ABSTRACT
Patients with blood cancer continue to have a greater risk of inadequate immune responses following three COVID-19 vaccine doses and risk of severe COVID-19 disease. In the context of the CAPTURE study (NCT03226886), we report immune responses in 80 patients with blood cancer who received a fourth dose of BNT162b2. We measured neutralizing antibody titers (NAbTs) using a live virus microneutralization assay against wild-type (WT), Delta, and Omicron BA.1 and BA.2 and T cell responses against WT and Omicron BA.1 using an activation-induced marker (AIM) assay. The proportion of patients with detectable NAb titers and T cell responses after the fourth vaccine dose increased compared with that after the third vaccine dose. Patients who received B cell-depleting therapies within the 12 months before vaccination have the greatest risk of not having detectable NAbT. In addition, we report immune responses in 57 patients with breakthrough infections after vaccination.
Subject(s)
COVID-19 Vaccines , COVID-19 , Neoplasms , Humans , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , Clinical Studies as Topic , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Immunity , SARS-CoV-2ABSTRACT
CAPTURE (NCT03226886) is a prospective cohort study of COVID-19 immunity in patients with cancer. Here we evaluated 585 patients following administration of two doses of BNT162b2 or AZD1222 vaccines, administered 12 weeks apart. Seroconversion rates after two doses were 85% and 59% in patients with solid and hematological malignancies, respectively. A lower proportion of patients had detectable neutralizing antibody titers (NAbT) against SARS-CoV-2 variants of concern (VOCs) vs wildtype (WT). Patients with hematological malignancies were more likely to have undetectable NAbT and had lower median NAbT vs solid cancers against both WT and VOCs. In comparison with individuals without cancer, patients with haematological, but not solid, malignancies had reduced NAb responses. Seroconversion showed poor concordance with NAbT against VOCs. Prior SARS-CoV-2 infection boosted NAb response including against VOCs, and anti-CD20 treatment was associated with undetectable NAbT. Vaccine-induced T-cell responses were detected in 80% of patients, and were comparable between vaccines or cancer types. Our results have implications for the management of cancer patients during the ongoing COVID-19 pandemic.
Subject(s)
Adaptive Immunity/immunology , Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Carcinoma, Renal Cell/complications , Kidney Neoplasms/complications , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , COVID-19/complications , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , ChAdOx1 nCoV-19/administration & dosage , ChAdOx1 nCoV-19/immunology , Female , Humans , Immunogenicity, Vaccine/immunology , Longitudinal Studies , Male , Middle Aged , Pandemics/prevention & control , Prospective Studies , SARS-CoV-2/genetics , SARS-CoV-2/physiology , T-Lymphocytes/immunology , T-Lymphocytes/virology , Vaccination/methodsABSTRACT
Patients with cancer have higher COVID-19 morbidity and mortality. Here we present the prospective CAPTURE study (NCT03226886) integrating longitudinal immune profiling with clinical annotation. Of 357 patients with cancer, 118 were SARS-CoV-2-positive, 94 were symptomatic and 2 patients died of COVID-19. In this cohort, 83% patients had S1-reactive antibodies, 82% had neutralizing antibodies against WT, whereas neutralizing antibody titers (NAbT) against the Alpha, Beta, and Delta variants were substantially reduced. Whereas S1-reactive antibody levels decreased in 13% of patients, NAbT remained stable up to 329 days. Patients also had detectable SARS-CoV-2-specific T cells and CD4+ responses correlating with S1-reactive antibody levels, although patients with hematological malignancies had impaired immune responses that were disease and treatment-specific, but presented compensatory cellular responses, further supported by clinical. Overall, these findings advance the understanding of the nature and duration of immune response to SARS-CoV-2 in patients with cancer.
ABSTRACT
Patients with cancer have higher COVID-19 morbidity and mortality. Here we present the prospective CAPTURE study, integrating longitudinal immune profiling with clinical annotation. Of 357 patients with cancer, 118 were SARS-CoV-2 positive, 94 were symptomatic and 2 died of COVID-19. In this cohort, 83% patients had S1-reactive antibodies and 82% had neutralizing antibodies against wild type SARS-CoV-2, whereas neutralizing antibody titers against the Alpha, Beta and Delta variants were substantially reduced. S1-reactive antibody levels decreased in 13% of patients, whereas neutralizing antibody titers remained stable for up to 329 days. Patients also had detectable SARS-CoV-2-specific T cells and CD4+ responses correlating with S1-reactive antibody levels, although patients with hematological malignancies had impaired immune responses that were disease and treatment specific, but presented compensatory cellular responses, further supported by clinical recovery in all but one patient. Overall, these findings advance the understanding of the nature and duration of the immune response to SARS-CoV-2 in patients with cancer.
Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , Neoplasms/complications , T-Lymphocytes/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/mortality , Female , Follow-Up Studies , Humans , Immunity, Cellular , Male , Middle Aged , Neoplasms/blood , Neoplasms/immunology , Prospective Studies , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Young AdultABSTRACT
Coronavirus disease 2019 (COVID-19) antiviral response in a pan-tumor immune monitoring (CAPTURE) ( NCT03226886 ) is a prospective cohort study of COVID-19 immunity in patients with cancer. Here we evaluated 585 patients following administration of two doses of BNT162b2 or AZD1222 vaccines, administered 12 weeks apart. Seroconversion rates after two doses were 85% and 59% in patients with solid and hematological malignancies, respectively. A lower proportion of patients had detectable titers of neutralizing antibodies (NAbT) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) versus wild-type (WT) SARS-CoV-2. Patients with hematological malignancies were more likely to have undetectable NAbT and had lower median NAbT than those with solid cancers against both SARS-CoV-2 WT and VOC. By comparison with individuals without cancer, patients with hematological, but not solid, malignancies had reduced neutralizing antibody (NAb) responses. Seroconversion showed poor concordance with NAbT against VOC. Previous SARS-CoV-2 infection boosted the NAb response including against VOC, and anti-CD20 treatment was associated with undetectable NAbT. Vaccine-induced T cell responses were detected in 80% of patients and were comparable between vaccines or cancer types. Our results have implications for the management of patients with cancer during the ongoing COVID-19 pandemic.
Subject(s)
BNT162 Vaccine/immunology , COVID-19/prevention & control , ChAdOx1 nCoV-19/immunology , Neoplasms/immunology , SARS-CoV-2/immunology , Aged , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , COVID-19/blood , COVID-19/immunology , ChAdOx1 nCoV-19/administration & dosage , Female , Humans , Immunity, Cellular , Immunogenicity, Vaccine , Male , Middle Aged , Neoplasms/blood , Neoplasms/complications , Prospective Studies , T-Lymphocytes/immunologyABSTRACT
Introduction Our dried blood spot vitamin D testing service enables members of the public to assess their vitamin D status. Vitamin D has become popular with the media and the general public. We noticed that our direct access service had a higher rate of high to toxic 25-hydroxyvitamin D levels compared with our GP population and we wanted to know why. Methods Between January 2013 and September 2015 we contacted all direct access users who had 25-hydroxyvitamin D >220 nmol/L measured using LC/MS/MS. We investigated the amount, type and length of supplementation used and whether or not users were medically supervised. Results A total of 372 service users had 25-hydroxyvitamin D concentrations >220 nmol/L. Of 14,806 direct access samples received, 372 (2.5%) were from users with 25-hydroxyvitamin D concentrations ranging from 221 to 1235 nmol/L. Only 0.06% of GP patients had results >220 nmol/L over the same time frame. There were 361 direct access users regularly supplementing, taking between 1000 to 120,000 IU/day. Two users took bolus doses of 300,000 and 900,000 IU. Only 23 users taking supplements (6.4%) were under medical supervision. There were 28 users with levels >500 nmol/L, but only one was under medical supervision. The internet was the main source of supplements (74%). Conclusions The proportion of high to toxic concentrations of vitamin D was higher in direct access users than in the GP population. Many people were taking more than the Institute of Medicine's recommendation of 10,000 IU/day, yet only a few were being medically supervised. Clinicians should be aware that patients may be self-administering very high concentrations of vitamin D, especially when investigating unexplained hypercalcaemia.
Subject(s)
Hypercalcemia/chemically induced , Prescription Drug Overuse/statistics & numerical data , Self Administration/statistics & numerical data , Vitamin D Deficiency/diet therapy , Vitamin D/analogs & derivatives , Adult , Chromatography, Liquid , Dried Blood Spot Testing , Drug Administration Schedule , Female , Humans , Hypercalcemia/blood , Hypercalcemia/diagnosis , Male , Middle Aged , Tandem Mass Spectrometry , Time Factors , Vitamin D/blood , Vitamin D/toxicity , Vitamin D Deficiency/blood , Vitamin D Deficiency/physiopathologySubject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Hematologic Neoplasms/immunology , Immunization, Secondary , SARS-CoV-2/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/complications , COVID-19/epidemiology , Hematologic Neoplasms/complications , Humans , Immunogenicity, Vaccine , Neoplasms/complications , Neoplasms/immunology , Symptom AssessmentSubject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Multiple Myeloma/complications , Aged , Aged, 80 and over , Antibodies, Viral/blood , COVID-19/blood , COVID-19/etiology , COVID-19 Vaccines/adverse effects , Humans , Immunoglobulin G/blood , Male , Middle Aged , Multiple Myeloma/blood , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification , VaccinationABSTRACT
The identification and exploration of a novel, potent and selective series of N-(3-cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)amide inhibitors of JNK2 and JNK3 kinases is described. Compounds 5a and 11a were identified as potent inhibitors of JNK3 (pIC50 6.7 and 6.6, respectively), with essentially equal potency against JNK2 (pIC50 6.5). Selectivity within the mitogen-activated protein kinase (MAPK) family, against JNK1, p38alpha and ERK2, was observed for the series. X-ray crystallography of 5e and 8a in JNK3 revealed a unique binding mode, with the 3-cyano substituent forming an H-bond acceptor interaction with the hinge region of the ATP-binding site.