Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Nutr ; 154(5): 1640-1651, 2024 05.
Article in English | MEDLINE | ID: mdl-38141771

ABSTRACT

BACKGROUND: Cognitive decline, and more specifically Alzheimer's disease, continues to increase in prevalence globally, with few, if any, adequate preventative approaches. Several tests of cognition are utilized in the diagnosis of cognitive decline that assess executive function, short- and long-term memory, cognitive flexibility, and speech and motor control. Recent studies have separately investigated the genetic component of both cognitive health, using these measures, and circulating fatty acids. OBJECTIVES: We aimed to examine the potential moderating effect of main species of ω-3 polyunsaturated fatty acids (PUFAs) on an individual's genetically conferred risk of cognitive decline. METHODS: The Offspring cohort from the Framingham Heart Study was cross-sectionally analyzed in this genome-wide interaction study (GWIS). Our sample included all individuals with red blood cell ω-3 PUFA, genetic, cognitive testing (via Trail Making Tests [TMTs]), and covariate data (N = 1620). We used linear mixed effects models to predict each of the 3 cognitive measures (TMT A, TMT B, and TMT D) by each ω-3 PUFA, single nucleotide polymorphism (SNP) (0, 1, or 2 minor alleles), ω-3 PUFA by SNP interaction term, and adjusting for sex, age, education, APOE ε4 genotype status, and kinship (relatedness). RESULTS: Our analysis identified 31 unique SNPs from 24 genes reaching an exploratory significance threshold of 1×10-5. Fourteen of the 24 genes have been previously associated with the brain/cognition, and 5 genes have been previously associated with circulating lipids. Importantly, 8 of the genes we identified, DAB1, SORCS2, SERINC5, OSBPL3, CPA6, DLG2, MUC19, and RGMA, have been associated with both cognition and circulating lipids. We identified 22 unique SNPs for which individuals with the minor alleles benefit substantially from increased ω-3 fatty acid concentrations and 9 unique SNPs for which the common homozygote benefits. CONCLUSIONS: In this GWIS of ω-3 PUFA species on cognitive outcomes, we identified 8 unique genes with plausible biology suggesting individuals with specific polymorphisms may have greater potential to benefit from increased ω-3 PUFA intake. Additional replication in prospective settings with more diverse samples is needed.


Subject(s)
Erythrocytes , Fatty Acids, Omega-3 , Genome-Wide Association Study , Memory , Polymorphism, Single Nucleotide , Humans , Fatty Acids, Omega-3/blood , Male , Female , Erythrocytes/metabolism , Erythrocytes/chemistry , Middle Aged , Cross-Sectional Studies , Cohort Studies , Cognition , Aged
2.
J Lipid Res ; 64(5): 100353, 2023 05.
Article in English | MEDLINE | ID: mdl-36907552

ABSTRACT

Oxylipins are produced enzymatically from polyunsaturated fatty acids, are abundant in triglyceride-rich lipoproteins (TGRLs), and mediate inflammatory processes. Inflammation elevates TGRL concentrations, but it is unknown if the fatty acid and oxylipin compositions change. In this study, we investigated the effect of prescription ω-3 acid ethyl esters (P-OM3; 3.4 g/d EPA + DHA) on the lipid response to an endotoxin challenge (lipopolysaccharide; 0.6 ng/kg body weight). Healthy young men (N = 17) were assigned 8-12 weeks of P-OM3 and olive oil control in a randomized order crossover study. Following each treatment period, subjects received endotoxin challenge, and the time-dependent TGRL composition was observed. Postchallenge, arachidonic acid was 16% [95% CI: 4%, 28%] lower than baseline at 8 h with control. P-OM3 increased TGRL ω-3 fatty acids (EPA 24% [15%, 34%]; DHA 14% [5%, 24%]). The timing of ω-6 oxylipin responses differed by class; arachidonic acid-derived alcohols peaked at 2 h, while linoleic acid-derived alcohols peaked at 4 h (pint = 0.006). P-OM3 increased EPA alcohols by 161% [68%, 305%] and DHA epoxides by 178% [47%, 427%] at 4 h compared to control. In conclusion, this study shows that TGRL fatty acid and oxylipin composition changes following endotoxin challenge. P-OM3 alters the TGRL response to endotoxin challenge by increasing availability of ω-3 oxylipins for resolution of the inflammatory response.


Subject(s)
Fatty Acids, Omega-3 , Oxylipins , Male , Humans , Esters/pharmacology , Endotoxins , Cross-Over Studies , Fatty Acids, Omega-3/pharmacology , Eicosapentaenoic Acid/pharmacology , Lipoproteins , Triglycerides , Fatty Acids , Arachidonic Acid , Alcohols , Docosahexaenoic Acids/pharmacology
3.
J Lipid Res ; 64(6): 100374, 2023 06.
Article in English | MEDLINE | ID: mdl-37075982

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome, but a predominant subset of HFpEF patients has metabolic syndrome (MetS). Mechanistically, systemic, nonresolving inflammation associated with MetS might drive HFpEF remodeling. Free fatty acid receptor 4 (Ffar4) is a GPCR for long-chain fatty acids that attenuates metabolic dysfunction and resolves inflammation. Therefore, we hypothesized that Ffar4 would attenuate remodeling in HFpEF secondary to MetS (HFpEF-MetS). To test this hypothesis, mice with systemic deletion of Ffar4 (Ffar4KO) were fed a high-fat/high-sucrose diet with L-NAME in their water to induce HFpEF-MetS. In male Ffar4KO mice, this HFpEF-MetS diet induced similar metabolic deficits but worsened diastolic function and microvascular rarefaction relative to WT mice. Conversely, in female Ffar4KO mice, the diet produced greater obesity but no worsened ventricular remodeling relative to WT mice. In Ffar4KO males, MetS altered the balance of inflammatory oxylipins systemically in HDL and in the heart, decreasing the eicosapentaenoic acid-derived, proresolving oxylipin 18-hydroxyeicosapentaenoic acid (18-HEPE), while increasing the arachidonic acid-derived, proinflammatory oxylipin 12-hydroxyeicosatetraenoic acid (12-HETE). This increased 12-HETE/18-HEPE ratio reflected a more proinflammatory state both systemically and in the heart in male Ffar4KO mice and was associated with increased macrophage numbers in the heart, which in turn correlated with worsened ventricular remodeling. In summary, our data suggest that Ffar4 controls the proinflammatory/proresolving oxylipin balance systemically and in the heart to resolve inflammation and attenuate HFpEF remodeling.


Subject(s)
Heart Failure , Metabolic Syndrome , Male , Female , Mice , Animals , Heart Failure/complications , Heart Failure/metabolism , Oxylipins , Metabolic Syndrome/complications , Stroke Volume/physiology , Ventricular Remodeling , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid , Inflammation/complications
4.
Physiology (Bethesda) ; 37(6): 311-322, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35944007

ABSTRACT

A surge in the prevalence of obesity and metabolic syndrome, which promote systemic inflammation, underlies an increase in cardiometabolic disease. Free fatty acid receptor 4 is a nutrient sensor for long-chain fatty acids, like ω3-polyunsaturated fatty acids (ω3-PUFAs), that attenuates metabolic disease and resolves inflammation. Clinical trials indicate ω3-PUFAs are cardioprotective, and this review discusses the mechanistic links between ω3-PUFAs, free fatty acid receptor 4, and attenuation of cardiometabolic disease.


Subject(s)
Cardiovascular Diseases , Fatty Acids, Omega-3 , Fatty Acids, Nonesterified , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-3/therapeutic use , Humans , Inflammation , Signal Transduction
5.
Am J Physiol Endocrinol Metab ; 318(3): E392-E404, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31910030

ABSTRACT

In adipose, insulin functions to suppress intracellular lipolysis and secretion of nonesterified fatty acid (NEFA) into plasma. We applied glucose and NEFA minimal models (MM) following a frequently sampled intravenous glucose tolerance test (FSIVGTT) to assess glucose-specific and NEFA-specific insulin resistance. We used total NEFA and individual fatty acids in the NEFA MM, comparing the model parameters in metabolic syndrome (MetSyn) subjects (n = 52) with optimally healthy controls (OptHC; n = 14). Results are reported as mean difference (95% confidence interval). Using the glucose MM, MetSyn subjects had lower [-73% (-82, -57)] sensitivity to insulin (Si) and higher [138% (44, 293)] acute insulin response to glucose (AIRg). Using the NEFA MM, MetSyn subjects had lower [-24% (-35, -13)] percent suppression, higher [32% (15, 52)] threshold glucose (gs), and a higher [81% (12, 192)] affinity constant altering NEFA secretion (ϕ). Comparing fatty acids, percent suppression was lower in myristic acid (MA) than in all other fatty acids, and the stearic acid (SA) response was so unique that it did not fit the NEFA MM. MA and SA percent of total were increased at 50 min after glucose injection, whereas oleic acid (OA) and palmitic acid (PA) were decreased (P < 0.05). We conclude that the NEFA MM, as well as the response of individual NEFA fatty acids after a FSIVGTT, differ between OptHC and MetSyn subjects and that the NEFA MM parameters differ between individual fatty acids.


Subject(s)
Fatty Acids, Nonesterified/metabolism , Hyperglycemia/metabolism , Hypoglycemia/metabolism , Insulin Resistance , Adult , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Double-Blind Method , Female , Glucose/pharmacology , Glucose Tolerance Test , Humans , Insulin Secretion/drug effects , Lipids/blood , Male , Metabolic Syndrome/metabolism , Middle Aged
6.
Arterioscler Thromb Vasc Biol ; 39(12): 2457-2467, 2019 12.
Article in English | MEDLINE | ID: mdl-31597448

ABSTRACT

The HDL (high-density lipoprotein) Workshop was established in 2009 as a forum for candid discussions among academic basic scientists, clinical investigators, and industry researchers about the role of HDL in cardiovascular disease. This ninth HDL Workshop was held on May 16 to 17, 2019 in Boston, MA, and included outstanding oral presentations from established and emerging investigators. The Workshop featured 5 sessions with topics that tackled the role of HDL in the vasculature, its structural complexity, its role in health and disease states, and its interaction with the intestinal microbiome. The highlight of the program was awarding the Jack Oram Award to the distinguished professor emeritus G.S. Getz from the University of Chicago. The tenth HDL Workshop will be held on May 2020 in Chicago and will continue the focus on intellectually stimulating presentations by established and emerging investigators on novel roles of HDL in cardiovascular and noncardiovascular health and disease states.


Subject(s)
Biomedical Research/methods , Blood Vessels/metabolism , Cardiology , Cardiovascular Diseases/metabolism , Cholesterol, HDL/metabolism , Hypolipidemic Agents/therapeutic use , Societies, Medical , Animals , Cardiovascular Diseases/prevention & control , Congresses as Topic , Humans
7.
Eur Heart J Suppl ; 22(Suppl J): J3-J20, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33061864

ABSTRACT

Patients with well-controlled low-density lipoprotein cholesterol levels, but persistent high triglycerides, remain at increased risk for cardiovascular events as evidenced by multiple genetic and epidemiologic studies, as well as recent clinical outcome trials. While many trials of low-dose ω3-polyunsaturated fatty acids (ω3-PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) have shown mixed results to reduce cardiovascular events, recent trials with high-dose ω3-PUFAs have reignited interest in ω3-PUFAs, particularly EPA, in cardiovascular disease (CVD). REDUCE-IT demonstrated that high-dose EPA (4 g/day icosapent-ethyl) reduced a composite of clinical events by 25% in statin-treated patients with established CVD or diabetes and other cardiovascular risk factors. Outcome trials in similar statin-treated patients using DHA-containing high-dose ω3 formulations have not yet shown the benefits of EPA alone. However, there are data to show that high-dose ω3-PUFAs in patients with acute myocardial infarction had reduced left ventricular remodelling, non-infarct myocardial fibrosis, and systemic inflammation. ω3-polyunsaturated fatty acids, along with their metabolites, such as oxylipins and other lipid mediators, have complex effects on the cardiovascular system. Together they target free fatty acid receptors and peroxisome proliferator-activated receptors in various tissues to modulate inflammation and lipid metabolism. Here, we review these multifactorial mechanisms of ω3-PUFAs in view of recent clinical findings. These findings indicate physico-chemical and biological diversity among ω3-PUFAs that influence tissue distributions as well as disparate effects on membrane organization, rates of lipid oxidation, as well as various receptor-mediated signal transduction pathways and effects on gene expression.

8.
Gut ; 68(10): 1801-1812, 2019 10.
Article in English | MEDLINE | ID: mdl-30670576

ABSTRACT

OBJECTIVE: Diets rich in fermentable fibres provide an array of health benefits; however, many patients with IBD report poor tolerance to fermentable fibre-rich foods. Intervention studies with dietary fibres in murine models of colonic inflammation have yielded conflicting results on whether fibres ameliorate or exacerbate IBD. Herein, we examined how replacing the insoluble fibre, cellulose, with the fermentable fibres, inulin or pectin, impacted murine colitis resulting from immune dysregulation via inhibition of interleukin (IL)-10 signalling and/or innate immune deficiency (Tlr5KO). DESIGN: Mice were fed with diet containing either cellulose, inulin or pectin and subjected to weekly injections of an IL-10 receptor (αIL-10R) neutralising antibody. Colitis development was examined by serological, biochemical, histological and immunological parameters. RESULTS: Inulin potentiated the severity of αIL10R-induced colitis, while pectin ameliorated the disease. Such exacerbation of colitis following inulin feeding was associated with enrichment of butyrate-producing bacteria and elevated levels of caecal butyrate. Blockade of butyrate production by either metronidazole or hops ß-acids ameliorated colitis severity in inulin-fed mice, whereas augmenting caecal butyrate via tributyrin increased colitis severity in cellulose containing diet-fed mice. Elevated butyrate levels were associated with increased IL-1ß activity, while inhibition of the NOD-like receptor protein 3 by genetic, pharmacologic or dietary means markedly reduced colitis. CONCLUSION: These results not only support the notion that fermentable fibres have the potential to ameliorate colitis but also caution that, in some contexts, prebiotic fibres can lead to gut dysbiosis and surfeit colonic butyrate that might exacerbate IBD.


Subject(s)
Colitis/metabolism , Dietary Fiber/metabolism , Gastrointestinal Microbiome/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Acute Disease , Animals , Colitis/diet therapy , Colitis/microbiology , Disease Models, Animal , Fermentation , Male , Mice , Mice, Inbred NOD
9.
J Lipid Res ; 60(11): 1935-1945, 2019 11.
Article in English | MEDLINE | ID: mdl-31484696

ABSTRACT

Chronic sleep restriction, or inadequate sleep, is associated with increased risk of cardiometabolic disease. Laboratory studies demonstrate that sleep restriction causes impaired whole-body insulin sensitivity and glucose disposal. Evidence suggests that inadequate sleep also impairs adipose tissue insulin sensitivity and the NEFA rebound during intravenous glucose tolerance tests, yet no studies have examined the effects of sleep restriction on high-fat meal lipemia. We assessed the effect of 5 h time in bed (TIB) per night for four consecutive nights on postprandial lipemia following a standardized high-fat dinner (HFD). Furthermore, we assessed whether one night of recovery sleep (10 h TIB) was sufficient to restore postprandial metabolism to baseline. We found that postprandial triglyceride (TG) area under the curve was suppressed by sleep restriction (P = 0.01), but returned to baseline values following one night of recovery. Sleep restriction decreased NEFAs throughout the HFD (P = 0.02) and NEFAs remained suppressed in the recovery condition (P = 0.04). Sleep restriction also decreased participant-reported fullness or satiety (P = 0.03), and decreased postprandial interleukin-6 (P < 0.01). Our findings indicate that four nights of 5 h TIB per night impair postprandial lipemia and that one night of recovery sleep may be adequate for recovery of TG metabolism, but not for markers of adipocyte function.


Subject(s)
Postprandial Period , Satiation , Sleep Deprivation/metabolism , Sleep Deprivation/physiopathology , Adipocytes/metabolism , Adult , Blood Glucose/metabolism , Glucose Tolerance Test , Humans , Hyperlipidemias/metabolism , Hyperlipidemias/physiopathology , Male , Triglycerides/metabolism , Young Adult
10.
J Biol Chem ; 293(23): 8734-8749, 2018 06 08.
Article in English | MEDLINE | ID: mdl-29610273

ABSTRACT

G protein-coupled receptors that signal through Gαq (Gq receptors), such as α1-adrenergic receptors (α1-ARs) or angiotensin receptors, share a common proximal signaling pathway that activates phospholipase Cß1 (PLCß1), which cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) to produce inositol 1,4,5-trisphosphate (IP3) and diacylglycerol. Despite these common proximal signaling mechanisms, Gq receptors produce distinct physiological responses, yet the mechanistic basis for this remains unclear. In the heart, Gq receptors are thought to induce myocyte hypertrophy through a mechanism termed excitation-transcription coupling, which provides a mechanistic basis for compartmentalization of calcium required for contraction versus IP3-dependent intranuclear calcium required for hypertrophy. Here, we identified subcellular compartmentalization of Gq-receptor signaling as a mechanistic basis for unique Gq receptor-induced hypertrophic phenotypes in cardiac myocytes. We show that α1-ARs co-localize with PLCß1 and PIP2 at the nuclear membrane. Further, nuclear α1-ARs induced intranuclear PLCß1 activity, leading to histone deacetylase 5 (HDAC5) export and a robust transcriptional response (i.e. significant up- or down-regulation of 806 genes). Conversely, we found that angiotensin receptors localize to the sarcolemma and induce sarcolemmal PLCß1 activity, but fail to promote HDAC5 nuclear export, while producing a transcriptional response that is mostly a subset of α1-AR-induced transcription. In summary, these results link Gq-receptor compartmentalization in cardiac myocytes to unique hypertrophic transcription. They suggest a new model of excitation-transcription coupling in adult cardiac myocytes that accounts for differential Gq-receptor localization and better explains distinct physiological functions of Gq receptors.


Subject(s)
Cardiomegaly/pathology , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Myocytes, Cardiac/pathology , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phospholipase C beta/metabolism , Receptors, Adrenergic, alpha-1/metabolism , Signal Transduction , Active Transport, Cell Nucleus , Animals , Cardiomegaly/genetics , Cardiomegaly/metabolism , Cell Nucleus/metabolism , Cell Nucleus/pathology , Female , GTP-Binding Protein alpha Subunits, Gq-G11/analysis , Histone Deacetylases/analysis , Histone Deacetylases/metabolism , Male , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Nuclear Envelope/metabolism , Nuclear Envelope/pathology , Phenotype , Phosphatidylinositol 4,5-Diphosphate/analysis , Phospholipase C beta/analysis , Receptors, Adrenergic, alpha-1/analysis , Sarcolemma/metabolism , Sarcolemma/pathology , Transcriptional Activation
11.
Am J Physiol Regul Integr Comp Physiol ; 316(6): R697-R703, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30892916

ABSTRACT

Chronic inadequate sleep is associated with increased risk of cardiometabolic diseases. The mechanisms involved are poorly understood but involve changes in insulin sensitivity, including within adipose tissue. The aim of this study was to assess the effects of sleep restriction on nonesterified fatty acid (NEFA) suppression profiles in response to an intravenous glucose tolerance test (IVGTT) and to assess whether 2 nights of recovery sleep (a "weekend") is sufficient to restore metabolic health. We hypothesized that sleep restriction impairs both glucose and lipid metabolism, specifically adipocyte insulin sensitivity, and the dynamic lipemic response of adipocyte NEFA release during an IVGTT. Fifteen healthy men completed an inpatient study of 3 baseline nights (10 h of time in bed/night), followed by 5 nights of 5 h of time in bed/night and 2 recovery nights (10 h of time in bed/night). IVGTTs were performed on the final day of each condition. Reductions in insulin sensitivity without a compensatory change in acute insulin response to glucose were consistent with prior studies (insulin sensitivity P = 0.002; acute insulin response to glucose P = 0.23). The disposition index was suppressed by sleep restriction and did not recover after recovery sleep (P < 0.0001 and P = 0.01, respectively). Fasting NEFAs were not different from baseline in either the restriction or recovery conditions. NEFA rebound was significantly suppressed by sleep restriction (P = 0.01) but returned to baseline values after recovery sleep. Our study indicates that sleep restriction impacts NEFA metabolism and demonstrates that 2 nights of recovery sleep may not be adequate to restore glycemic health.


Subject(s)
Adipocytes/metabolism , Blood Glucose/metabolism , Energy Metabolism , Fatty Acids, Nonesterified/blood , Insulin Resistance , Insulin/blood , Sleep Deprivation/blood , Sleep , Adult , Biomarkers/blood , Glucose Tolerance Test , Humans , Male , Recovery of Function , Sleep Deprivation/physiopathology , Time Factors , Young Adult
12.
J Mol Cell Cardiol ; 103: 74-92, 2017 02.
Article in English | MEDLINE | ID: mdl-27986444

ABSTRACT

Heart failure (HF) affects 5.7 million in the U.S., and despite well-established pharmacologic therapy, the 5-year mortality rate remains near 50%. Furthermore, the mortality rate for HF has not declined in years, highlighting the need for new therapeutic options. Omega-3 polyunsaturated fatty acids (ω3-PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are important regulators of cardiovascular health. However, questions of efficacy and mechanism of action have made the use of ω3-PUFAs in all cardiovascular disease (CVD) controversial. Here, we review recent studies in animal models of HF indicating that ω3-PUFAs, particularly EPA, are cardioprotective, with the results indicating a threshold for efficacy. We also examine clinical studies suggesting that ω3-PUFAs improve outcomes in patients with HF. Due to the relatively small number of clinical studies of ω3-PUFAs in HF, we discuss EPA concentration-dependency on outcomes in clinical trials of CVD to gain insight into the perceived questionable efficacy of ω3-PUFAs clinically, with the results again indicating a threshold for efficacy. Ultimately, we suggest that the main failing of ω3-PUFAs in clinical trials might be a failure to reach a therapeutically effective concentration. We also examine mechanistic studies suggesting that ω3-PUFAs signal through free fatty acid receptor 4 (Ffar4), a G-protein coupled receptor (GPR) for long-chain fatty acids (FA), thereby identifying an entirely novel mechanism of action for ω3-PUFA mediated cardioprotection. Finally, based on mechanistic animal studies suggesting that EPA prevents interstitial fibrosis and diastolic dysfunction, we speculate about a potential benefit for EPA-Ffar4 signaling in heart failure preserved with ejection fraction.


Subject(s)
Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-3/metabolism , Heart Failure/drug therapy , Heart Failure/metabolism , Lipid Metabolism/drug effects , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Animals , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Clinical Trials as Topic , Dietary Supplements , Disease Models, Animal , Fibrosis , Heart Failure/diagnosis , Heart Failure/etiology , Humans , Molecular Targeted Therapy , Ventricular Remodeling/drug effects
13.
J Nutr ; 147(8): 1546-1551, 2017 08.
Article in English | MEDLINE | ID: mdl-28615376

ABSTRACT

Background: Several lipid-related hormones and peptides, such as glucagon-like peptide-1 and leptin, are involved in the regulation of taste and smell function. However, to our knowledge, it remains unknown whether these chemosensory functions are associated with lipid profiles.Objective: We examined the cross-sectional association between taste and smell dysfunction and blood cholesterol concentrations.Methods: With the use of a questionnaire, we assessed chronic smell and taste dysfunction in 12,627 Chinese participants (10,418 men and 2209 women; mean age: 54.4 y) who did not take hypolipidemic agents. Participants were categorized into 3 groups based on the number of smell and taste dysfunctions, ranging from 0 (best) to 2 (worst). A general linear model was used to test differences in serum concentrations of total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides (TGs) across groups with different smell and taste status after adjusting for age, sex, education, occupation, smoking, drinking, obesity, and history of cardiovascular disease, cancer, and head injury.Results: The prevalence of smell and taste dysfunction was 2.4% and 1.2%, respectively. Worse smell and taste dysfunction was associated with higher total cholesterol concentrations (P-trend = 0.005). No significant differences were observed in LDL cholesterol, HDL cholesterol, and TG concentrations across groups with different numbers of chemosensory dysfunctions (P-trend > 0.1 for all). The associations between chemosensory dysfunction and total cholesterol concentrations were more pronounced in participants aged ≤60 y and in those who were nonsmokers relative to their counterparts (P-interaction < 0.05 for all).Conclusions: In this large cross-sectional study, chemosensory dysfunction was associated with higher serum total cholesterol concentrations among Chinese adults. Prospective studies are needed to investigate the temporal relation between these chemosensory dysfunctions and hypercholesterolemia.


Subject(s)
Cholesterol/blood , Olfaction Disorders/blood , Smell , Taste Disorders/blood , Taste , Adult , Age Factors , Aged , Aged, 80 and over , China/epidemiology , Cross-Sectional Studies , Humans , Hypolipidemic Agents/therapeutic use , Middle Aged , Olfaction Disorders/epidemiology , Prevalence , Smoking , Surveys and Questionnaires , Taste Disorders/epidemiology
14.
J Lipid Res ; 56(12): 2297-308, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26435012

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is half of all HF, but standard HF therapies are ineffective. Diastolic dysfunction, often secondary to interstitial fibrosis, is common in HFpEF. Previously, we found that supra-physiologic levels of ω3-PUFAs produced by 12 weeks of ω3-dietary supplementation prevented fibrosis and contractile dysfunction following pressure overload [transverse aortic constriction (TAC)], a model that resembles aspects of remodeling in HFpEF. This raised several questions regarding ω3-concentration-dependent cardioprotection, the specific role of EPA and DHA, and the relationship between prevention of fibrosis and contractile dysfunction. To achieve more clinically relevant ω3-levels and test individual ω3-PUFAs, we shortened the ω3-diet regimen and used EPA- and DHA-specific diets to examine remodeling following TAC. The shorter diet regimen produced ω3-PUFA levels closer to Western clinics. Further, EPA, but not DHA, prevented fibrosis following TAC. However, neither ω3-PUFA prevented contractile dysfunction, perhaps due to reduced uptake of ω3-PUFA. Interestingly, EPA did not accumulate in cardiac fibroblasts. However, FFA receptor 4, a G protein-coupled receptor for ω3-PUFAs, was sufficient and required to block transforming growth factor ß1-fibrotic signaling in cultured cardiac fibroblasts, suggesting a novel mechanism for EPA. In summary, EPA-mediated prevention of fibrosis could represent a novel therapy for HFpEF.


Subject(s)
Docosahexaenoic Acids/therapeutic use , Eicosapentaenoic Acid/therapeutic use , Fatty Acids, Nonesterified/therapeutic use , Fibrosis/prevention & control , Heart Failure/prevention & control , Animals , Dietary Supplements , Mice , Random Allocation , Receptors, G-Protein-Coupled/metabolism
15.
bioRxiv ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39026807

ABSTRACT

Aberrant high-density lipoprotein (HDL) function is implicated in inflammation-associated pathologies. While HDL ABCA1-mediated reverse cholesterol and phospholipid transport are well described, the movement of pro-/anti-inflammatory lipids has not been explored. HDL phospholipids are the largest reservoir of circulating arachidonic acid-derived oxylipins. Endotoxin-stimulation activates inflammatory cells leading to hydroxyeicosatetraenoic acid (HETE) production, oxylipins which are involved in inflammatory response coordination. Active signaling in the non-esterified (NE) pool is terminated by sequestration of HETEs as esterified (Es) forms and degradation. We speculate that an ABCA1-apoA-I-dependent efflux of HETEs from stimulated cells could regulate intracellular HETE availability. Here we test this hypothesis both in vitro and in vivo. In endotoxin-stimulated RAW-264.7 macrophages preloaded with d8-arachidonic acid we use compartmental tracer modeling to characterize the formation of HETEs, and their efflux into HDL. We found that in response to endotoxin: I) Cellular NE 12-HETE is positively associated with MCP-1 secretion (p<0.001); II) HETE transfer from NE to Es pools is ABCA1-depedent (p<0.001); III) Cellular Es HETEs are transported into media when both apoA-I and ABCA1 are present (p<0.001); IV) The stimulated efflux of HETEs >> arachidonate (p<0.001). Finally, in endotoxin challenged humans (n=17), we demonstrate that intravenous lipopolysaccharide (0.6 ng/kg body weight) resulted in accumulation of 12-HETE in HDL over a 168-hour follow-up. Therefore, HDL can suppress inflammatory responses in macrophages by regulating intracellular HETE content in an apoA-I/ABCA1 dependent manner. The described mechanism may apply to other oxylipins and explain anti-inflammatory properties of HDL. This newly defined HDL property opens new doors for the study of lipoprotein interactions in metabolic diseases.

16.
Prog Lipid Res ; 93: 101265, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37979798

ABSTRACT

Lipoprotein metabolism is critical to inflammation. While the periphery and central nervous system (CNS) have separate yet connected lipoprotein systems, impaired lipoprotein metabolism is implicated in both cardiometabolic and neurological disorders. Despite the substantial investigation into the composition, structure and function of lipoproteins, the lipoprotein oxylipin profiles, their influence on lipoprotein functions, and their potential biological implications are unclear. Lipoproteins carry most of the circulating oxylipins. Importantly, lipoprotein-mediated oxylipin transport allows for endocrine signaling by these lipid mediators, long considered to have only autocrine and paracrine functions. Alterations in plasma lipoprotein oxylipin composition can directly impact inflammatory responses of lipoprotein metabolizing cells. Similar investigations of CNS lipoprotein oxylipins are non-existent to date. However, as APOE4 is associated with Alzheimer's disease-related microglia dysfunction and oxylipin dysregulation, ApoE4-dependent lipoprotein oxylipin modulation in neurological pathologies is suggested. Such investigations are crucial to bridge knowledge gaps linking oxylipin- and lipoprotein-related disorders in both periphery and CNS. Here, after providing a summary of existent literatures on lipoprotein oxylipin analysis methods, we emphasize the importance of lipoproteins in oxylipin transport and argue that understanding the compartmentalization and distribution of lipoprotein oxylipins may fundamentally alter our consideration of the roles of lipoprotein in cardiometabolic and neurological disorders.


Subject(s)
Cardiovascular Diseases , Nervous System Diseases , Humans , Oxylipins/metabolism , Apolipoprotein E4/metabolism , Lipoproteins/metabolism , Cardiovascular Diseases/metabolism
17.
medRxiv ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38883788

ABSTRACT

Background: We have shown that ω3 polyunsaturated fatty acids (PUFAs) reduce risk for heart failure, regardless of ejection fraction status. Ventricular remodeling and reduced ventricular performance precede overt hear failure, however there is little insight into how PUFAs contribute to maladaptive signaling over time. PUFAs are agonists for regulatory activity at g-protein coupled receptors such as Ffar4, and downstream as substrates for monooxygenases (e.g lipoxygenase, cytochrome p450, or cyclooxygenase (COX)) which mediate intracellular adaptive signaling. Methods: Plasma phospholipid PUFA abundance at Exam 1 as mass percent EPA, DHA, and arachidonic acid (AA) from the Multi-Ethnic Study of Atherosclerosis (MESA) were evaluated using pathway modeling to determine the association with time-dependent changes in left ventricular (LV) mass (LVM), end-diastolic LV volume (EDV), and end-systolic volume (ESV) measured by cardiac MRI at Exams 1 and 5. Ejection fraction (EF) and mass:volume (MV) were calculated posteriorly from the first three. Results: 2,877 subjects had available MRI data. Participants with low AA and EPA had accelerated age-dependent declines in LVM. Males with low AA and EPA also had accelerated declines in EDV, but among females there was no PUFA association with EDV declines and exam 5 EDV status was positively associated with AA. Both sexes had nearly the same positive association of AA with changes in ESV. Conclusion: Plasma phospholipid AA and EPA are prospectively associated with indices of heart remodeling, including ventricular remodeling and performance. Combined AA and EPA scarcity was associated with the most accelerated age-related changes and exam 5 status, while the greatest benefits were found among participants with both PUFAs. This suggests that both PUFAs are required for optimal slowing of age-related declines in ventricular function.

18.
bioRxiv ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38659901

ABSTRACT

Aims: Free fatty acid receptor 4 (Ffar4) is a receptor for long-chain fatty acids that attenuates heart failure driven by increased afterload. Recent findings suggest that Ffar4 prevents ischemic injury in brain, liver, and kidney, and therefore, we hypothesized that Ffar4 would also attenuate cardiac ischemic injury. Methods and Results: Using a mouse model of ischemia-reperfusion (I/R), we found that mice with systemic deletion of Ffar4 (Ffar4KO) demonstrated impaired recovery of left ventricular systolic function post-I/R with no effect on initial infarct size. To identify potential mechanistic explanations for the cardioprotective effects of Ffar4, we performed bulk RNAseq to compare the transcriptomes from wild-type (WT) and Ffar4KO infarcted myocardium 3-days post-I/R. In the Ffar4KO infarcted myocardium, gene ontology (GO) analyses revealed augmentation of glycosaminoglycan synthesis, neutrophil activation, cadherin binding, extracellular matrix, rho signaling, and oxylipin synthesis, but impaired glycolytic and fatty acid metabolism, cardiac repolarization, and phosphodiesterase activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated impaired AMPK signaling and augmented cellular senescence in the Ffar4KO infarcted myocardium. Interestingly, phosphodiesterase 6c (PDE6c), which degrades cGMP, was the most upregulated gene in the Ffar4KO heart. Further, the soluble guanylyl cyclase stimulator, vericiguat, failed to increase cGMP in Ffar4KO cardiac myocytes, suggesting increased phosphodiesterase activity. Finally, cardiac myocyte-specific overexpression of Ffar4 prevented systolic dysfunction post-I/R, defining a cardioprotective role of Ffa4 in cardiac myocytes. Conclusions: Our results demonstrate that Ffar4 in cardiac myocytes attenuates systolic dysfunction post-I/R, potentially by attenuating oxidative stress, preserving mitochondrial function, and modulation of cGMP signaling.

19.
PLoS One ; 19(2): e0296052, 2024.
Article in English | MEDLINE | ID: mdl-38408107

ABSTRACT

HDL-apolipoprotein A-I exchange (HAE) measures a functional property associated with HDL's ability to mediate reverse cholesterol transport. HAE has been used to examine HDL function in case-control studies but not in studies of therapeutics that alter HDL particle composition. This study investigates whether niacin and omega-3 fatty acids induce measurable changes in HAE using a cohort of fifty-six subjects with metabolic syndrome (MetS) who were previously recruited to a double-blind trial where they were randomized to 16 weeks of treatment with dual placebo, extended-release niacin (ERN, 2g/day), prescription omega-3 ethyl esters (P-OM3, 4g/day), or the combination. HAE was assessed at the beginning and end of the study. Compared to placebo, ERN and P-OM3 alone significantly increased HAE by 15.1% [8.2, 22.0] (P<0.0001) and 11.1% [4.5, 17.7] (P<0.0005), respectively, while in combination they increased HAE by 10.0% [2.5, 15.8] (P = 0.005). When HAE was evaluated per unit mass of apoA-I ERN increased apoA-I specific exchange activity by 20% (2, 41 CI, P = 0.02) and P-OM3 by 28% (9.6, 48 CI, P<0.0006). However the combination had no statistically significant effect, 10% (-9, 31 CI, P = 0.39). With regard to P-OM3 therapy in particular, the HAE assay detected an increase in this property in the absence of a concomitant rise in HDL-C and apoA-I levels, suggesting that the assay can detect functional changes in HDL that occur in the absence of traditional biomarkers.


Subject(s)
Fatty Acids, Omega-3 , Metabolic Syndrome , Niacin , Humans , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Niacin/therapeutic use , Apolipoprotein A-I/therapeutic use , Metabolic Syndrome/drug therapy , Cholesterol, HDL , Double-Blind Method
20.
Biochim Biophys Acta ; 1821(5): 843-51, 2012 May.
Article in English | MEDLINE | ID: mdl-22041134

ABSTRACT

Long chain omega-3 fatty acids (FAs) are effective for reducing plasma triglyceride (TG) levels. At the pharmaceutical dose, 3.4g/day, they reduce plasma TG by about 25-50% after one month of treatment, resulting primarily from the decline in hepatic very low density lipoprotein (VLDL-TG) production, and secondarily from the increase in VLDL clearance. Numerous mechanisms have been shown to contribute to the TG overproduction, but a key component is an increase in the availability of FAs in the liver. The liver derives FAs from three sources: diet (delivered via chylomicron remnants), de novo lipogenesis, and circulating non-esterified FAs (NEFAs). Of these, NEFAs contribute the largest fraction to VLDL-TG production in both normotriglyceridemic subjects and hypertriglyceridemic, insulin resistant patients. Thus reducing NEFA delivery to the liver would be a likely locus of action for fish oils (FO). The key regulator of plasma NEFA is intracellular adipocyte lipolysis via hormone sensitive lipase (HSL), which increases as insulin sensitivity worsens. FO counteracts intracellular lipolysis in adipocytes by suppressing adipose tissue inflammation. In addition, FO increases extracellular lipolysis by lipoprotein lipase (LpL) in adipose, heart and skeletal muscle and enhances hepatic and skeletal muscle ß-oxidation which contributes to reduced FA delivery to the liver. FO could activate transcription factors which control metabolic pathways in a tissue specific manner regulating nutrient traffic and reducing plasma TG. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.


Subject(s)
Fatty Acids, Omega-3 , Fish Oils , Liver/metabolism , Triglycerides/blood , Adipocytes/metabolism , Fatty Acids, Nonesterified/metabolism , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-3/metabolism , Fish Oils/administration & dosage , Fish Oils/metabolism , Humans , Insulin Resistance , Lipolysis , Lipoproteins, VLDL/metabolism , Liver/drug effects , Organ Specificity , Sterol Esterase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL