Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nat Mater ; 22(8): 958-963, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37337072

ABSTRACT

Dislocation motion, an important mechanism underlying crystal plasticity, is critical for the hardening, processing and application of a wide range of structural and functional materials. For decades, the movement of dislocations has been widely observed in crystalline solids under mechanical loading. However, the goal of manipulating dislocation motion via a non-mechanical field alone remains elusive. Here we present real-time observations of dislocation motion controlled solely by using an external electric field in single-crystalline zinc sulfide-the dislocations can move back and forth depending on the direction of the electric field. We reveal the non-stoichiometric nature of dislocation cores and determine their charge characteristics. Both negatively and positively charged dislocations are directly resolved, and their glide barriers decrease under an electric field, explaining the experimental observations. This study provides direct evidence of dislocation dynamics controlled by a non-mechanical stimulus and opens up the possibility of modulating dislocation-related properties.

2.
J Am Chem Soc ; 145(37): 20511-20520, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37677844

ABSTRACT

While the complex 7 × 7 structure that arises upon annealing the Si(111) surface is well-known, the mechanism underlying this unusual surface reconstruction has remained a mystery. Here, we report molecular dynamics simulations using a machine-learning force field for Si to investigate the Si(111)-7 × 7 surface reconstruction from the melt. We find that there are two possible pathways for the formation of the 7 × 7 structure. The first path arises from the growth of a faulted half domain from the metastable 5 × 5 phase to the final 7 × 7 structure, while the second path involves the direct formation of the 7 × 7 reconstruction. Both pathways involve the creation of dimers and bridged five-membered rings, followed by the formation of additional dimers and the stabilization of the triangular halves of the unit cell. The corner hole is formed from the joining of several five-member rings. The insertion of atoms below the adatoms to form a dumbbell configuration involves extra atom diffusion or rearrangement during the evolution of triangular halves and dimer formation along the unit cell boundary. Our findings may provide insights for manipulating the surface structure by introducing other atomic species.

3.
Phys Chem Chem Phys ; 24(1): 497-506, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34904146

ABSTRACT

The authors recently reported that undercooled liquid Ag and Ag-Cu alloys both exhibit a first order phase transition from the homogeneous liquid (L-phase) to a heterogeneous solid-like G-phase under isothermal evolution. Here, we report a similar L-G transition and heterogenous G-phase in simulations of liquid Cu-Zr bulk glass. The thermodynamic description and kinetic features (viscosity) of the L-G-phase transition in Cu-Zr simulations suggest it corresponds to experimentally reported liquid-liquid phase transitions in Vitreloy 1 (Vit1) and other Cu-Zr-bearing bulk glass forming alloys. The Cu-Zr G-phase has icosahedrally ordered cores versus fcc/hcp core structures in Ag and Ag-Cu with a notably smaller heterogeneity length scale Λ. We propose the L-G transition is a phenomenon in metallic liquids associated with the emergence of elastic rigidity. The heterogeneous core-shell nano-composite structure likely results from accommodating strain mismatch of stiff core regions by more compliant intervening liquid-like medium.

4.
J Am Chem Soc ; 140(50): 17702-17710, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30479122

ABSTRACT

We propose and test a hierarchical high-throughput screening (HHTS) approach to catalyst design for complex catalytic reaction systems that is based on quantum mechanics (QM) derived full reaction networks with QM rate constants but simplified to examine only the reaction steps likely to be rate determining. We illustrate this approach by applying it to determine the optimum dopants (our of 35 candidates) to improve the turnover frequency (TOF) for the Fe-based Haber-Bosch ammonia synthesis process. We start from the QM-based free-energy reaction network for this reaction over Fe(111), which contains the 26 most important surface configurations and 17 transition states at operating conditions of temperature and pressure, from which we select the key reaction steps that might become rate determining for the alloy. These are arranged hierarchically by decreasing free-energy reaction barriers. We then extract from the full reaction network, a reduced set of reaction rates required to quickly predict the effect of the catalyst changes on each barrier. This allows us to test new candidates with only 1% of the effort for a full calculation. Thus, we were able to quickly screen 34 candidate dopants to select a small subset (Rh, Pt, Pd, Cu) that satisfy all criteria, including stability. Then from these four candidates expected to increase the TOF for NH3 production, we selected the best candidate (Rh) for a more complete free-energy and kinetic analysis (10 times the effort for HHTS but still 10% of the effort for a complete analysis of the full reaction network). We predict that Rh doping of Fe will increase the TOF for NH3 synthesis by a factor of ∼3.3 times compared to Fe(111), in excellent agreement with our HHTS predictions, validating this approach.

5.
Rejuvenation Res ; 27(4): 122-130, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38814828

ABSTRACT

This study aims to investigate the expression differences of peripheral blood mononuclear cells (PBMCs) in patients with elderly rheumatoid arthritis (ERA). Differentially expressed genes (DEGs) of PBMCs between young patients with RA (RA_Y) and elderly patients with RA (RA_A) were identified by RNA sequencing using the DESeq2 package, followed by bioinformatics analysis. The overlapped targets of the current DEGs and proteomic differentially expressed proteins (another set of unpublished data) were identified and further validated. The bioinformatics analysis revealed significant transcriptomic heterogeneity between RA_A and RA_Y. A total of 348 upregulated and 363 downregulated DEGs were identified. Gene functional enrichment analysis indicated that the DEGs, which represented senescence phenotype for patients with ERA, were enriched in pathways such as Phosphatidylinositol3 kinase/AKT serine-threonine protein kinase (PI3K/Akt) signaling, Mitogen-activated protein kinases (MAPK) signaling, toll-like receptor family, neutrophil degranulation, and immune-related pathways. Gene set enrichment analysis further confirmed the activation of humoral immune response pathways in RA_A. Quantitative polymerase chain reaction validated the expression of five representative DEGs such as SPTA1, SPTB, VNN1, TNXB, and KRT1 in PBMCs of patients with ERA. Patients with ERA have significant senescence phenotype differences versus the young patients. The DEGs identified may facilitate exploring the biomarkers of senescence in RA.


Subject(s)
Arthritis, Rheumatoid , Leukocytes, Mononuclear , Phenotype , Humans , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/blood , Leukocytes, Mononuclear/metabolism , Aged , Female , Male , Gene Expression Profiling , Computational Biology/methods , Adult , Middle Aged , Transcriptome/genetics , Proteomics/methods , Gene Expression Regulation
6.
ACS Appl Mater Interfaces ; 15(10): 13449-13459, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36749935

ABSTRACT

Establishing scaling laws for amorphous alloys is of critical importance for describing their mechanical behavior at different size scales. In this paper, taking Ni2Ta amorphous metallic alloy as a prototype materials system, we derive the scaling law of impact resistance for amorphous alloys. We use laser-induced supersonic micro-ballistic impact experiments to measure for the first time the size-dependent impact response of amorphous alloys. We also report the results of molecular dynamics (MD) simulations for the same system but at much smaller scales. Comparing these results, we determined a law for scaling both length and time scales based on dimensional analysis. It connects the time and length scales of the experimental results on the impact resistance of amorphous alloys to that of the MD simulations, providing a method for bridging the gap in comparing the dynamic behavior of amorphous alloys at various scales and a guideline for the fabrication of new amorphous alloy materials with extraordinary impact resistance.

7.
ACS Appl Mater Interfaces ; 15(27): 33046-33055, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37368946

ABSTRACT

Ruoff and co-workers recently demonstrated low-temperature (1193 K) homoepitaxial diamond growth from liquid gallium solvent. To develop an atomistic mechanism for diamond growth underlying this remarkable demonstration, we carried out density functional theory-based molecular dynamics (DFT-MD) simulations to examine the mechanism of single-crystal diamond growth on various low-index crystallographic diamond surfaces (100), (110), and (111) in liquid Ga with CH4. We find that carbon linear chains form in liquid Ga and then react with the growing diamond surface, leading first to the formation of carbon rings on the surface and then initiation of diamond growth. Our simulations find faster growth on the (110) surface than on the (100) or (111) surfaces, suggesting the (110) surface as a plausible growth surface in liquid Ga. For (110) surface growth, we predict the optimum growth temperature to be ∼1300 K, arising from a balance between the kinetics of forming carbon chains dissolved in Ga and the stability of carbon rings on the growing surface. We find that the rate-determining step for diamond growth is dehydrogenation of the growing hydrogenated (110) surface of diamond. Inspired by the recent experimental studies by Ruoff and co-workers demonstrating that Si accelerates diamond growth in Ga, we show that addition of Si into liquid Ga significantly increases the rate of dehydrogenating the growing surface. Extrapolating from the DFT-MD predicted rates at 2800 to 3500 K, we predict the growth rate at the experimental growth temperature of 1193 K, leading to rates in reasonable agreement with the experiment. These fundamental mechanisms should provide guidance in optimizing low-temperature diamond growth.

8.
ACS Appl Mater Interfaces ; 14(22): 25792-25801, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35608966

ABSTRACT

Photomechanical effect in semiconductors refers to a phenomenon that plastic deformation is influenced by light-induced electron-hole (e-h) excitation. To date, increasing amounts of theoretical and experimental studies have been performed to illustrate the physical origin of this phenomenon. In contrast, there has been little discussion about this effect in superhard materials. Here, we adopted constrained density functional theory simulations to assess how e-h excitation influences two boron-based superhard materials: boron carbide (B4C) and boron subphosphide (B12P2). We found that the ideal shear strengths of both systems decrease under e-h excited states. Under e-h excitation, the redistribution of electrons and holes contributes to the decreased strength, weakening the bonds initially broken under the shear deformation. The simulation results provide a fundamental explanation for the softening effects of superhard materials under e-h excitation. This study also provides a basis to tune the mechanical properties of superhard materials via light irradiation.

9.
ACS Appl Mater Interfaces ; 13(21): 24833-24855, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34014637

ABSTRACT

Sr0.7Bi0.2TiO3 (SBT) is a promising pulse energy storage material due to minor hysteresis, but its low maximum polarization (Pmax) is bad for energy storage. K+-Bi3+ defect pairs were introduced into the A-site of SBT to obtain Sr0.35Bi0.35K0.25TiO3 (SBKT) with larger Pmax. Through first-principles calculations, we determined that the introduction of defect pairs destroys the paraelectric order phase and increases local polarization, resulting in more and larger polar nanoregion (PNR) formation. On this basis, doping NaNbO3 (NN) in A- and B-sites of SBKT increases the cationic disorder and ferroelectric destabilization, further destroying the long-range order structure and forming more PNRs with smaller sizes. This enhances relaxation and decreases remnant polarization, and the broadened dielectric peak enables 0.85SBKT-0.15NN to meet the X7R specification. Furthermore, the decreased grain size and oxygen vacancy, increased thermal conductivity, and weakened local electric field (simulated by COMSOL) increase the dielectric breakdown strength (BDS). As a result, 0.95SBKT-0.05NN exhibits a high energy storage density (W) of 2.45 J/cm3 with a high efficiency of 93.1%, a high pulsed discharge energy density of 2.1 J/cm3, and a high power density of 54.1 MW/cm3 at 220 kV/cm. The energy storage properties show excellent stability of temperature (-55 to 150 °C), frequency (10-500 Hz), and cycling (105 cycles). Notably, for the pulse charge-discharge properties, 0.95SBKT-0.05NN shows great fatigue resistance during 105 cycles under 25 and 150 °C, accompanied by excellent thermal stability. Moreover, the BDS and Pmax of 0.95SBKT-0.05NN sintered in O2 further enhance. A higher W of 2.92 J/cm3 with a high efficiency of 89% at 250 kV/cm is achieved. Therefore, 0.95SBKT-0.05NN shows great application potential for pulse energy storage. In this work, we provide a novel strategy and systematic in-depth study for improving the energy storage properties of SBT.

10.
RSC Adv ; 10(25): 14753-14760, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-35497142

ABSTRACT

Clathrate hydrates are ice-like crystalline substances in which small gas molecules are trapped inside the polyhedral cavities of water molecules. They are of great importance in both scientific research and the petroleum industry because of their applications in modern energy and environmental technologies. To achieve an atomistic-level understanding of the diffusion and decomposition of trapped molecules in clathrate hydrate, we used methane hydrates (MHs) as the prototype system and examined the methane diffusion and decomposition mechanism by employing quantum mechanics (QM) and quantum mechanics molecular dynamics (QMD) simulations. Our QMD simulations illustrated that the initial decomposition reaction in MHs initiates from hydrogen transfer among water molecules and attacks by fragments of O and OH on CH4 molecules are responsible for the destruction of the methane molecules. Next, our QM simulations revealed that the methane molecule prefers to escape from the ice cage through the hexagonal face at low temperature. To suppress the methane diffusion, we demonstrated that the diffusion barrier is significantly enhanced by adding electron or hole carriers. This is because the extra electrons and holes enhance the electrostatic interaction between methane and water molecules, leading to an increased diffusion barrier. Thus, the clathrate hydrates could be stabilized by adding extra free electron or hole carriers.

SELECTION OF CITATIONS
SEARCH DETAIL