ABSTRACT
Mountain ranges contain high concentrations of endemic species and are indispensable refugia for lowland species that are facing anthropogenic climate change1,2. Forecasting biodiversity redistribution hinges on assessing whether species can track shifting isotherms as the climate warms3,4. However, a global analysis of the velocities of isotherm shifts along elevation gradients is hindered by the scarcity of weather stations in mountainous regions5. Here we address this issue by mapping the lapse rate of temperature (LRT) across mountain regions globally, both by using satellite data (SLRT) and by using the laws of thermodynamics to account for water vapour6 (that is, the moist adiabatic lapse rate (MALRT)). By dividing the rate of surface warming from 1971 to 2020 by either the SLRT or the MALRT, we provide maps of vertical isotherm shift velocities. We identify 17 mountain regions with exceptionally high vertical isotherm shift velocities (greater than 11.67 m per year for the SLRT; greater than 8.25 m per year for the MALRT), predominantly in dry areas but also in wet regions with shallow lapse rates; for example, northern Sumatra, the Brazilian highlands and southern Africa. By linking these velocities to the velocities of species range shifts, we report instances of close tracking in mountains with lower climate velocities. However, many species lag behind, suggesting that range shift dynamics would persist even if we managed to curb climate-change trajectories. Our findings are key for devising global conservation strategies, particularly in the 17 high-velocity mountain regions that we have identified.
Subject(s)
Altitude , Animal Migration , Biodiversity , Geographic Mapping , Global Warming , Animals , Africa, Southern , Brazil , Conservation of Natural Resources , Global Warming/statistics & numerical data , Humidity , Indonesia , Rain , Refugium , Satellite Imagery , Species Specificity , Temperature , Time FactorsABSTRACT
Exciting phenomena may emerge in non-centrosymmetric two-dimensional electronic systems when spin-orbit coupling (SOC)1 interplays dynamically with Coulomb interactions2,3, band topology4,5 and external modulating forces6-8. Here we report synergetic effects between SOC and the Stark effect in centrosymmetric few-layer black arsenic, which manifest as particle-hole asymmetric Rashba valley formation and exotic quantum Hall states that are reversibly controlled by electrostatic gating. The unusual findings are rooted in the puckering square lattice of black arsenic, in which heavy 4p orbitals form a Brillouin zone-centred Γ valley with pz symmetry, coexisting with doubly degenerate D valleys of px origin near the time-reversal-invariant momenta of the X points. When a perpendicular electric field breaks the structure inversion symmetry, strong Rashba SOC is activated for the px bands, which produces spin-valley-flavoured D± valleys paired by time-reversal symmetry, whereas Rashba splitting of the Γ valley is constrained by the pz symmetry. Intriguingly, the giant Stark effect shows the same px-orbital selectiveness, collectively shifting the valence band maximum of the D± Rashba valleys to exceed the Γ Rashba top. Such an orchestrating effect allows us to realize gate-tunable Rashba valley manipulations for two-dimensional hole gases, hallmarked by unconventional even-to-odd transitions in quantum Hall states due to the formation of a flavour-dependent Landau level spectrum. For two-dimensional electron gases, the quantization of the Γ Rashba valley is characterized by peculiar density-dependent transitions in the band topology from trivial parabolic pockets to helical Dirac fermions.
ABSTRACT
BACKGROUND: Timely intravenous thrombolysis and endovascular thrombectomy are the standard reperfusion treatments for large vessel occlusion stroke. Currently, it is unknown whether a low-dose thrombolytic agent (0.6 mg/kg alteplase) can offer similar efficacy to the standard dose (0.9 mg/kg alteplase). METHODS: We enrolled consecutive patients in the multicenter Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke who had received combined thrombolysis (within 4.5 hours of onset) and thrombectomy treatment from January 2019 to April 2023. The choice of low- or standard-dose alteplase was based on the physician's discretion. The outcomes included successful reperfusion (modified Thrombolysis in Cerebral Infarction score, 2b-3), symptomatic intracerebral hemorrhage, 90-day modified Rankin Scale score, and 90-day mortality. The outcomes between the 2 groups were compared using multivariable logistic regression and inverse probability of treatment weighting-adjusted analysis. RESULTS: Among the 2242 patients in the Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke, 734 (33%) received intravenous alteplase. Patients in the low-dose group (n=360) were older, had more women, more atrial fibrillation, and longer onset-to-needle time compared with the standard-dose group (n=374). In comparison to low-dose alteplase, standard-dose alteplase was associated with a lower rate of successful reperfusion (81% versus 87%; adjusted odds ratio, 0.63 [95% CI, 0.40-0.98]), a numerically higher incidence of symptomatic intracerebral hemorrhage (6.7% versus 3.9%; adjusted odds ratio, 1.81 [95% CI, 0.88-3.69]), but better 90-day modified Rankin Scale score (functional independence [modified Rankin Scale score, 0-2], 47% versus 31%; adjusted odds ratio, 1.91 [95% CI, 1.28-2.86]), and a numerically lower mortality rate (9% versus 15%; adjusted odds ratio, 0.73 [95% CI, 0.43-1.25]) after adjusting for covariates. Similar results were observed in the inverse probability of treatment weighting-adjusted models. The results were consistent across predefined subgroups and age strata. CONCLUSIONS: Despite the lower rate of successful reperfusion and higher risk of symptomatic intracerebral hemorrhage with standard-dose alteplase, standard-dose alteplase was associated with a better functional outcome in patients receiving combined thrombolysis and thrombectomy.
Subject(s)
Ischemic Stroke , Thrombectomy , Tissue Plasminogen Activator , Female , Humans , Cerebral Hemorrhage/epidemiology , Endovascular Procedures , Fibrinolytic Agents/administration & dosage , Fibrinolytic Agents/adverse effects , Ischemic Stroke/drug therapy , Ischemic Stroke/surgery , Registries , Thrombectomy/methods , Tissue Plasminogen Activator/administration & dosage , Tissue Plasminogen Activator/adverse effects , Treatment OutcomeABSTRACT
This study is the first to measure global burden of hip fracture in patients aged 55 years and older across 204 countries and territories from 1990 to 2019. Our study further proved that the global burden of hip fracture is still large. Hip fractures among males are perhaps underestimated, and older adults should be given more attention. PURPOSE: Hip fracture is a tremendous universal public health challenge, but no updated comprehensive and comparable assessment of hip fracture incidence and burden exists for most of the world in older adults. METHODS: Using data from the Global Burden of Diseases (GBD) 2019, we estimated the number and rates of the incidence, prevalence, and years lived with disability (YLD) of hip fracture across 204 countries and territories in patients aged 55 years and older from 1990 to 2019. RESULTS: In 2019, the incidence, prevalence, and YLDs rates of hip fracture in patients aged 55 years and older were 681.35 (95% UI 508.36-892.27) per 100000 population, 1191.39 (95% UI 1083.80-1301.52) per 100000 population, and 130.78 (95% UI 92.26-175.30) per 100000 population. During the three decades, the incidence among people aged below 60 years showed a downward trend, whereas it showed a rapid upward trend among older adults. All the numbers and rates of hip fractures among females were higher than those among males and increased with age, with the highest number and rate in the highest age group. Notably, the male to female ratio of the incidence for people aged over 55 years increased from 0.577 in 1990 to 0.612 in 2019. Falls were the leading cause among both sexes and in all age groups. CONCLUSIONS: The incidence and the number of hip fractures among patients aged 55 years and older increased over the past three decades, indicating that the global burden of hip fracture is still large. Hip fractures among males are perhaps underestimated, and older adults should be given more attention.
Subject(s)
Disabled Persons , Hip Fractures , Humans , Male , Female , Aged , Global Burden of Disease , Incidence , Prevalence , Hip Fractures/epidemiology , Global Health , Quality-Adjusted Life YearsABSTRACT
OBJECTIVE: With global aging, the occurrence of stroke and associated outcomes like dementia are on the rise. Seizures and epilepsy are common poststroke complications and have a strong connection to subsequent dementia. This study examines the relationship between poststroke seizures (PSS) or poststroke epilepsy (PSE) and dementia using a national health care database. METHODS: We conducted a retrospective study using data from the Taiwan National Health Insurance Research Database from 2009 to 2020. We identified acute stroke patients from 2010 to 2015, excluding those with pre-existing neurological conditions. Based on age, sex, stroke severity level, and the year of index stroke, patients with PSS or PSE were matched to those without. The main outcome was incident dementia. RESULTS: This study included 62 968 patients with an average age of 63 years, with males accounting for 62.9%. Of them, 60.3% had ischemic strokes, and 39.7% had hemorrhagic strokes. After an average follow-up period of 5.2 years, dementia developed in 15.9% of patients who had PSS or PSE, as opposed to 8.4% of those without these conditions. A time-dependent Fine and Gray competing risk analysis showed that PSS and PSE were significantly associated with dementia across all stroke types. Subgroup analyses revealed significantly increased risk of dementia across all age groups (<50, 50-64, and ≥65 years), sexes, and various stroke severity levels. The link between PSS or PSE and dementia was particularly pronounced in men, with a less distinct correlation in women. SIGNIFICANCE: The risk of incident dementia was higher in patients with PSS or PSE. The potential for therapeutic interventions for seizures and epilepsy to reduce poststroke dementia underscores the importance of seizure screening and treatment in stroke survivors.
ABSTRACT
BACKGROUND: Real-world utilization data for evolocumab, the first proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor to be introduced in Japan in 2016, to date are limited. This study aimed to clarify the current real-world patient user profiles of evolocumab based on large-scale health claims data. METHODS AND RESULTS: This retrospective database study examined patients from a health administrative database (MDV database) who initiated evolocumab between April 2016 (baseline) and November 2021. Characteristics and clinical profiles of this patient population are described. In all, 4,022 patients were included in the final analysis. Most evolocumab prescriptions occurred in the outpatient setting (3,170; 78.82%), and 940 patients (23.37%) had a recent diagnosis of familial hypercholesterolemia. Common recent atherosclerotic cardiovascular disease events at baseline included myocardial infarction (1,633; 40.60%), unstable angina (561; 13.95%), and ischemic stroke (408; 10.14%). Comorbidity diseases included hypertension (2,504; 62.26%), heart failure (1,750; 43.51%), diabetes (1,199; 29.81%), and chronic kidney disease (297; 7.38%). Among the lipid-lowering regimens concomitant with evolocumab, ezetimibe+statin was used most frequently (1,281; 31.85%), followed by no concomitant lipid-lowering regimen (1,190; 29.59%), statin (950; 23.62%), and ezetimibe (601; 14.94%). The median evolocumab treatment duration for all patients was 260 days (interquartile range 57-575 days). CONCLUSIONS: This study provides real-world insights into evolocumab utilization in Japan for optimizing patient care and adherence to guideline-based therapies to better address hypercholesterolemia in Japan.
Subject(s)
Antibodies, Monoclonal, Humanized , Anticholesteremic Agents , PCSK9 Inhibitors , Humans , Antibodies, Monoclonal, Humanized/therapeutic use , Japan/epidemiology , Retrospective Studies , Male , Middle Aged , Female , Aged , Anticholesteremic Agents/therapeutic use , Databases, Factual , Adult , Hyperlipoproteinemia Type II/drug therapy , Hyperlipoproteinemia Type II/epidemiology , Hyperlipoproteinemia Type II/blood , Ezetimibe/therapeutic use , Proprotein Convertase 9ABSTRACT
Calycosin (Caly), a flavonoid compound, demonstrates a variety of beneficial properties. However, the specific mechanisms behind Caly's anticancer effects remain largely unexplored. Network pharmacology was used to explore the potential targets of Caly in renal cancer. Additionally, RNA-seq sequencing was used to detect changes in genes in renal cancer cells after Caly treatment. Validation was carried out through quantitative reverse transcription-PCR and Western blot analysis. The luciferase reporter assay was applied to pinpoint the interaction site between MAZ and HAS2. Furthermore, the immunoprecipitation assay was utilized to examine the ubiquitination and degradation of MAZ. In vivo experiments using cell line-derived xenograft mouse models were performed to assess Calycosin's impact on cancer growth. Network pharmacology research suggests Caly plays a role in promoting apoptosis and inhibiting cell adhesion in renal cancer. In vitro, Caly has been observed to suppress proliferation, colony formation, and metastasis of renal cancer cells while also triggering apoptosis. Additionally, it appears to diminish hyaluronic acid synthesis by downregulating HAS2 expression. MAZ is identified as a transcriptional regulator of HAS2 expression. Calycosin further facilitates the degradation of MAZ via the ubiquitin-proteasome pathway. Notably, Caly demonstrates efficacy in reducing the growth of renal cell carcinoma xenograft tumors in vivo. Our findings indicate that Caly suppresses the proliferation, metastasis, and progression of renal cell carcinoma through its action on the MAZ/HAS2 signaling pathway. Thus, Caly represents a promising therapeutic candidate for the treatment of renal cell carcinoma.
Subject(s)
Carcinoma, Renal Cell , Cell Proliferation , Isoflavones , Kidney Neoplasms , Signal Transduction , Animals , Humans , Mice , Apoptosis/drug effects , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Isoflavones/pharmacology , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Mice, Inbred BALB C , Mice, Nude , Signal Transduction/drug effects , Transcription Factors/metabolism , Xenograft Model Antitumor AssaysABSTRACT
Based on the reported research, hydroxyl radicals can be rapidly transformed into carbonate radicals in the carbonate-bicarbonate buffering system in vivo. Many of the processes considered to be initiated by hydroxyl radicals may be caused by carbonate radicals, which indicates that lipid peroxidation initiated by hydroxyl radicals can also be caused by carbonate radicals. To date, theoretical research on reactions of hydrogen abstraction from and radical addition to polyunsaturated fatty acids (PUFAs) of carbonate radicals has not been carried out systematically. This paper employs (3Z,6Z)-nona-3,6-diene (NDE) as a model for polyunsaturated fatty acids (PUFAs). Density functional theory (DFT) with the CAM-B3LYP method at the 6-311+g(d,p) level was used to calculate the differences in reactivity of carbonate radicals abstracting hydrogen from different positions of NDE and their addition to the double bonds of NDE under lipid solvent conditions with a dielectric constant of 4.0 (CPCM model). Grimme's empirical dispersion correction was taken into account through the D3 scheme. The energy barrier, reaction rate constants, internal energy, enthalpy and Gibbs free energy changes in these reactions were calculated With zero-point vibrational energy (ZPVE) corrections. The results indicated that carbonate radicals initiate lipid peroxidation primarily through hydrogen abstraction from diallyl carbon atoms. The reaction of hydrogen abstraction from diallyl carbon atoms exhibits the highest reaction rate, with a reaction rate constant approximately 43-fold greater than the second-ranked hydrogen abstraction from allyl carbon atoms. This process has the lowest energy barrier, internal energy, enthalpy, and Gibbs free energy changes, indicating that it is also the most spontaneous process.
Subject(s)
Fatty Acids, Unsaturated , Hydrogen , Lipid Peroxidation , Hydrogen/chemistry , Fatty Acids, Unsaturated/chemistry , Carbonates , Hydroxyl Radical/chemistry , Carbon , Free Radicals/chemistryABSTRACT
PURPOSE: Ischemia and hypoxia are the main factors limiting limb replantation and transplantation. Static cold storage (SCS), a common preservation method for tissues and organs, can only prolong limb ischemia time to 4 - 6 h. The normothermic machine perfusion (NMP) is a promising method for the preservation of tissues and organs, which can extend the preservation time in vitro by providing continuous oxygen and nutrients. This study aimed to evaluate the difference in the efficacy of the 2 limb preservation methods. METHODS: The 6 forelimbs from beagle dogs were divided into 2 groups. In the SCS group (n = 3), the limbs were preserved in a sterile refrigerator at 4 °C for 24 h, and in the NMP group (n = 3), the perfusate prepared with autologous blood was used for the oxygenated machine perfusion at physiological temperature for 24 h, and the solution was changed every 6 h. The effects of limb storage were evaluated by weight gain, perfusate biochemical analysis, enzyme-linked immunosorbent assay, and histological analysis. All statistical analyses and graphs were performed using GraphPad Prism 9.0 one-way or two-way analysis of variance. The p value of less than 0.05 was considered to indicate statistical significance. RESULTS: In the NMP group, the weight gained percentage was 11.72% ± 4.06%; the hypoxia-inducible factor-1α contents showed no significant changes; the shape of muscle fibers was normal; the gap between muscle fibers slightly increased, showing the intercellular distance of (30.19 ± 2.83) µm; and the vascular α-smooth muscle actin (α-SMA) contents were lower than those in the normal blood vessels. The creatine kinase level in the perfusate of the NMP group increased from the beginning of perfusion, decreased after each perfusate change, and remained stable at the end of perfusion showing a peak level of 4097.6 U/L. The lactate dehydrogenase level of the NMP group increased near the end of perfusion and reached the peak level of 374.4 U/L. In the SCS group, the percentage of weight gain was 0.18% ± 0.10%, and the contents of hypoxia-inducible factor-1α increased gradually and reached the maximum level of (164.85 ± 20.75) pg/mL at the end of the experiment. The muscle fibers lost their normal shape and the gap between muscle fibers increased, showing an intercellular distance of (41.66 ± 5.38) µm. The contents of vascular α-SMA were much lower in the SCS group as compared to normal blood vessels. CONCLUSIONS: NMP caused lesser muscle damage and contained more vascular α-SMA as compared to SCS. This study demonstrated that NMP of the amputated limb with perfusate solution based on autologous blood could maintain the physiological activities of the limb for at least 24 h.
Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Organ Preservation , Animals , Dogs , Temperature , Organ Preservation/methods , Perfusion/methods , Upper Extremity , Forelimb , Weight Gain , LiverABSTRACT
Glomerular filtration rate (GFR) is a critical indicator of renal function assessment, which exhibits age-dependency in children and may differ from adults under various disease conditions. In recent years, there has been a growing focus on GFR among scholars, with an increasing number of clinical studies dedicated to refining and optimizing GFR estimation to span all pediatric age groups. However, the methods and assessment equations for estimating GFR may vary under different disease conditions, affecting the accuracy and applicability of assessments. This article reviews the peculiarities of renal function in children, explores GFR measurement methods, and evaluates the application of various GFR assessment equations in pediatric clinical practice, providing a reference for clinical assessment of renal function in children.
Subject(s)
Glomerular Filtration Rate , Humans , Child , Creatinine/bloodABSTRACT
Although social species as diverse as humans and ants are among the most abundant organisms on Earth, animals cooperate and form groups for many reasons. How these different reasons for grouping affect a species' ecological dominance remains unknown. Here we use a theoretical model to demonstrate that the different fitness benefits that animals receive by forming groups depend on the quality of their environment, which in turn impacts their ecological dominance and resilience to global change. We then test the model's key predictions using phylogenetic comparative analysis of >6500 bird species. As predicted, we find that cooperative breeders occurring in harsh and fluctuating environments have larger ranges and greater abundances than non-cooperative breeders, but cooperative breeders occurring in benign and stable environments do not. Using our model, we further show that social species living in harsh and fluctuating environments will be less vulnerable to climate change than non-social species.
Subject(s)
Ants , Social Behavior , Animals , Humans , Phylogeny , Reproduction , Birds , Cooperative BehaviorABSTRACT
Kidney, bladder, and prostate cancer are the three major tumor types of the urologic system that seriously threaten human health. Circular RNAs (CircRNAs), special non-coding RNAs with a stabile structure and a unique back-splicing loop-forming ability, have received recent scientific attention. CircRNAs are widely distributed within the body, with important biologic functions such as sponges for microRNAs, as RNA binding proteins, and as templates for regulation of transcription and protein translation. The abnormal expression of circRNAs in vivo is significantly associated with the development of urologic tumors. CircRNAs have now emerged as potential biomarkers for the diagnosis and prognosis of urologic tumors, as well as targets for the development of new therapies. Although we have gained a better understanding of circRNA, there are still many questions to be answered. In this review, we summarize the properties of circRNAs and detail their function, focusing on the effects of circRNA on proliferation, metastasis, apoptosis, metabolism, and drug resistance in kidney, bladder, and prostate cancers.
Subject(s)
MicroRNAs , Urologic Neoplasms , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Biomarkers/metabolism , Protein Biosynthesis , Urologic Neoplasms/diagnosis , Urologic Neoplasms/geneticsABSTRACT
Sprouting of mossy fibers, one of the most consistent findings in tissue from patients with mesial temporal lobe epilepsy, exhibits several uncommon axonal growth features and has been considered a paradigmatic example of circuit plasticity that occurs in the adult brain. Clarifying the mechanisms responsible may provide new insight into epileptogenesis as well as axon misguidance in the central nervous system. Methyl-CpG-binding protein 2 (MeCP2) binds to methylated genomic DNA to regulate a range of physiological functions implicated in neuronal development and adult synaptic plasticity. However, exploring the potential role of MeCP2 in the documented misguidance of axons in the dentate gyrus has not yet been attempted. In this study, a status epilepticus-induced decrease of neuronal MeCP2 was observed in the dentate gyrus (DG). An essential regulatory role of MeCP2 in the development of functional mossy fiber sprouting (MFS) was confirmed through stereotaxic injection of a recombinant adeno-associated virus (AAV) to up- or down-regulate MeCP2 in the dentate neurons. Chromatin immunoprecipitation sequencing (ChIP-seq) was performed to identify the binding profile of native MeCP2 using micro-dissected dentate tissues. In both dentate tissues and HT22 cell lines, we demonstrated that MeCP2 could act as a transcription repressor on miR-682 with the involvement of the DNA methylation mechanism. Further, we found that miR-682 could bind to mRNA of phosphatase and tensin homolog (PTEN) in a sequence specific manner, thus leading to the suppression of PTEN and excessive activation of mTOR. This study therefore presents a novel epigenetic mechanism by identifying MeCP2/miR-682/PTEN/mTOR as an essential signal pathway in regulating the formation of MFS in the temporal lobe epileptic (TLE) mice. SIGNIFICANCE STATEMENT: Understanding the mechanisms that regulate axon guidance is important for a better comprehension of neural disorders. Sprouting of mossy fibers, one of the most consistent findings in patients with mesial temporal lobe epilepsy, has been considered a paradigmatic example of circuit plasticity in the adult brain. Although abnormal regulation of DNA methylation has been observed in both experimental rodents and humans with epilepsy, the potential role of DNA methylation in this well-documented example of sprouting of dentate axon remains elusive. This study demonstrates an essential role of methyl-CpG-binding protein 2 in the formation of mossy fiber sprouting. The underlying signal pathway has been also identified. The data hence provide new insight into epileptogenesis as well as axon misguidance in the central nervous system.
Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , MicroRNAs , Animals , Humans , Mice , Dentate Gyrus/metabolism , Epilepsy, Temporal Lobe/metabolism , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , MicroRNAs/metabolism , Mossy Fibers, Hippocampal , TOR Serine-Threonine Kinases/metabolismABSTRACT
Deforestation is a major contributor to biodiversity loss, yet the impact of forest loss on daily microclimate variability and its implications for species with different daily activity patterns remain poorly understood. Using a recently developed microclimate model, we investigated the effects of deforestation on the daily temperature range (DTR) in low-elevation tropical regions and high-elevation temperate regions. Our results show that deforestation substantially increases DTR in these areas, suggesting a potential impact on species interactions. To test this hypothesis, we studied the competitive interactions between nocturnal burying beetles and all-day-active blowfly maggots in forested and deforested habitats in Taiwan. We show that deforestation leads to increased DTR at higher elevations, which enhances the competitiveness of blowfly maggots during the day and leads to a higher failure rate of carcass burial by the beetles at night. Thus, deforestation-induced temperature variability not only modulates exploitative competition between species with different daily activity patterns, but also likely exacerbates the negative impacts of climate change on nocturnal organisms. In order to limit potential adverse effects on species interactions and their ecological functions, our study highlights the need to protect forests, especially in areas where deforestation can greatly alter temperature variability.
Subject(s)
Biodiversity , Coleoptera , Animals , Temperature , Climate Change , Fever , LarvaABSTRACT
This study aimed to investigate the causal relationship between chronic ingestion of a high-fat diet (HFD)-induced secretion of glucocorticoids (GCs) and the development of non-alcoholic fatty liver disease (NAFLD). We have produced a strain of transgenic mice (termed L/L mice) that have normal levels of circulating corticosterone (CORT), the major type of GCs in rodents, but unlike wild-type (WT) mice, their circulating CORT was not affected by HFD. Compared to WT mice, 12-week HFD-induced fatty liver was less pronounced with higher plasma levels of triglycerides in L/L mice. These changes were reversed by CORT supplement to L/L mice. By analyzing a sort of lipid metabolism-related proteins, we found that expressions of the hepatic cluster of differentiation 36 (CD36) were upregulated by HFD-induced CORT and involved in CORT-mediated fatty liver. Dexamethasone, an agonist of the glucocorticoid receptor (GR), upregulated expressions of CD36 in HepG2 hepatocytes and facilitated lipid accumulation in the cells. In conclusion, the fat ingestion-induced release of CORT contributes to NAFLD. This study highlights the pathogenic role of CORT-mediated upregulation of hepatic CD 36 in diet-induced NAFLD.
Subject(s)
Diet, High-Fat/adverse effects , Glucocorticoids/blood , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/chemically induced , Triglycerides/blood , Animals , Glucocorticoids/genetics , Hep G2 Cells , Humans , Mice , Mice, Mutant Strains , Non-alcoholic Fatty Liver Disease/genetics , Triglycerides/geneticsABSTRACT
Comorbidity exists between metabolic disorders and depressive syndrome with unclear mechanisms. To characterize the causal relationship, we adopted a 12-week high-fat diet (HFD) to induce metabolic disorder and depressive phenotypes in mice. Initially, we identified an enhanced glutamatergic input in the nucleus accumbens of HFD mice. Retrograde tracing and chemogenetic inhibition showed that the hyperactive ventral hippocampal glutamatergic afferents to the nucleus accumbens determined the exhibition of depression-like behavior in HFD mice. Using lentiviral knockdown and overexpression approaches, we proved that HFD-induced downregulation of glial glutamate transporters, GLAST and GLT-1, contributed to the observed circuit maladaptations and subsequent depression-like behaviors. Finally, we identified a potential therapeutic agent, riluzole, which could mitigate the HFD-induced behavioral deficits by normalizing the expressions of GLAST and GLT-1 and ventral hippocampal glutamatergic afferents to the nucleus accumbens. Overall, astrocyte-mediated disturbance in glutamatergic transmission underlies the metabolic disorder-related depressive syndrome and represents a therapeutic target for this subtype of depressive mood disorders.
Subject(s)
Diet, High-Fat , Nucleus Accumbens , Animals , Mice , Nucleus Accumbens/metabolism , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Hippocampus/metabolism , Astrocytes/metabolismABSTRACT
INTRODUCTION: The neutrophil-to-lymphocyte ratio (NLR) may predict stroke-associated pneumonia, which is generally defined as pneumonia occurring in the first week after stroke. However, little is known whether the initial NLR is associated with pneumonia risk during the long-term follow-up in stroke survivors. We aimed to determine the relationship between admission NLR and the risk of post-stroke pneumonia within 1 year after discharge from acute stroke care. METHODS: Hospital databases were searched to identify adult patients hospitalized for acute stroke. Admission NLR was extracted using differential leukocyte counts. The outcome of interest was hospitalized pneumonia occurring within 1 year after discharge from hospitalization for stroke. Multivariable Cox proportional-hazards models were used to determine the independent effects of the NLR on the risk of pneumonia. RESULTS: In this study, 5,741 patients with acute stroke (mean age, 68 years; men, 62.1%) were analyzed. The median NLR was 2.72 (interquartile range, 1.78-4.49). Of the patients, 342 (6.0%) developed pneumonia within 1 year after discharge. In the multivariable models, the NLR was a significant predictor of pneumonia after discharge whether it was analyzed as a continuous or dichotomized variable. The corresponding adjusted hazard ratios were 1.037 (95% confidence interval [CI], 1.013-1.061) and 1.361 (95% CI, 1.087-1.704), respectively. CONCLUSION: The NLR could predict the risk of post-stroke pneumonia up to 1 year after discharge from acute stroke care. It may help identify high-risk stroke survivors, for whom appropriate interventions can be targeted.
Subject(s)
Pneumonia , Stroke , Male , Adult , Humans , Aged , Neutrophils , Patient Discharge , Lymphocytes , Stroke/diagnosis , Stroke/therapy , Pneumonia/diagnosis , Retrospective StudiesABSTRACT
Purines and their derivatives, extensively distributed in the body, act as a class of extracellular signaling molecules via a rich array of receptors, also known as purinoceptors (P1, P2X, and P2Y). They mediate multiple intracellular signal transduction pathways and participate in various physiological and pathological cell behaviors. Since the function in myocardial ischemia-reperfusion injury (MIRI), this review summarized the involvement of purinergic signal transduction in diversified pathological processes, including energy metabolism disorder, oxidative stress injury, calcium overload, inflammatory immune response, platelet aggregation, coronary vascular dysfunction, and cell necrosis and apoptosis. Moreover, increasing evidence suggests that purinergic signaling also mediates the prevention and treatment of MIRI, such as ischemic conditioning, pharmacological intervention, and some other therapies. In conclusion, this review exhibited that purinergic signaling mediates the complex processes of MIRI which shows its promising application and prospecting in the future.
Subject(s)
Myocardial Reperfusion Injury , Humans , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Heart , Signal Transduction/physiology , Coronary Vessels , Oxidative StressABSTRACT
OBJECTIVES: This study aims to investigate whether combining scoring systems with monocyte distribution width (MDW) improves early sepsis detection in older adults in the emergency department (ED). METHODS: In this prospective observational study, we enrolled older adults aged ≥60 years who presented with confirmed infectious diseases to the ED. Three scoring systems-namely quick sepsis-related organ failure assessment (qSOFA), Modified Early Warning Score (MEWS), and National Early Warning Score (NEWS), and biomarkers including MDW, neutrophil-to-lymphocyte ratio (NLR), and C-reactive protein (CRP), were assessed in the ED. Logistic regression models were used to construct sepsis prediction models. RESULTS: After propensity score matching, we included 522 and 2088 patients with and without sepsis in our analysis from January 1, 2020, to September 30, 2021. NEWS ≥5 and MEWS ≥3 exhibited a moderate-to-high sensitivity and a low specificity for sepsis, whereas qSOFA score ≥2 demonstrated a low sensitivity and a high specificity. When combined with biomarkers, the NEWS-based, the MEWS-based, and the qSOFA-based models exhibited improved diagnostic accuracy for sepsis detection without CRP inclusion (c-statistics=0.842, 0.842, and 0.826, respectively). Of the three models, MEWS ≥3 with white blood cell (WBC) count ≥11 × 109/L, NLR ≥8, and MDW ≥20 demonstrated the highest diagnostic accuracy in all age subgroups (c-statistics=0.886, 0.825, and 0.822 in patients aged 60-74, 75-89, and 90-109 years, respectively). CONCLUSIONS: Our novel scoring system combining MEWS with WBC, NLR, and MDW effectively detected sepsis in older adults.
Subject(s)
Early Warning Score , Sepsis , Humans , Aged , Hospital Mortality , Neutrophils , Monocytes , Retrospective Studies , Sepsis/diagnosis , Emergency Service, Hospital , Leukocyte Count , Biomarkers , Lymphocytes , ROC Curve , PrognosisABSTRACT
OBJECTIVES: Epidemiological data regarding antipsychotic initiation in elderly patients with stroke are limited. We aimed to investigate the incidence, prescription patterns and determinants of antipsychotic initiation in elderly patients with stroke. METHODS: We conducted a retrospective cohort study to identify patients aged above 65 years who had been admitted for stroke from the National Health Insurance Database (NHID). The index date was defined as the discharge date. The incidence and prescription pattern of antipsychotics were estimated using the NHID. To evaluate the determinants of antipsychotic initiation, the cohort identified from the NHID was linked to the Multicenter Stroke Registry (MSR). Demographics, comorbidities and concomitant medications were obtained from the NHID. Information including smoking status, body mass index, stroke severity and disability was retrieved by linking to the MSR. The outcome was antipsychotic initiation after the index date. Hazard ratios for antipsychotic initiation were estimated using the multivariable Cox model. RESULTS: In terms of prognosis, the first 2 months after a stroke was the highest-risk period for antipsychotic use. A high burden of coexisting diseases carried an increased risk of antipsychotic use; in particular, chronic kidney disease (CKD) had the highest adjusted hazard ratio (aHR = 1.73; 95% CI 1.29-2.31) as compared with other risk factors. Furthermore, stroke severity and disability were significant risk factors for antipsychotic initiation. CONCLUSIONS: Our study indicated that elderly stroke patients with chronic medical conditions, particularly CKD, and a higher stroke severity and disability were at greater risk of psychiatric disorders during the first 2 months after a stroke. CLINICAL TRIAL REGISTRATION: NA.