Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Nat Mater ; 23(2): 271-280, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37957270

ABSTRACT

Interfacing molecular machines to inorganic nanoparticles can, in principle, lead to hybrid nanomachines with extended functions. Here we demonstrate a ligand engineering approach to develop atomically precise hybrid nanomachines by interfacing gold nanoclusters with tetraphenylethylene molecular rotors. When gold nanoclusters are irradiated with near-infrared light, the rotation of surface-decorated tetraphenylethylene moieties actively dissipates the absorbed energy to sustain the photothermal nanomachine with an intact structure and steady efficiency. Solid-state nuclear magnetic resonance and femtosecond transient absorption spectroscopy reveal that the photogenerated hot electrons are rapidly cooled down within picoseconds via electron-phonon coupling in the nanomachine. We find that the nanomachine remains structurally and functionally intact in mammalian cells and in vivo. A single dose of near-infrared irradiation can effectively ablate tumours without recurrence in tumour-bearing mice, which shows promise in the development of nanomachine-based theranostics.


Subject(s)
Nanoparticles , Neoplasms , Stilbenes , Animals , Mice , Phototherapy/methods , Nanoparticles/chemistry , Gold/chemistry , Mammals
2.
Proc Natl Acad Sci U S A ; 119(45): e2208505119, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36322772

ABSTRACT

The linear positive magnetoresistance (LPMR) is a widely observed phenomenon in topological materials, which is promising for potential applications on topological spintronics. However, its mechanism remains ambiguous yet, and the effect is thus uncontrollable. Here, we report a quantitative scaling model that correlates the LPMR with the Berry curvature, based on a ferromagnetic Weyl semimetal CoS2 that bears the largest LPMR of over 500% at 2 K and 9 T, among known magnetic topological semimetals. In this system, masses of Weyl nodes existing near the Fermi level, revealed by theoretical calculations, serve as Berry-curvature monopoles and low-effective-mass carriers. Based on the Weyl picture, we propose a relation [Formula: see text], with B being the applied magnetic field and [Formula: see text] the average Berry curvature near the Fermi surface, and further introduce temperature factor to both MR/B slope (MR per unit field) and anomalous Hall conductivity, which establishes the connection between the model and experimental measurements. A clear picture of the linearly slowing down of carriers, i.e., the LPMR effect, is demonstrated under the cooperation of the k-space Berry curvature and real-space magnetic field. Our study not only provides experimental evidence of Berry curvature-induced LPMR but also promotes the common understanding and functional designing of the large Berry-curvature MR in topological Dirac/Weyl systems for magnetic sensing or information storage.

3.
Nano Lett ; 24(4): 1246-1253, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38198620

ABSTRACT

Two-dimensional (2D) ferromagnets have attracted widespread attention for promising applications in compact spintronic devices. However, the controlled synthesis of high-quality, large-sized, and ultrathin 2D magnets via facile, economical method remains challenging. Herein, we develop a hydrogen-tailored chemical vapor deposition approach to fabricating 2D Cr5Te8 ferromagnetic nanosheets. Interestingly, the time period of introducing hydrogen was found to be crucial for controlling the lateral size, and a Cr5Te8 single-crystalline nanosheet of lateral size up to ∼360 µm with single-unit-cell thickness has been obtained. These samples exhibit a leading role of domain wall nucleation in governing the magnetization reversal process, providing important references for optimizing the performances of associated devices. The nanosheets also show notable magnetotransport response, including nonmonotonous magnetic-field-dependent magnetoresistance and sizable anomalous Hall resistivity, demonstrating Cr5Te8 as a promising material for constructing high-performance magnetoelectronic devices. This study presents a breakthrough of large-sized CVD-grown 2D magnetic materials, which is indispensable for constructing 2D spintronic devices.

4.
J Am Chem Soc ; 146(25): 17094-17102, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38867462

ABSTRACT

The photoluminescent properties of atomically precise metal nanoclusters (MCs) have garnered significant attention in the fields of chemical sensing and biological imaging. However, the limited brightness of single-component nanoclusters hinders their practical applications, and the conventional ligand engineering approaches have proven insufficient in enhancing the emission efficiency of MCs. Here, we present a DNA framework-guided strategy to prepare highly luminescent metal cluster nanoaggregates. Our approach involves an amphiphilic DNA framework comprising a hydrophobic alkyl core and a rigid DNA framework shell, serving as a nucleation site and providing well-defined nanoconfinements for the self-limiting aggregation of MCs. Through this method, we successfully produced homogeneous MC nanoaggregates (10.1 ± 1.2 nm) with remarkable nanoscale precision. Notably, this strategy proves adaptable to various MCs, leading to a substantial enhancement in emission and quantum yield, up to 3011- and 87-fold, respectively. Furthermore, our investigation using total internal reflection fluorescence microscopy at the single-particle level uncovered a more uniform photon number distribution and higher photostability for MC nanoaggregates compared to template-free counterparts. This DNA-templating strategy introduces a conceptually innovative approach for studying the photoluminescent properties of aggregates with nanoscale precision and holds promise for constructing highly luminescent MC nanoparticles for diverse applications.


Subject(s)
DNA , DNA/chemistry , Metal Nanoparticles/chemistry , Luminescence
5.
J Am Chem Soc ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959409

ABSTRACT

Single-molecule localization methods have been popularly exploited to obtain super-resolved images of biological structures. However, the low blinking frequency of randomly switching emission states of individual fluorophores greatly limits the imaging speed of single-molecule localization microscopy (SMLM). Here we present an ultrafast SMLM technique exploiting spontaneous fluorescence blinking of cyanine dye aggregates confined to DNA framework nanostructures. The DNA template guides the formation of static excimer aggregates as a "light-harvesting nanoantenna", whereas intermolecular excitation energy transfer (EET) between static excimers causes collective ultrafast fluorescence blinking of fluorophore aggregates. This DNA framework-based strategy enables the imaging of DNA nanostructures with 12.5-fold improvement in speed compared to conventional SMLM. Further, we demonstrate the use of this strategy to track the movement of super-resolved DNA nanostructures for over 20 min in a microfluidic system. Thus, this ultrafast SMLM holds great potential for revealing the dynamic processes of biomacromolecules in living cells.

6.
Anal Chem ; 96(6): 2277-2285, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38285919

ABSTRACT

Nanopore sensing technology, as an emerging analytical method, has the advantages of simple operation, fast output, and label-free and has been widely used in fields such as protein analysis, gene sequencing, and biomarker detection. Inspired by biological ion channels, scientists have prepared various artificial solid-state nanopores/nanochannels. Biological ion channels have extremely high ion transport selectivity, while solid-state nanopores/nanochannels have poor selectivity. The selectivity of solid-state nanopores and nanochannels can be enhanced by modifying channel charge, varying pore size, incorporating specific chemical functionality, and adjusting operating (or solution) conditions. This Perspective highlights pore-in modification strategies for enhancing the selectivity of solid-state nanopore/nanochannel sensors by summarizing the articles published in the last 10 years. The future development prospects and challenges of pore-in modification in solid-state nanopore and nanochannel sensors are discussed. This Perspective helps readers better understand nanopore sensing technology, especially the importance of detection selectivity. We believe that solid-state nanopore/nanochannel sensors will soon enter our homes after various challenges.


Subject(s)
Nanopores , Nanotechnology , Ion Channels , Ion Transport , Technology
7.
Small ; : e2402870, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844986

ABSTRACT

DNA nanostructures offer a versatile platform for precise dye assembly, making them promising templates for creating photonic complexes with applications in photonics and bioimaging. However, despite these advancements, the effect of dye loading on the hybridization kinetics of single-stranded DNA protruding from DNA nanostructures remains unexplored. In this study, the DNA points accumulation for imaging in the nanoscale topography (DNA-PAINT) technique is employed to investigate the accessibility of functional binding sites on DNA-templated excitonic wires. The results indicate that positively charged dyes on DNA frameworks can accelerate the hybridization kinetics of protruded ssDNA through long-range electrostatic interactions. Furthermore, the impacts of various charged dyes and binding sites are explored on diverse DNA frameworks with varying cross-sizes. The research underscores the crucial role of electrostatic interactions in DNA hybridization kinetics within DNA-dye complexes, offering valuable insights for the functionalization and assembly of biomimetic photonic systems.

8.
Angew Chem Int Ed Engl ; 62(35): e202305896, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37438325

ABSTRACT

Membrane curvature reflects physical forces operating on the lipid membrane, which plays important roles in cellular processes. Here, we design a mechanosensitive DNA (MSD) nanomachine that mimics natural mechanosensitive PIEZO channels to convert the membrane tension changes of lipid vesicles with different sizes into fluorescence signals in real time. The MSD nanomachine consists of an archetypical six-helix-bundle DNA nanopore, cholesterol-based membrane anchors, and a solvatochromic fluorophore, spiropyran (SP). We find that the DNA nanopore effectively amplifies subtle variations of the membrane tension, which effectively induces the isomerization of weakly emissive SP into highly emissive merocyanine isomers for visualizing membrane tension changes. By measuring the membrane tension via the fluorescence of MSD nanomachine, we establish the correlation between the membrane tension and the curvature that follows the Young-Laplace equation. This DNA nanotechnology-enabled strategy opens new routes to studying membrane mechanics in physiological and pathological settings.


Subject(s)
Nanopores , Nanotechnology , Fluorescence , DNA , Lipids , Cell Membrane
9.
Angew Chem Int Ed Engl ; 62(21): e202300893, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36951433

ABSTRACT

Copper nanoclusters (CuNCs) are attractive electrochemiluminescence (ECL) emitters as Cu is comparatively inexpensive, nontoxic, and highly abundant. However, their ECL yield is relatively low. Herein, we report that orderly self-assembly of CuNCs using DNA nanoribbon as the template (DNR/CuNCs) conferred the CuNCs with improved ECL properties compared with individual CuNCs in both annihilation and co-reactant processes. The DNR/CuNCs resulted in a high ECL yield of 46.8 % in K2 S2 O8 , which was ≈68 times higher than that of individual CuNCs. This strategy was successfully extended to other ECL emitters, such as gold nanoclusters and the Ru(bpy)3 2+ /TPrA system. Furthermore, as an application of DNR/CuNCs, a DNR/CuNC-based ECL biosensor with higher sensitivity was constructed for dopamine determination (two orders of magnitude lower than that previously reported), showing that DNR/CuNCs have a potential for application in ECL bioanalysis as a new type of superior luminophore candidate.


Subject(s)
Biosensing Techniques , Nanotubes, Carbon , Copper , Luminescent Measurements/methods , DNA/analysis , Biosensing Techniques/methods , Electrochemical Techniques/methods
10.
Chemistry ; 28(10): e202103736, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-34854510

ABSTRACT

Atomically precise gold nanoclusters (AuNCs) are an emerging class of quantum-sized nanomaterials. Intrinsic discrete electronic energy levels have endowed them with fascinating electronic and optical properties. They have been widely applied in the fields of optoelectronics, photovoltaics, catalysis, biochemical sensing, bio-imaging, and therapeutics. Nevertheless, most AuNCs are synthesized in organic solvents and do not disperse in aqueous solutions; this restricts their biological applications. In this review, we focus on the recent progress in the preparation of water-dispersible AuNCs and their biological applications. We first review different methods of synthesis, including direct synthesis from hydrophilic templates and indirect phase transfer of hydrophobic AuNCs. We then discuss their photophysical properties, such as emission enhancement and fluorescence lifetimes. Next, we summarize their latest applications in the fields of biosensing, biolabeling, and bioimaging. Finally, we outline the challenges and potential for the future development of these AuNCs.


Subject(s)
Metal Nanoparticles , Nanostructures , Fluorescence , Gold/chemistry , Metal Nanoparticles/chemistry , Water
11.
Angew Chem Int Ed Engl ; 61(46): e202210377, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36161445

ABSTRACT

Controlling the deposition and diffusion of adsorbed atoms (adatoms) on the surface of a solid material is vital for engineering the shape and function of nanocrystals. Here, we report the use of single-stranded DNA (oligo-adenine, oligo-A) to encode the wettability of gold seeds by homogeneous gold adatoms to synthesize highly tunable plasmonic nanostructures. We find that the oligo-A attachment transforms the nanocrystal growth mode from the classical Frank-van der Merwe to the Volmer-Weber island growth. Finely tuning the oligo-A density can continuously change the gold-gold contact angle (θ) from 35.1±3.6° to 125.3±8.0°. We further demonstrate the versatility of this strategy for engineering nanoparticles with different curvature and dimensions. With this unconventional growth mode, we synthesize a sub-nanometer plasmonic cavity with a geometrical singularity when θ>90°. Superfocusing of light in this nanocavity produces a near-infrared intraparticle plasmonic coupling, which paves the way to surface engineering of single-particle plasmonic devices.


Subject(s)
Metal Nanoparticles , Nanoparticles , Nanostructures , Gold/chemistry , Wettability , DNA/chemistry , Nanostructures/chemistry , Nanoparticles/chemistry , Metal Nanoparticles/chemistry
12.
J Am Chem Soc ; 143(28): 10735-10742, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34242004

ABSTRACT

Fluorescence anisotropy (FA) holds great potential for multiplexed analysis and imaging of biomolecules since it can effectively discriminate fluorophores with overlapping emission spectra. Nevertheless, its susceptibility to environmental variation hampers its widespread applications in biology and biotechnology. In this study, we design FA DNA frameworks (FAFs) by scaffolding fluorophores in a fluorescent protein-like microenvironment. We find that the FA stability of the fluorophores is remarkably improved due to the sequestration effects of FAFs. The FA level of the fluorophores can be finely tuned when placed at different locations on an FAF, analogous to spectral shifts of protein-bound fluorophores. The high programmability of FAFs further enables the design of a spectrum of encoded FA barcodes for multiplexed sensing of nucleic acids and multiplexed labeling of live cells. This FAF system thus establishes a new paradigm for designing multiplexing FA probes for cellular imaging and other biological applications.


Subject(s)
DNA/analysis , Fluorescence Polarization , Fluorescent Dyes/chemistry , Animals , Mice , Optical Imaging , Tumor Cells, Cultured
13.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(3): 350-356, 2021 May.
Article in Zh | MEDLINE | ID: mdl-34018350

ABSTRACT

Modern tissue clearing techniques have made it possible to have high-resolution imaging of cell populations and three-dimensional reconstruction of tissue structures, and we are able to obtain more complete three-dimensional brain structures and spatial connections between the various components of brain tissues through tissue clearing techniques. Over the past decade, scientists have developed and improved a number of tissue clearing techniques that are now widely used in neuroscience research, allowing us to extract important information from complex neural networks. Moreover, tissue clearing technology also provides research tools for the stem cell therapy and neurogeneration of neurodegenerative diseases. In this paper, we reviewed the major types of existing tissue clearing techniques and their respective strengths and weaknesses. We summarized the application of these techniques in neurodegenerative disease research and their unique merits. In addition, we explored the development requirements of tissue clearing technology, improvements in the supporting equipment, and its potential to be used as research tools for stem cell therapy and regenerative medicine in the future.


Subject(s)
Neurodegenerative Diseases , Brain , Humans , Imaging, Three-Dimensional , Neurodegenerative Diseases/therapy , Technology
14.
Angew Chem Int Ed Engl ; 60(12): 6624-6630, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33314629

ABSTRACT

Variation of DNA conformation is important in regulating gene expression and mediating drug-DNA interactions. However, directly probing transient DNA conformation changes is challenging owing to the dynamic nature of this process. We show a label-free fluorescence method to monitor transient DNA conformation changes in DNA structures with various lengths and shapes using a DNA intercalator, K21. K21 can form transient excimers on the surface of DNA; the ratiometric emission of monomer and excimer correlate to DNA transient conformation stability in numerous DNA structures, including i-motifs, G-quadruplex structures, and single nucleotide mutation at random position. We analyzed the conformation dynamics of a single plasmid before and after enzyme digestion with confocal fluorescence microscopy. This method provides a label-free fluorescence strategy to probe transient conformation changes of DNA structures and has potential in uncovering transient genomic processes in living cells.


Subject(s)
DNA/chemistry , Fluorescent Dyes/chemistry , DNA/genetics , DNA/metabolism , Microscopy, Fluorescence , Models, Molecular , Nucleic Acid Conformation , Plasmids
15.
Angew Chem Int Ed Engl ; 60(30): 16693-16699, 2021 07 19.
Article in English | MEDLINE | ID: mdl-33991031

ABSTRACT

Long-range electrostatic interactions beyond biomolecular interaction interfaces have not been extensively studied due to the limitation in engineering electric double layers in physiological fluids. Here we find that long-range electrostatic interactions play an essential role in kinetic modulation of DNA hybridizations. Protein and gold nanoparticles with different charges are encapsulated in tetrahedral frameworks to exert diverse electrostatic effects on site-specifically tethered single DNA strands. Using this strategy, we have successfully modulated the hybridization kinetics in both bulk solution and single molecule level. Experimental and theoretical studies reveal that long-range Coulomb interactions are the key factor for hybridization rates. This work validates the important role of long-range electrostatic forces in nucleic acid-biomacromolecule complexes, which may encourage new strategies of gene regulation, antisense therapy, and nucleic acid detection.


Subject(s)
DNA/chemistry , Fluorescent Dyes/chemistry , Gold/chemistry , Intercalating Agents/chemistry , Metal Nanoparticles/chemistry , DNA, Single-Stranded/chemistry , Kinetics , Molecular Dynamics Simulation , Nucleic Acid Hybridization , Static Electricity , Surface Properties
16.
J Am Chem Soc ; 142(22): 9975-9981, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32369359

ABSTRACT

Intracellular DNA-based hybridization reactions generally occur under tension rather than in free states, which are spatiotemporally controlled in physiological conditions. However, how nanomechanical forces affect DNA hybridization efficiencies in in-vitro DNA assays, for example, biosensors or biochips, remains largely elusive. Here, we design DNA framework-based nanomechanical handles that can control the stretching states of DNA molecules. Using a pair of tetrahedral DNA framework (TDF) nanostructured handles, we develop bridge DNA sensors that can capture target DNA with ultrafast speed and high efficiency. We find that the rigid TDF handles bind two ends of a single-stranded DNA (ssDNA) and hold it in a stretched state, with an apparent stretching length comparable to its counterpart of double-stranded DNA (dsDNA) via atomic force microscopy measurement. The DNA stretching effect of ssDNA is then monitored using single-molecule fluorescence energy transfer (FRET), resulting in decreased FRET efficiency in the stretched ssDNA. By controlling the stretching state of ssDNA, we obtained significantly improved hybridization kinetics (within 1 min) and hybridization efficiency (∼98%) under the target concentration of 500 nM. The bridge DNA sensors demonstrated high sensitivity (1 fM), high specificity (single mismatch mutation discrimination), and high selectivity (suitable for the detection in serum and blood) under the target concentration of 10 nM. Controlling the stretching state of ssDNA shows great potential in biosensors, bioimaging, and biochips applications.


Subject(s)
Biosensing Techniques , DNA/analysis , Fluorescence Resonance Energy Transfer , Nucleic Acid Hybridization
17.
Small ; 16(8): e1907598, 2020 02.
Article in English | MEDLINE | ID: mdl-32003943

ABSTRACT

Lightweight and mechanically strong protein fibers are promising for many technical applications. Despite the widespread investigation of biological fibers based on spider silk and silkworm proteins, it remains a challenge to develop low-cost proteins and convenient spinning technology for the fabrication of robust biological fibers. Since there are plenty of widely available proteins in nature, it is meaningful to investigate the preparation of fibers by the proteins and explore their biomedical applications. Here, a facile microfluidic strategy is developed for the scalable construction of biological fibers via a series of easily accessible spherical and linear proteins including chicken egg, quail egg, goose egg, bovine serum albumin, milk, and collagen. It is found that the crosslinking effect in microfluidic chips and double-drawn treatment after spinning are crucial for the formation of fibers. Thus, high tensile strength and toughness are realized in the fibers, which are comparable or even higher than that of many recombinant spider silks or regenerated silkworm fibers. Moreover, the suturing applications in rat and minipig models are realized by employing the mechanically strong fibers. Therefore, this work opens a new direction for the production of biological fibers from natural sources.


Subject(s)
Proteins , Suture Techniques , Animals , Microfluidics , Muscle Fibers, Slow-Twitch , Proteins/chemistry , Rats , Suture Techniques/instrumentation , Swine , Swine, Miniature , Tensile Strength
18.
Phys Rev Lett ; 125(8): 086602, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32909775

ABSTRACT

Topological materials are expected to show distinct transport signatures owing to their unique band-inversion characteristic and band-crossing points. However, the intentional modulation of such topological responses through experimentally feasible means has yet to be explored in depth. Here, an unusual elevation of the anomalous Hall effect (AHE) is obtained in electron (Ni)-doped magnetic Weyl semimetals Co_{3-x}Ni_{x}Sn_{2}S_{2}, showing peak values in the anomalous Hall-conductivity, Hall-angle, and Hall-factor at a relatively low doping level of x=0.11. The separation of intrinsic and extrinsic contributions using the TYJ scaling model indicates that such a significant enhancement is dominated by the intrinsic mechanism of the electronic Berry curvature. Theoretical calculations reveal that compared with the Fermi-level shifting from electron filling, a usually overlooked effect of doping, that is, local disorder, imposes a striking effect on broadening of the bands and narrowing of the inverted gap, thus resulting in an elevation of the integrated Berry curvature. Our results not only realize an enhancement of the AHE in a magnetic Weyl semimetal, but also provide a practical design principle for modulating the bands and transport properties in topological materials by exploiting the local disorder effect from doping.

19.
Angew Chem Int Ed Engl ; 59(41): 18213-18217, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32634255

ABSTRACT

The self-assembly of inorganic nanoparticles into well-ordered structures in the absence of solvents is generally hindered by van der Waals forces, leading to random aggregates between them. To address the problem, we functionalized rigid rare-earth (RE) nanoparticles with a layer of flexible polymers by electrostatic complexation. Consequently, an ordered and solvent-free liquid crystal (LC) state of RE nanoparticles was realized. The RE nanomaterials including nanospheres, nanorods, nanodiscs, microprisms, and nanowires all show a typical nematic LC phase with one-dimensional orientational order, while their microstructures strongly depend on the particles' shape and size. Interestingly, the solvent-free thermotropic LCs possess an extremely wide temperature range from -40 °C to 200 °C. The intrinsic ordering and fluidity endow anisotropic luminescence properties in the system of shearing-aligned RE LCs, offering potential applications in anisotropic optical micro-devices.

20.
Angew Chem Int Ed Engl ; 59(11): 4344-4348, 2020 03 09.
Article in English | MEDLINE | ID: mdl-31873970

ABSTRACT

Proteins used for the formation of light weight and mechanically strong biological fibers are typically composed of folded rigid and unfolded flexible units. In contrast to fibrous proteins, globular proteins are generally not regarded as a good candidate for fiber production due to their intrinsic structural defects. Thus, it is challenging to develop an efficient strategy for the construction of mechanically strong fibers using spherical proteins. Herein, we demonstrate the production of robust protein fibers from bovine serum albumin (BSA) using a microfluidic technique. Remarkably, the toughness of the fibers was up to 143 MJ m-3 , and after post-stretching treatment, their breaking strength increased to almost 300 MPa due to the induced long-range ordered structure in the fibers. The performance is comparable to or even higher than that of many recombinant spider silks or regenerated silkworm fibers. Thus, this work opens a new way for making biological fibers with high performance.


Subject(s)
Fibroins/chemistry , Microfluidics/methods , Serum Albumin, Bovine/chemistry , Animals , Bombyx , Cross-Linking Reagents/chemistry , Elasticity , Glutaral/chemistry , Silk/chemistry , Spiders , Stress, Mechanical , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL