Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 22(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34638995

ABSTRACT

Hereditary congenital cataract (HCC) is clinically and genetically heterogeneous. We investigated HCC that segregates in three inbred families (LUCC03, LUCC16, and LUCC24). Ophthalmological examinations revealed cataracts with variability related to the age of onset segregating in a recessive manner in these families. Exome sequencing of probands identified a novel homozygous c.2710delG;p.(Val904Cysfs*36) EPHA2 variant in LUCC03 and a known homozygous c.2353G>A;p.(Ala785Thr) EPHA2 variant in the other two recessive families. EPHA2 encodes a transmembrane tyrosine kinase receptor, which is primarily involved in membrane-transport, cell-cell adhesion, and repulsion signaling processes. Computational structural modeling predicts that substitution of a threonine for an alanine p.(Ala785Thr) results in the formation of three new hydrogen bonds with the neighboring residues, which causes misfolding of EPHA2 in both scenarios. Insights from our study will facilitate counseling regarding the molecular and phenotypic landscape of EPHA2-related HCC.


Subject(s)
Alleles , Cataract/congenital , Cataract/genetics , Consanguinity , Mutation, Missense , Receptor, EphA2/genetics , Family , Female , Homozygote , Humans , Male , Pakistan , Pedigree , Phenotype , Exome Sequencing/methods
2.
Mol Vis ; 20: 991-1001, 2014.
Article in English | MEDLINE | ID: mdl-25018621

ABSTRACT

PURPOSE: This study aimed to investigate the role of CYP1B1 mutations in primary congenital glaucoma (PCG) in Pakistani patients. METHODS: After consent was received, 20 families with at least more than one member affected with primary congenital glaucoma were enrolled in the study. The disease was confirmed with standard ophthalmological investigations. Genomic DNA was extracted from whole blood for localization of linkage and sequencing. Bioinformatics tools were used to assess the predicted pathological role of novel variants. RESULTS: Ten out of 20 families (50%, 10/20) showed homozygosity with CYP1B1-linked short tandem repeat (STR) markers. On direct sequencing of the CYP1B1 gene in the linked families, six mutations, including two novel pathogenic variants, were identified. p. R390H was the most frequently found mutation in five families (50%, 5/10), whereas c.868_869insC, p.E229K, and p.A115P were found once in three families. Two novel mutations, a missense mutation (p.G36D) and an in-frame deletion mutation (p.G67-A70del), were segregated with disease phenotype in two families. Age of disease onset was congenital in all mutations; however, disease severity and response to clinical interventions varied among the mutations and families. Haplotype analysis using five polymorphisms revealed a distinct haplotype for a common mutation. CONCLUSIONS: This is the largest cohort of Pakistani patients with PCG to be genetically screened for CYP1B1 mutations. Identifying common mutation and genotype-phenotype correlations may help in genetic testing and better prognosis for the disease. Novel mutations identified in the study may help in better understanding the pathophysiology of CYP1B1-associated glaucoma.


Subject(s)
Aryl Hydrocarbon Hydroxylases/genetics , Genetic Association Studies , Glaucoma/congenital , Glaucoma/genetics , Mutation/genetics , Adult , Amino Acid Sequence , Aryl Hydrocarbon Hydroxylases/chemistry , Cytochrome P-450 CYP1B1 , Electroretinography , Female , Glaucoma/enzymology , Glaucoma/physiopathology , Haplotypes/genetics , Homozygote , Humans , Male , Molecular Sequence Data , Pakistan , Pedigree , Young Adult
3.
Int J Ophthalmol ; 12(1): 8-15, 2019.
Article in English | MEDLINE | ID: mdl-30662834

ABSTRACT

AIM: To find the CYP1B1 mutations associated with primary congenital glaucoma (PCG) in Pakistani consanguineous pedigrees. METHODS: After getting informed consent, 11 consanguineous pedigrees belonging to different ethnic groups were enrolled. Detailed medical history was recorded and pedigrees were drawn. The standard ophthalmological examination was done to characterize the phenotype. Genomic DNA was extracted from 10 mL whole blood and coding exons and exon intron boundaries of CYP1B1 gene were directly sequenced. Bioinformatics tools were used to model the mutant protein and predict the effect of novel variants on protein structure and function. RESULTS: Sequencing analysis revealed 5 different CYP1B1 variants in 7 families (7/11; 64%), including two novel variants. A common mutation, p.R390H was found in four families, whereas p.P437L was found once in a family. Two novel variants, a homozygous non sense variant p.L13* and a compound heterozygous variant, p.P350T along with p.V364M were segregating with PCG in two families. All the patients had the variable onset and severity of the disease. The success rate of early clinical interventions was observed dependent on mutation types and position. Two different haplotypes were associated with frequently found mutation, p.R390H. CONCLUSION: Identification of novel CYP1B1 variants reassert the genetic heterogeneity of Pakistani PCG patients. The patients with missense mutations show severe phenotypic presentations and poor vision after surgical interventions as compare to patients with null variants. This may help to better understand the role of CYP1B1 mutations in the development of PCG and its course of pathogenicity.

SELECTION OF CITATIONS
SEARCH DETAIL