultrastructurally by many microtubules and extensive gap junctions interconnecting them. There was no apparent difference in glycogen content in HC somata between light- and dark adaptation, but the axons clearly showed absence of glycogen in dark condition. The HC somata (presynaptic) make synapses with dendrites in the outer plexiform layer. Müller cell inner processes, which contain more densely packed glycogen, invest the HC. Other cells of the inner nuclear layer do not show any appreciable content of glycogen. Rods, but not cones, contain abundant glycogen in their inner segments and synaptic terminals. It is likely that glycogen is used as energy substrate in hypoxia for this species that dwell muddy aquatic environment with low oxygen content. They appear to have high energy demand, and a high glycogen content in HC could act as a ready source to fulfil physiological processes, like microtubule-based transport of cargo from the large somata to axons and the maintenance of electrical activities across the gap junctions between the axonal processes. It is also likely that they can supplement glucose to the neighbouring inner nuclear layer neurons, which are clearly devoid of glycogen.


Subject(s)
Catfishes , Animals , Retinal Horizontal Cells , Glycogen , Retina , Neurons , Synapses/ultrastructure
19.
RSC Adv ; 13(51): 36242-36253, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38090063

ABSTRACT

Herein, the efficacy of WOx-promoted CeO2-SiO2 and CeO2-ZrO2 mixed oxide catalysts in the solvent-free selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as an oxidant is reported. We evaluated the effects of the oxidant and catalyst concentration, reaction duration, and temperature on the reaction with an aim to optimize the reaction conditions. The as-prepared CeO2, CeO2-ZrO2, CeO2-SiO2, WOx/CeO2, WOx/CeO2-ZrO2, and WOx/CeO2-SiO2 catalysts were characterized by X-ray diffraction (XRD), N2 adsorption-desorption, Raman spectroscopy, temperature-programmed desorption of ammonia (TPD-NH3), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). These characterisation results indicated that the WOx/CeO2-SiO2 catalyst possessed improved physicochemical (i.e., structural, textural, and acidic) properties owing to the strong interactivity between WOx and CeO2-SiO2. A higher number of Ce3+ ions (Iu'''/ITotal) were created with the WOx/CeO2-SiO2 catalyst than those with the other catalysts in this work, indicating the generation of a high number of oxygen vacancies. The WOx/CeO2-SiO2 catalyst exhibited a high conversion of benzyl alcohol (>99%) and a high selectivity (100%) toward benzaldehyde compared to the other promoted catalysts (i.e., WOx/CeO2 and WOx/CeO2-ZrO2), which is attributed to the smaller particle size of the WOx and CeO2 and their high specific surface area, more significant number of acidic sites, and superior number of oxygen vacancies. The WOx/CeO2-SiO2 catalyst could be quickly recovered and utilized at least five times without suffering any appreciable activity loss.

20.
Front Med Technol ; 5: 1236107, 2023.
Article in English | MEDLINE | ID: mdl-37521721

ABSTRACT

Nanotechnology has become one of the most rapid, innovative, and adaptable sciences in modern science and cancer therapy. Traditional chemotherapy has limits owing to its non-specific nature and adverse side effects on healthy cells, and it remains a serious worldwide health issue. Because of their capacity to specifically target cancer cells and deliver therapeutic chemicals directly to them, nanoparticles have emerged as a viable strategy for cancer therapies. Nanomaterials disclose novel properties based on size, distribution, and shape. Biosynthesized or biogenic nanoparticles are a novel technique with anti-cancer capabilities, such as triggering apoptosis in cancer cells and slowing tumour growth. They may be configured to deliver medications or other therapies to specific cancer cells or tumour markers. Despite their potential, biosynthesized nanoparticles confront development obstacles such as a lack of standardisation in their synthesis and characterization, the possibility of toxicity, and their efficiency against various forms of cancer. The effectiveness and safety of biosynthesized nanoparticles must be further investigated, as well as the types of cancer they are most successful against. This review discusses the promise of biosynthesized nanoparticles as a novel approach for cancer therapeutics, as well as their mode of action and present barriers to their development.

SELECTION OF CITATIONS
SEARCH DETAIL