Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Sci Food Agric ; 103(12): 5802-5810, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37129999

ABSTRACT

BACKGROUND: Regional identity is a well-established concept of economic interest that has been identified as a source of unique quality traits of various agricultural products originating from a specific region. In the context of hops, the exploration of regional identity is still at a very early stage despite an increasing global demand for specialized aroma hops to enable more product diversity, especially in the growing craft beer industry. Thus, we conducted a large-scale investigation characterizing the growing environments of Cascade and Mosaic® hops at 39 field locations throughout two important valleys in the Pacific Northwest region of the United States to identify factors that significantly impact hop characteristics and to better understand how these impact hop regional identity. RESULTS: The Willamette Valley (Oregon) and the Yakima Valley (Washington) have distinctly different soil characteristics, soil chemistry, and climate. In turn, growers in these two regions apply unique agronomic practices in response to these differences. This investigation also revealed significant subregional differences in growing environment within each of these two valleys. Multivariate statistics, correlation, and regression analysis identified a number of environmental and agronomic factors like soil pH, the concentration of zinc, sulfur, and manganese in the soil, and the amount of applied zinc fertilization, which exhibited strong positive or negative correlations with specific hop quality traits depending on the hop variety, primarily in Oregon. CONCLUSION: This study provides new insights into understanding hop regional identity and represents an important step towards fully utilizing this effect. © 2023 Society of Chemical Industry.


Subject(s)
Humulus , Humulus/chemistry , Odorants/analysis , Acids/analysis , Soil , Washington
2.
Chemistry ; 26(7): 1653-1660, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-31961021

ABSTRACT

Dysphania is an abundant genus of plants, many of which are endemic to the Australian continent, occurring primarily in arid and temperate zones. Despite their prevalence, very few investigations into the phytochemistry of native Dysphania have been undertaken. Described herein, is the isolation and elucidation of two enantiomeric diastereomers of humulene diepoxide C from D. kalpari and D. rhadinostachya, of which unassigned diastereomers of humulene diepoxide C have been previously reported as components in beer brewed from aged hops. In addition, two (+)-humulene diepoxiols (humulene diepoxiol C-I and C-II) were isolated from D. rhadinostachya. Analysis of Chinook hops oil confirmed the presence of both humulene diepoxide C-I and C-II as trace components, and in turn enabled GC-MS peak assignment to the relative stereochemistry. Anticancer assays did not reveal any significant activity for the (+)-humulene diepoxides. Antifungal assays showed good activity against a drug-resistant strain of C. auris, with MIC50 values of 8.53 and 4.91 µm obtained for (+)-humulene diepoxide C-I and C-II, respectively.

3.
J Agric Food Chem ; 71(5): 2493-2502, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36693141

ABSTRACT

In Saccharomyces, the IRC7 gene encodes for a cysteine S-conjugate ß-lyase enzyme which can release polyfunctional thiols from their cysteinylated precursor forms, thereby promoting thiol aroma in beer. This study examined the thiol production of 10 commercial yeast strains in two different media, a hopped yeast extract-peptone-dextrose (YPD) medium and a 100% barley malt wort to explore how differences in yeast strain and medium conditions influence the release of polyfunctional thiols. 3-Sulfanylhexan-1-ol was most affected by medium conditions, and its concentrations were highest in wort fermentations. The higher nitrogen content and pH of the YPD medium relative to the wort fermentations were notable differences, and significant correlations between these variables and the extent of free thiol production were observed. A strong association existed between polyfunctional thiol concentrations and the fermentation-derived, malt, and hop-derived compounds 2-phenylethanol, ß-damascenone, and ß-ionone. The sensory impressions of thiol character in beer were influenced by the presence of other aromatic compounds such as esters and terpene alcohols, and aroma attributes such as "tropical" were not the most suitable for describing beers brewed with yeasts that fully express homozygous IRC7F. Sensory attributes "sweaty", "vegetal", and "overripe fruit" were more strongly associated with these strains.


Subject(s)
Odorants , Saccharomyces , Odorants/analysis , Fermentation , Sulfhydryl Compounds/metabolism , Yeasts/metabolism , Saccharomyces/metabolism , Beer/analysis
4.
Appl Environ Microbiol ; 75(17): 5615-20, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19581482

ABSTRACT

The measurement of yeast's intracellular pH (ICP) is a proven method for determining yeast vitality. Vitality describes the condition or health of viable cells as opposed to viability, which defines living versus dead cells. In contrast to fluorescence photometric measurements, which show only average ICP values of a population, flow cytometry allows the presentation of an ICP distribution. By examining six repeated propagations with three separate growth phases (lag, exponential, and stationary), the ICP method previously established for photometry was transferred successfully to flow cytometry by using the pH-dependent fluorescent probe 5,6-carboxyfluorescein. The correlation between the two methods was good (r(2) = 0.898, n = 18). With both methods it is possible to track the course of growth phases. Although photometry did not yield significant differences between exponentially and stationary phases (P = 0.433), ICP via flow cytometry did (P = 0.012). Yeast in an exponential phase has a unimodal ICP distribution, reflective of a homogeneous population; however, yeast in a stationary phase displays a broader ICP distribution, and subpopulations could be defined by using the flow cytometry method. In conclusion, flow cytometry yielded specific evidence of the heterogeneity in vitality of a yeast population as measured via ICP. In contrast to photometry, flow cytometry increases information about the yeast population's vitality via a short measurement, which is suitable for routine analysis.


Subject(s)
Cytosol/chemistry , Flow Cytometry/methods , Saccharomyces cerevisiae/metabolism , Fluoresceins/pharmacology , Fluorescent Dyes/pharmacology , Hydrogen-Ion Concentration , Staining and Labeling/methods
5.
J Agric Food Chem ; 66(34): 9121-9126, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30084254

ABSTRACT

Dry-hopping, the addition of hops to beer during or after fermentation, is a common practice in brewing to impart hoppy flavor to beer. Previously assumed to be inert ingredients, recent evidence suggests that hops contain biologically active compounds that may also extract into beer and complicate the brewing process by altering the final composition of beer. Experiments described herein provide evidence of microbial and/or plant-derived enzymes associated with hops ( Humulus lupulus) which can impact beer quality by influencing the composition of fermentable and nonfermentable carbohydrates in dry-hopped beer. Fully attenuated and packaged commercial lager beer was dry-hopped at a rate of 10 g hops/L beer with pelletized Cascade hops, dosed with 106 cells/mL of ale yeast, and incubated at 20 °C. Real extract of the treated beer declined significantly within several days with a reduction of 1 °P (% w/w) after 5 days and then slowly to a total reduction of approximately 2 °P after 40 days. When fully fermented, this was equivalent to the production of an additional 4.75% (v/v) of CO2 and an additional 1.3% (v/v) of alcohol. The refermentation of beer driven by dry-hopping was attributed to the low but persistent activities of several starch degrading enzymes present in Cascade hops including amyloglucosidase, α-amylase, ß-amylase, and limit dextrinase. The effect of hop-derived enzymes on beer was time, temperature, and dose-dependent. Characterizing bioactive enzymes in hops will help hop suppliers and brewers to address the unexpected quality and safety issues surrounding hopping practices in beer.


Subject(s)
Beer/analysis , Humulus/enzymology , Plant Proteins/metabolism , Amylases/chemistry , Amylases/metabolism , Beer/microbiology , Chromatography, High Pressure Liquid , Dextrins/metabolism , Food Handling , Glucan 1,4-alpha-Glucosidase/chemistry , Glucan 1,4-alpha-Glucosidase/metabolism , Humulus/chemistry , Humulus/microbiology , Hydrolysis , Kinetics , Plant Proteins/chemistry , Yeasts/metabolism
6.
J Agric Food Chem ; 66(13): 3505-3513, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29526091

ABSTRACT

The range of different nonvolatile constituents extracted from hops in highly hopped beers suggests that isohumulones may not be the sole contributor to beers' bitterness. Among brewers producing hop-forward beer styles, there is concern that the bitterness unit (BU) is no longer an accurate predictor of beer bitterness. This study examined factors within the beer matrix that influence sensory bitterness perception in highly hopped beers. Over 120 commercial beers were evaluated using sensory and instrumental techniques. Chemical analysis consisted of the BU via spectrophotometry, hop acids via high-performance liquid chromatography, total polyphenols via spectrophotometry, and alcohol content plus real extract via an Alcolyzer. Sensory analysis was conducted over two studies, and the beers' overall bitterness intensities were rated using a 0-20 scale. This study identified that the BU measurement predicts sensory bitterness with a nonlinear response, and it proposed an alternative approach to predicting bitterness based on isohumulones, humulinones, and ethanol concentrations. The study also revealed the importance of oxidized hop acids, humulinones, as a significant contributor to beer bitterness intensity.


Subject(s)
Beer/analysis , Humulus/chemistry , Taste , Adult , Chromatography, High Pressure Liquid , Ethanol/analysis , Female , Humans , Male , Middle Aged , Young Adult
7.
Int J Food Microbiol ; 106(3): 263-9, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16226329

ABSTRACT

Three Listeria monocytogenes strains (Scott A, OSY-8578, and OSY-328) that differ considerably in barotolerance were grown to stationary phase and suspended individually in phosphate buffer (pH 7.0). Twelve phenolic compounds, including commercially used food additives, were screened for the ability to sensitize L. monocytogenes to high-pressure processing (HPP). Each L. monocytogenes strain was exposed to each of the 12 phenolic compounds (100 ppm each) for 60 min; this was followed by a pressure treatment at 400 MPa for 5 min. Six phenolic compounds increased the efficacy of HPP against L. monocytogenes but tert-butylhydroquinone (TBHQ) was the most effective. The additives alone at 100 ppm were not lethal for L. monocytogenes. Subsequently, the three L. monocytogenes strains were exposed to TBHQ before or after pressure treatments at 400 or 500 MPa for 5 min. When TBHQ was added after the pressure treatment, the combined treatment was more lethal than was pressure alone. However, the lethality attributable to TBHQ was greater when the additive was applied before rather than after pressure treatment. The inactivation kinetics of the L. monocytogenes strains at 300, 500, and 700 MPa, in the presence or absence of TBHQ, was investigated. All survivor plots showed non-linear inactivation kinetics, but tailing behavior was most pronounced when HPP was used alone. Combinations of TBHQ and HPP eliminated tailing behavior when survivors were monitored by direct plating or an enrichment procedure. Pressure and phenolic additives are apparently a potent bactericidal combination against L. monocytogenes.


Subject(s)
Food Additives/pharmacology , Food Handling/methods , Food Preservation/methods , Listeria monocytogenes/drug effects , Phenols/pharmacology , Colony Count, Microbial , Consumer Product Safety , Dose-Response Relationship, Drug , Food Microbiology , Hydroquinones/pharmacology , Listeria monocytogenes/growth & development , Pressure , Time Factors
8.
J Agric Food Chem ; 53(11): 4434-9, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15913306

ABSTRACT

The rate of isomerization of alpha acids to iso-alpha acids (the compounds contributing bitter taste to beer) was determined across a range of temperatures (90-130 degrees C) to characterize the rate at which iso-alpha acids are formed during kettle boiling. Multiple 12 mL stainless steel vessels were utilized to heat samples (alpha acids in a pH 5.2 buffered aqueous solution) at given temperatures, for varying lengths of time. Concentrations of alpha acids and iso-alpha acids were quantified by high-pressure liquid chromatography (HPLC). The isomerization reaction was found to be first order, with reaction rate varying as a function of temperature. Rate constants were experimentally determined to be k1 = (7.9 x 10(11)) e(-11858/T) for the isomerization reaction of alpha acids to iso-alpha acids, and k2 = (4.1 x 10(12)) e(-12994/T) for the subsequent loss of iso-alpha acids to uncharacterized degradation products. Activation energy was experimentally determined to be 98.6 kJ per mole for isomerization, and 108.0 kJ per mole for degradation. Losses of iso-alpha acids to degradation products were pronounced for cases in which boiling was continued beyond two half-lives of alpha-acid concentration.


Subject(s)
Acids/chemistry , Hot Temperature , Humulus/chemistry , Chromatography, High Pressure Liquid , Cyclohexenes , Hydrogen-Ion Concentration , Isomerism , Kinetics , Solutions , Taste , Terpenes/chemistry , Thermodynamics
9.
J Agric Food Chem ; 50(25): 7444-8, 2002 Dec 04.
Article in English | MEDLINE | ID: mdl-12452673

ABSTRACT

Physical processing with or without enzyme treatments on protein extraction from heat-stabilized defatted rice bran (HDRB) was evaluated. Freeze-thaw, sonication, high-speed blending, and high-pressure methods extracted 12%, 15%, 16%, and 11% protein, respectively. Sonication (0-100%, 750 W), followed by amylase and combined amylase and protease treatments, extracted 25.6-33.9% and 54.0-57.8% protein, respectively. Blending followed by amylase and protease treatment extracted 5.0% more protein than the nonblended enzymatic treatments. High-pressure treatments, 0-800 MPa, with water or amylase-protease combinations, extracted 10.5-11.1% or 61.8-66.6% protein, respectively. These results suggest that physical processing in combination with enzyme treatments can be effective in extracting protein from HDRB.


Subject(s)
Hot Temperature , Oryza/chemistry , Plant Proteins/isolation & purification , Amylases/metabolism , Drug Stability , Endopeptidases/metabolism , Food Handling , Freezing , Pressure , Seeds/chemistry , Sonication , Water
10.
J Agric Food Chem ; 51(9): 2591-6, 2003 Apr 23.
Article in English | MEDLINE | ID: mdl-12696942

ABSTRACT

The stability and rheology of acidified model oil-in-water emulsions (pH 3.6 +/- 0.1) were evaluated before and after high-pressure treatments. Varying concentrations of canola oil (0-50% w/w), whey protein isolate, polysorbate 60, soy lecithin (0.1-1.5% w/w each), and xanthan (0.0-0.2% w/w) were chosen. Exposure to high pressures (up to 800 MPa for 5 min at 30 degrees C) did not significantly affect the equivalent surface mean diameter D[3,2], flow behavior, and viscoelasticity of the whey protein isolate and polysorbate 60-stabilized emulsions. Pressure treatments had negligible effects on emulsion stability in these systems, except when xanthan (0.2% w/w) was present in which pressure improved the stability of polysorbate 60-stabilized emulsions. Soy lecithin-stabilized emulsions had larger mean particles sizes and lower emulsion volume indices than the others, indicating potential instability, and application of pressure further destabilized these emulsions.


Subject(s)
Fatty Acids, Monounsaturated/chemistry , Milk Proteins/chemistry , Phosphatidylcholines/chemistry , Polysaccharides, Bacterial/chemistry , Polysorbates/chemistry , Emulsions , Hydrogen-Ion Concentration , Particle Size , Pressure , Rapeseed Oil , Rheology , Glycine max/chemistry , Surface-Active Agents/chemistry , Viscosity , Water/chemistry , Whey Proteins
11.
J Food Prot ; 66(11): 2057-61, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14627283

ABSTRACT

The objectives of this study were to investigate the variability among Listeria monocytogenes strains in response to high-pressure processing, identify the most resistant strain as a potential target of pressure processing, and compare the inactivation kinetics of pressure-resistant and pressure-sensitive strains under a wide range (350 to 800 MPa) of pressure treatments. The pressure resistance of Listeria innocua and nine strains of L. monocytogenes was compared at 400 or 500 MPa and 30 degrees C. Significant variability among strains was observed. The decrease in log CFU/ml during the pressure treatment was from 1.4 to 4.3 at 400 MPa and from 3.9 to >8 at 500 MPa. L. monocytogenes OSY-8578 exhibited the greatest pressure resistance, Scott A showed the greatest pressure sensitivity, and L. innocua had intermediate resistance. On the basis of these findings, L. monocytogenes OSY-8578 is a potential target strain for high-pressure processing efficacy studies. The death kinetics of L. monocytogenes Scott A and OSY-8578 were investigated at 350 and 800 MPa. Survivors at 350 MPa were enumerated by direct plating, and survivors at 800 MPa were enumerated by the most-probable-number technique. Both pressure-resistant and pressure-sensitive strains exhibited non-first-order death behavior, and excessive pressure treatment did not eliminate the tailing phenomenon.


Subject(s)
Food Handling/methods , Listeria monocytogenes/growth & development , Colony Count, Microbial , Food Microbiology , Food Preservation/methods , Food Preservation/standards , Kinetics , Listeria/growth & development , Listeria monocytogenes/physiology , Pressure , Temperature , Time Factors , Treatment Outcome
12.
J Agric Food Chem ; 56(18): 8629-34, 2008 Sep 24.
Article in English | MEDLINE | ID: mdl-18729457

ABSTRACT

Foam-stabilizing properties and cling formation patterns of iso-alpha-acids and reduced iso-alpha-acids were investigated using an unhopped lager beer. Unhopped beer was dosed with iso-alpha-acid (Iso), rho-iso-alpha-acid (Rho), tetrahydro-iso-alpha-acid (Tetra), and hexahydro-iso-alpha-acid (Hexa), separately, over a range of concentrations from 2 to 10 ppm. A uniform foam was created by Inpack 2000 Flasher Head and was measured by a NIBEM Foam Stability Tester (NIBEM-TPH) followed by a NIBEM Cling Meter (NIBEM-CLM) to determine the relationship between the concentration and NIBEM-30 and the cling formation ability of each compound. The foam-stabilizing power was determined to be Tetra, Hexa, Iso, and Rho from the strongest to weakest. Linear regression models were created using the NIBEM-TPH data set, and on the basis of 95% confidence intervals, the foam stability of Tetra or Hexa became significantly larger than that of Iso when 2.4 or 4.2 ppm of Tetra or Hexa was used as a replacement for Iso, respectively. Cling formation patterns could be categorized into three groups: "ring", "mesh", and "powdery". The control beer had the lowest foam stability and did not yield any foam cling.


Subject(s)
Beer/analysis , Cyclopentanes/chemistry , Food Technology/methods , Cyclopentanes/analysis , Hordeum/chemistry , Humulus/chemistry , Hydrogenation , Linear Models , Odorants/analysis , Plant Proteins/analysis
13.
J Dairy Res ; 71(1): 107-15, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15068073

ABSTRACT

High pressure processing was investigated for controlling Cheddar cheese ripening. One-month-or 4-month-old Cheddar cheeses were subjected to pressures ranging from 200 to 800 MPa for 5 min at 25 C. The number of viable Lactococcus lactis (starter) and Lactobacillus (nonstarter) cells decreased as pressure increased. Subsequent storage of the control and pressure-treated cheeses at 10 degrees C caused viable cell counts to change in some cases. Free amino acid content was monitored as an indicator of proteolysis. Cheeses treated with pressures > or = 400 MPa evolved free amino acids at significantly lower rates than the control. No acceleration in free amino acid development was observed at lower pressures. Pressure treatment did not accelerate the rate of textural breakdown compared with the non-pressure treated control. On the contrary, pressure treatment at 800 MPa reduced the time-dependent texture changes. Results indicate that high pressure may be useful in arresting Cheddar cheese ripening.


Subject(s)
Cheese/analysis , Cheese/microbiology , Endopeptidases/metabolism , Pressure , Amino Acids/analysis , Colony Count, Microbial , Food Handling/methods , Lactobacillus/isolation & purification , Lactococcus lactis/isolation & purification , Rheology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL