Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Cell ; 187(19): 5431-5452.e20, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39303691

ABSTRACT

Breastfeeding and microbial colonization during infancy occur within a critical time window for development, and both are thought to influence the risk of respiratory illness. However, the mechanisms underlying the protective effects of breastfeeding and the regulation of microbial colonization are poorly understood. Here, we profiled the nasal and gut microbiomes, breastfeeding characteristics, and maternal milk composition of 2,227 children from the CHILD Cohort Study. We identified robust colonization patterns that, together with milk components, predict preschool asthma and mediate the protective effects of breastfeeding. We found that early cessation of breastfeeding (before 3 months) leads to the premature acquisition of microbial species and functions, including Ruminococcus gnavus and tryptophan biosynthesis, which were previously linked to immune modulation and asthma. Conversely, longer exclusive breastfeeding supports a paced microbial development, protecting against asthma. These findings underscore the importance of extended breastfeeding for respiratory health and highlight potential microbial targets for intervention.


Subject(s)
Breast Feeding , Milk, Human , Humans , Female , Milk, Human/microbiology , Infant , Child, Preschool , Asthma/microbiology , Asthma/prevention & control , Asthma/immunology , Microbiota , Gastrointestinal Microbiome , Male , Cohort Studies , Infant, Newborn
2.
Nat Methods ; 16(7): 627-632, 2019 07.
Article in English | MEDLINE | ID: mdl-31182859

ABSTRACT

A major challenge of analyzing the compositional structure of microbiome data is identifying its potential origins. Here, we introduce fast expectation-maximization microbial source tracking (FEAST), a ready-to-use scalable framework that can simultaneously estimate the contribution of thousands of potential source environments in a timely manner, thereby helping unravel the origins of complex microbial communities ( https://github.com/cozygene/FEAST ). The information gained from FEAST may provide insight into quantifying contamination, tracking the formation of developing microbial communities, as well as distinguishing and characterizing bacteria-related health conditions.


Subject(s)
Bacteria/isolation & purification , Microbiota , Adult , Gastrointestinal Microbiome , Humans , Infant , Intensive Care Units
3.
PLoS Comput Biol ; 16(5): e1007917, 2020 05.
Article in English | MEDLINE | ID: mdl-32469867

ABSTRACT

Dynamic changes in microbial communities play an important role in human health and disease. Specifically, deciphering how microbial species in a community interact with each other and their environment can elucidate mechanisms of disease, a problem typically investigated using tools from community ecology. Yet, such methods require measurements of absolute densities, whereas typical datasets only provide estimates of relative abundances. Here, we systematically investigate models of microbial dynamics in the simplex of relative abundances. We derive a new nonlinear dynamical system for microbial dynamics, termed "compositional" Lotka-Volterra (cLV), unifying approaches using generalized Lotka-Volterra (gLV) equations from community ecology and compositional data analysis. On three real datasets, we demonstrate that cLV recapitulates interactions between relative abundances implied by gLV. Moreover, we show that cLV is as accurate as gLV in forecasting microbial trajectories in terms of relative abundances. We further compare cLV to two other models of relative abundance dynamics motivated by common assumptions in the literature-a linear model in a log-ratio transformed space, and a linear model in the space of relative abundances-and provide evidence that cLV more accurately describes community trajectories over time. Finally, we investigate when information about direct effects can be recovered from relative data that naively provide information about only indirect effects. Our results suggest that strong effects may be recoverable from relative data, but more subtle effects are challenging to identify.


Subject(s)
Microbiota , Algorithms , Clostridioides difficile/physiology , Models, Biological , Proof of Concept Study
4.
PLoS Comput Biol ; 15(6): e1006960, 2019 06.
Article in English | MEDLINE | ID: mdl-31246943

ABSTRACT

Given the highly dynamic and complex nature of the human gut microbial community, the ability to identify and predict time-dependent compositional patterns of microbes is crucial to our understanding of the structure and functions of this ecosystem. One factor that could affect such time-dependent patterns is microbial interactions, wherein community composition at a given time point affects the microbial composition at a later time point. However, the field has not yet settled on the degree of this effect. Specifically, it has been recently suggested that only a minority of taxa depend on the microbial composition in earlier times. To address the issue of identifying and predicting temporal microbial patterns we developed a new model, MTV-LMM (Microbial Temporal Variability Linear Mixed Model), a linear mixed model for the prediction of microbial community temporal dynamics. MTV-LMM can identify time-dependent microbes (i.e., microbes whose abundance can be predicted based on the previous microbial composition) in longitudinal studies, which can then be used to analyze the trajectory of the microbiome over time. We evaluated the performance of MTV-LMM on real and synthetic time series datasets, and found that MTV-LMM outperforms commonly used methods for microbiome time series modeling. Particularly, we demonstrate that the effect of the microbial composition in previous time points on the abundance of taxa at later time points is underestimated by a factor of at least 10 when applying previous approaches. Using MTV-LMM, we demonstrate that a considerable portion of the human gut microbiome, both in infants and adults, has a significant time-dependent component that can be predicted based on microbiome composition in earlier time points. This suggests that microbiome composition at a given time point is a major factor in defining future microbiome composition and that this phenomenon is considerably more common than previously reported for the human gut microbiome.


Subject(s)
Computational Biology/methods , Gastrointestinal Microbiome , Models, Biological , Adult , Databases, Genetic , Female , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Humans , Infant , Male , Time Factors
5.
Bioinformatics ; 33(12): 1870-1872, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28177067

ABSTRACT

SUMMARY: GLINT is a user-friendly command-line toolset for fast analysis of genome-wide DNA methylation data generated using the Illumina human methylation arrays. GLINT, which does not require any programming proficiency, allows an easy execution of Epigenome-Wide Association Study analysis pipeline under different models while accounting for known confounders in methylation data. AVAILABILITY AND IMPLEMENTATION: GLINT is a command-line software, freely available at https://github.com/cozygene/glint/releases . It requires Python 2.7 and several freely available Python packages. Further information and documentation as well as a quick start tutorial are available at http://glint-epigenetics.readthedocs.io . CONTACT: elior.rahmani@gmail.com or ehalperin@cs.ucla.edu.


Subject(s)
DNA Methylation , Epigenomics/methods , Sequence Analysis, DNA/methods , Software , Genome, Human , Humans , Oligonucleotide Array Sequence Analysis/methods
6.
NPJ Digit Med ; 7(1): 49, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418551

ABSTRACT

Over the last ten years, there has been considerable progress in using digital behavioral phenotypes, captured passively and continuously from smartphones and wearable devices, to infer depressive mood. However, most digital phenotype studies suffer from poor replicability, often fail to detect clinically relevant events, and use measures of depression that are not validated or suitable for collecting large and longitudinal data. Here, we report high-quality longitudinal validated assessments of depressive mood from computerized adaptive testing paired with continuous digital assessments of behavior from smartphone sensors for up to 40 weeks on 183 individuals experiencing mild to severe symptoms of depression. We apply a combination of cubic spline interpolation and idiographic models to generate individualized predictions of future mood from the digital behavioral phenotypes, achieving high prediction accuracy of depression severity up to three weeks in advance (R2 ≥ 80%) and a 65.7% reduction in the prediction error over a baseline model which predicts future mood based on past depression severity alone. Finally, our study verified the feasibility of obtaining high-quality longitudinal assessments of mood from a clinical population and predicting symptom severity weeks in advance using passively collected digital behavioral data. Our results indicate the possibility of expanding the repertoire of patient-specific behavioral measures to enable future psychiatric research.

7.
NPJ Metab Health Dis ; 2(1): 15, 2024.
Article in English | MEDLINE | ID: mdl-38962750

ABSTRACT

Alzheimer's disease (AD) is influenced by a variety of modifiable risk factors, including a person's dietary habits. While the ketogenic diet (KD) holds promise in reducing metabolic risks and potentially affecting AD progression, only a few studies have explored KD's metabolic impact, especially on blood and cerebrospinal fluid (CSF). Our study involved participants at risk for AD, either cognitively normal or with mild cognitive impairment. The participants consumed both a modified Mediterranean Ketogenic Diet (MMKD) and the American Heart Association diet (AHAD) for 6 weeks each, separated by a 6-week washout period. We employed nuclear magnetic resonance (NMR)-based metabolomics to profile serum and CSF and metagenomics profiling on fecal samples. While the AHAD induced no notable metabolic changes, MMKD led to significant alterations in both serum and CSF. These changes included improved modifiable risk factors, like increased HDL-C and reduced BMI, reversed serum metabolic disturbances linked to AD such as a microbiome-mediated increase in valine levels, and a reduction in systemic inflammation. Additionally, the MMKD was linked to increased amino acid levels in the CSF, a breakdown of branched-chain amino acids (BCAAs), and decreased valine levels. Importantly, we observed a strong correlation between metabolic changes in the CSF and serum, suggesting a systemic regulation of metabolism. Our findings highlight that MMKD can improve AD-related risk factors, reverse some metabolic disturbances associated with AD, and align metabolic changes across the blood-CSF barrier.

8.
Nat Microbiol ; 9(3): 595-613, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38347104

ABSTRACT

Microbial breakdown of organic matter is one of the most important processes on Earth, yet the controls of decomposition are poorly understood. Here we track 36 terrestrial human cadavers in three locations and show that a phylogenetically distinct, interdomain microbial network assembles during decomposition despite selection effects of location, climate and season. We generated a metagenome-assembled genome library from cadaver-associated soils and integrated it with metabolomics data to identify links between taxonomy and function. This universal network of microbial decomposers is characterized by cross-feeding to metabolize labile decomposition products. The key bacterial and fungal decomposers are rare across non-decomposition environments and appear unique to the breakdown of terrestrial decaying flesh, including humans, swine, mice and cattle, with insects as likely important vectors for dispersal. The observed lockstep of microbial interactions further underlies a robust microbial forensic tool with the potential to aid predictions of the time since death.


Subject(s)
Microbial Consortia , Soil Microbiology , Mice , Humans , Animals , Swine , Cattle , Cadaver , Metagenome , Bacteria
9.
Nat Commun ; 14(1): 4997, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37591872

ABSTRACT

Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality. The vaginal microbiome has been associated with PTB, yet the mechanisms underlying this association are not fully understood. Understanding microbial genetic adaptations to selective pressures, especially those related to the host, may yield insights into these associations. Here, we analyze metagenomic data from 705 vaginal samples collected during pregnancy from 40 women who delivered preterm spontaneously and 135 term controls from the Multi-Omic Microbiome Study-Pregnancy Initiative. We find that the vaginal microbiome of pregnancies that ended preterm exhibited unique genetic profiles. It was more genetically diverse at the species level, a result which we validate in an additional cohort, and harbored a higher richness and diversity of antimicrobial resistance genes, likely promoted by transduction. Interestingly, we find that Gardnerella species drove this higher genetic diversity, particularly during the first half of the pregnancy. We further present evidence that Gardnerella spp. underwent more frequent recombination and stronger purifying selection in genes involved in lipid metabolism. Overall, our population genetics analyses reveal associations between the vaginal microbiome and PTB and suggest that evolutionary processes acting on vaginal microbes may play a role in adverse pregnancy outcomes such as PTB.


Subject(s)
Microbiota , Premature Birth , Infant, Newborn , Pregnancy , Humans , Female , Premature Birth/genetics , Microbiota/genetics , Metagenome/genetics , Acclimatization , Biological Evolution
10.
bioRxiv ; 2023 Jun 17.
Article in English | MEDLINE | ID: mdl-36711990

ABSTRACT

Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality. The vaginal microbiome has been associated with PTB, yet the mechanisms underlying this association are not fully understood. Understanding microbial genetic adaptations to selective pressures, especially those related to the host, may yield new insights into these associations. To this end, we analyzed metagenomic data from 705 vaginal samples collected longitudinally during pregnancy from 40 women who delivered preterm spontaneously and 135 term controls from the Multi-Omic Microbiome Study-Pregnancy Initiative (MOMS-PI). We find that the vaginal microbiome of pregnancies that ended preterm exhibits unique genetic profiles. It is more genetically diverse at the species level, a result which we validate in an additional cohort, and harbors a higher richness and diversity of antimicrobial resistance genes, likely promoted by transduction. Interestingly, we find that Gardnerella species, a group of central vaginal pathobionts, are driving this higher genetic diversity, particularly during the first half of the pregnancy. We further present evidence that Gardnerella spp. undergoes more frequent recombination and stronger purifying selection in genes involved in lipid metabolism. Overall, our results reveal novel associations between the vaginal microbiome and PTB using population genetics analyses, and suggest that evolutionary processes acting on the vaginal microbiome may play a vital role in adverse pregnancy outcomes such as preterm birth.

SELECTION OF CITATIONS
SEARCH DETAIL