Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Cell ; 180(1): 107-121.e17, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31866069

ABSTRACT

Fibrosis can develop in most organs and causes organ failure. The most common type of lung fibrosis is known as idiopathic pulmonary fibrosis, in which fibrosis starts at the lung periphery and then progresses toward the lung center, eventually causing respiratory failure. Little is known about the mechanisms underlying the pathogenesis and periphery-to-center progression of the disease. Here we discovered that loss of Cdc42 function in alveolar stem cells (AT2 cells) causes periphery-to-center progressive lung fibrosis. We further show that Cdc42-null AT2 cells in both post-pneumonectomy and untreated aged mice cannot regenerate new alveoli, resulting in sustained exposure of AT2 cells to elevated mechanical tension. We demonstrate that elevated mechanical tension activates a TGF-ß signaling loop in AT2 cells, which drives the periphery-to-center progression of lung fibrosis. Our study establishes a direct mechanistic link between impaired alveolar regeneration, mechanical tension, and progressive lung fibrosis.


Subject(s)
Adult Stem Cells/metabolism , Idiopathic Pulmonary Fibrosis/etiology , Pulmonary Alveoli/metabolism , Adult Stem Cells/pathology , Aged , Alveolar Epithelial Cells/pathology , Animals , Biomechanical Phenomena/physiology , Female , Fibrosis/pathology , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Male , Mice , Middle Aged , Pulmonary Alveoli/pathology , Regeneration , Signal Transduction , Stem Cells/pathology , Stress, Mechanical , Stress, Physiological/physiology , Transforming Growth Factor beta/metabolism , cdc42 GTP-Binding Protein/genetics , cdc42 GTP-Binding Protein/metabolism
3.
Langmuir ; 40(26): 13355-13364, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38952283

ABSTRACT

Agricultural solid waste has become one of the raw materials for hydrothermal carbon production, promoting resource utilization. This study synthesized two types of ball-milling carbons (Fe-MHBC vs MHBC) with and without FeCl3 modification using wheat straw hydrochars. Cr(VI) adsorption on these two types of ball-milling carbons was investigated. According to Langmuir's maximum adsorption capacity analysis, Fe-MHBC had a capacity of 116.29 mg g-1. The thermodynamic analysis based on isothermal adsorption reveals the spontaneous process of the reaction between the two materials. The adsorption of Cr(VI) on Fe-MHBC exhibited excellent agreement with the pseudo-second-order kinetics model. Furthermore, X-ray photoelectron spectroscopy analysis showed that Fe(II) in the material reduced Cr(VI) when it participated in the reaction. The acidic conditions facilitate the elimination of Cr(VI). The Fe-MHBC has a higher zeta potential, which enhances the electrostatic attraction of Cr(VI) particles. Even with a starting pH of 10, the removal rate can be consistently maintained at over 64%. The adsorption of Cr(VI) was inhibited by various anions and higher ion concentrations. Density functional theory demonstrates that the presence of Fe enhances the adsorption capacity and electron transfer flux of Cr(VI). Fe-MHBC effectively eliminates Cr(VI) by the process of electrostatic adsorption, redox, and complexation reactions. This study demonstrated that hydrochar materials modified by FeCl3 through a ball-milling process show considerable potential as effective adsorbents in the treatment of Cr(VI) pollution, offering a viable and environmentally friendly solution for mitigating this prevalent environmental issue.

4.
Appl Environ Microbiol ; 89(7): e0056123, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37404138

ABSTRACT

Vibrio cholerae is the causative agent of cholera. Effective intestinal colonization is a key step for V. cholerae pathogenicity and transmission. In this study, we found that deleting mshH, a homolog of the Escherichia coli CsrD protein, caused a V. cholerae colonization defect in the intestine of adult mice. By analyzing the RNA levels of CsrB, CsrC, and CsrD, we found that deleting mshH increased the levels of CsrB and CsrD but decreased the level of CsrC. However, deleting CsrB and -D not only recovered the mshH deletion mutant colonization defect but also recovered CsrC to wild-type levels. These results indicated that controlling the RNA levels of CsrB, -C, and -D is crucial for V. cholerae colonization of adult mice. We further demonstrated that the RNA levels of CsrB and CsrD were mainly controlled by MshH-dependent degradation, yet the level of CsrC was mainly determined by the CsrA-dependent stabilization. Our data show that V. cholerae differentially controls CsrB, -C, and -D abundance through the MshH-CsrB/C/D-CsrA regulatory pathway to finely regulate the activity of CsrA targets such as ToxR, so as to better survive in adult mouse intestine. IMPORTANCE The ability of V. cholerae to colonize the intestine is a key factor for its fitness and transmissibility between hosts. Here, we investigated the mechanism of V. cholerae colonization of adult mammal intestine and found that precisely controlling the CsrB, -C, and -D contents by MshH and CsrA plays an essential role for V. cholerae colonization in the adult mouse intestine. These data expand our knowledge on the mechanism of V. cholerae controlling the RNA level of CsrB, -C, and -D and highlight the importance that the different strategies used by V. cholerae to regulate the RNA level of CsrB, -C, and -D confer the bacterium with a survival advantage.


Subject(s)
Cholera , Escherichia coli Proteins , RNA, Long Noncoding , Vibrio cholerae , Animals , Mice , Vibrio cholerae/genetics , Vibrio cholerae/metabolism , Repressor Proteins/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Bacterial/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mammals , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Escherichia coli Proteins/genetics
5.
Ecotoxicol Environ Saf ; 254: 114759, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36950993

ABSTRACT

Selenium is an important trace element that is beneficial to human health and can enhance plant resistance and crop quality. The occurrence of up-to-date nanotechnology greatly promotes the beneficial efficiency of this trace element on crops. The discovery of nano-Se increased the crop quality and reduced plant disease in different plant. In this study, we reduced sugarcane leaf scald disease incidence by exogenously spraying different concentrations (5 mg/L and 10 mg/L) of nano-Se. Additional studies revealed that spraying of nano-Se reduced reactive oxygen species (ROS) and H2O2 accumulation, and increased antioxidant enzyme activities in sugarcane. The nano-selenium treatments also increased the content of jasmonic acid (JA) and the expression of JA pathway genes. Furthermore, we also found that use nano-Se treatment in an appropriate way can enhance the quality of cane juice. The brix of the cane juice of the selenium-enriched treatment was significantly higher than that of the control group, which was 10.98% and 20.81% higher than that of the CK group, respectively. Meanwhile, the content of certain beneficial amino acids was increased, with the highest being 3.9 times higher than the control. Taken together, our findings inferred that nano-Se could act as a potential eco-fungicide to protect sugarcane from can be used as a potential ecological bactericide to protect sugarcane from Xanthomonas albilineans infections, and improve sugarcane quality. The results arising from this study not only introduces an ecological method to control X. albilineans, but also provides a deep insight into this trace elements for improving juice quality.


Subject(s)
Saccharum , Selenium , Trace Elements , Xanthomonas , Humans , Selenium/pharmacology , Selenium/metabolism , Trace Elements/metabolism , Hydrogen Peroxide/metabolism , Antioxidants/metabolism
6.
BMC Neurosci ; 23(1): 62, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36357867

ABSTRACT

Inflammation and glutamate (GLU) are widely thought to participate in the pathogenesis of depression, and current evidence suggests that the development of depression is associated with the activation of the kynurenine pathway (KP). However, the exact mechanism of KP among the inflammation, GLU and depression remain poorly understood. In this study, we examined the involvement of KP, inflammation and GLU in depressive phenotype induced by chronic unpredictable mild stress (CUMS) in C57B/6 J mice. Our results showed that CUMS caused depressive like-behavior in the sucrose preference test, tail suspension test and forced swimming test. From a molecular perspective, CUMS upregulated the peripheral and central inflammatory response and activated indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme of KP, which converts tryptophan (TRP) into kynurenine (KYN). KYN is a precursor for QA in microglia, which could activate the N-methyl-D-aspartate receptor (NMDAR), increasing the GLU release, mirrored by increased IDO activity, quinolinic acid and GLU levels in the hippocampus, prefrontal cortex and serum. However, intervention with IDO inhibitor 1-methyl-DL-tryptophan (50 mg/kg/s.c.) and 1-methyl-L-tryptophan (15 mg/kg/i.p.) reversed the depressive-like behaviors and adjusted central and peripheral KP's metabolisms levels as well as GLU content, but the inflammation levels were not completely affected. These results provide certain evidence that KP may be a vital pathway mediated by IDO linking inflammation and glutamate, contributing to depression.


Subject(s)
Depression , Kynurenine , Mice , Animals , Kynurenine/metabolism , Depression/etiology , Depression/metabolism , Tryptophan , Glutamic Acid/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Disease Models, Animal , Inflammation
7.
Appl Environ Microbiol ; 88(8): e0007222, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35384706

ABSTRACT

Vibrio cholerae is the causative agent of cholera, a life-threatening diarrheal disease in humans. The ability of V. cholerae to colonize the intestine of different animals is a key factor for its fitness and transmissibility between hosts. Many virulence factors, including the ToxT regulon, have been identified to be the major components allowing V. cholerae to colonize the small intestine of suckling mice; however, the mechanism of V. cholerae colonization in the adult mammalian intestine is unclear. In this study, using the streptomycin-treated adult mouse animal model, we characterized the role of the ToxT regulon in V. cholerae colonization in adult mammalian intestine. We first found that the activity of TcpP regulating ToxT regulon expression was attenuated by intestinal reactive oxygen species (ROS). We then found that V. cholerae containing a deletion of the ToxT regulon showed a competition advantage in colonizing adult mice; however, a mutant containing a constitutively active ToxT regulon showed a significant defect in colonizing adult mice. Constitutively producing the virulence factors in the ToxT regulon causes a V. cholerae competition defect in nutrient-limiting conditions. The results of this study demonstrate that modulating the activity of the ToxT regulon through ROS sensed by TcpP is critical for V. cholerae to enhance its colonization in the intestine of adult mice. IMPORTANCE Vibrio cholerae can inhabit both marine and freshwater ecosystems and can also enter and proliferate in the intestine of different animals which consume contaminated food or water. To successfully colonize the intestines of different hosts, V. cholerae coordinates its gene expression in response to different environments. Here, we describe how V. cholerae modulates the activity of the ToxT regulon by TcpP sensing ROS signals in the intestine of adult mice to better survive in this environment. We found that the constitutively active ToxT regulon causes V. cholerae growth retardation and colonization defect in adult mice. Our work highlights the distinctive role that regulating the activity of the ToxT regulon plays for V. cholerae to achieve full survival fitness in the adult mammalian intestine.


Subject(s)
Vibrio cholerae , Animals , Bacterial Proteins/metabolism , Ecosystem , Mammals , Mice , Reactive Oxygen Species/metabolism , Regulon , Transcription Factors/metabolism , Vibrio cholerae/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism
8.
Appl Environ Microbiol ; 88(6): e0223921, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35108083

ABSTRACT

Vibrio parahaemolyticus is a significant foodborne pathogen that causes economic and public health problems worldwide and has a high capacity to adapt to diverse environments and hosts. The second messenger cyclic diguanylate monophosphate (c-di-GMP) allows bacteria to shift from a planktonic form to a communal multicellular lifestyle and plays an important role in bacterial survival and transmission. Here, we characterized single-domain c-di-GMP synthetases in V. parahaemolyticus and identified a novel GGEEF domain-containing protein designated GefA that modulates bacterial swarming motility, biofilm formation, and virulence. GefA inhibits swarming motility by regulating the expression of lateral flagella, while it enhances biofilm formation by controlling exopolysaccharide biosynthesis. Under high-c-di-GMP conditions caused by scrABC knockout, we found that GefA is bifunctional, as it has no effect on swarming motility, but retains the ability to regulate biofilm formation. Subsequent studies suggested that GefA regulates the expression of type III secretion system 1 (T3SS1), which is an important virulence factor in V. parahaemolyticus. Here, we also revealed that the flagella participate in the infection of V. parahaemolyticus. We found that both the T3SS1 and flagella contribute to the GefA-mediated virulence of V. parahaemolyticus in the zebrafish model. Our results expand the knowledge of the V. parahaemolyticus c-di-GMP synthetases and their roles in social behaviors and pathogenicity. IMPORTANCE The c-di-GMP metabolic enzymes constitute one of the largest clusters of potential orthologues in Vibrio parahaemolyticus. However, the specific roles that these individual c-di-GMP metabolic enzymes play are largely unknown. Here, we identified a GGEEF domain-containing protein designated GefA that regulates bacterial behaviors and virulence. We also demonstrated that flagella participate in the infection of this bacterium, through which GefA regulates bacterial virulence. To our knowledge, the roles that c-di-GMP and flagella play in V. parahaemolyticus virulence have never been revealed. Our findings contribute to a better understanding of the function of c-di-GMP and its synthetases in V. parahaemolyticus.


Subject(s)
Vibrio parahaemolyticus , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms , Cyclic GMP/metabolism , Gene Expression Regulation, Bacterial , Vibrio parahaemolyticus/physiology , Virulence , Zebrafish
9.
Microbiology (Reading) ; 167(10)2021 10.
Article in English | MEDLINE | ID: mdl-34665117

ABSTRACT

Vibrio cholerae the causative agent of cholera, uses a large number of coordinated transcriptional regulatory events to transition from its environmental reservoir to the host intestine, which is its preferred colonization site. Transcription of the mannose-sensitive haemagglutinin pilus (MSHA), which aids the persistence of V. cholerae in aquatic environments, but causes its clearance by host immune defenses, was found to be regulated by a yet unknown mechanism during the infection cycle of V. cholerae. In this study, genomic expression library screening revealed that two regulators, VC1371 and VcRfaH, are able to positively activate the transcription of MSHA operon. VC1371 is localized and active in the cell membrane. Deletion of vc1371 or VcrfaH genes in V. cholerae resulted in less MshA protein production and less efficiency of biofilm formation compared to that in the wild-type strain. An adult mouse model showed that the mutants with vc1371 or VcrfaH deletion colonized less efficiently than the wild-type; the VcrfaH deletion mutant showed less colonization efficiency in the infant mouse model. The findings strongly suggested that the two regulators, namely VC1371 and VcRfaH, which are involved in the regulation of MSHA expression, play an important role in V. cholerae biofilm formation and colonization in mice.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , Fimbriae Proteins/genetics , Vibrio cholerae/pathogenicity , Animals , Bacterial Proteins/genetics , Cell Membrane/metabolism , Cholera/microbiology , Fimbriae Proteins/metabolism , Gene Expression Regulation, Bacterial , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/metabolism , Mice , Mutation , Operon , Promoter Regions, Genetic , Vibrio cholerae/genetics , Vibrio cholerae/metabolism , Virulence/genetics
10.
Cancer Cell Int ; 20: 179, 2020.
Article in English | MEDLINE | ID: mdl-32477009

ABSTRACT

BACKGROUND: Obesity confers increased risk for various types of cancer. PD-L1 is a key molecule in tumor immune evasion by inducing T cell exhaustion. The relationship between obesity and PD-L1 is still ambiguous. This study was designed to reveal the development of hepatocellular carcinoma and melanoma in obese mice and to investigate if adipocytes regulate PD-L1 expression and the underlying mechanism. METHODS: Monosodium glutamate-induced obese mice were inoculated with H22 tumor cells and High fat diet (HFD)-induced obese mice were inoculated with B16-F1 mouse melanoma cells. Human hepatoma HepG2 cells and B16-F1 cells were treated with conditional media from 3T3-L1 adipocytes (adi-CM). Neutralized anti-TNF-α and anti-IL-6 antibodies and inhibitor of NF-κB or STAT3 were used to reveal the mechanism of effect of adi-CM. RESULTS: In obese mice, H22 and B16-F1 tumor tissues grew faster and PD-L1 expression in tumor tissue was increased. Adi-CM up-regulated PD-L1 level in HepG2 and B16-F1 cells in vitro. Differentiated 3T3-L1 adipocytes secreted TNF-α and IL-6, and neutralizing TNF-α and/or IL-6 reduced PD-L1 expression in adi-CM-treated cells. p-NF-κB/NF-κB level was downregulated in HepG2 and B16-F1 cells, and p-STAT3/STAT3 level was also decreased in HepG2 cells. In addition, inhibitor of NF-κB or STAT3 reversed the effect of adi-CM on PD-L1 expression. CONCLUSIONS: TNF-α and IL-6 secreted by adipocytes up-regulates PD-L1 in hepatoma and B16-F1 cells, which may be at least partially involved in the role of obesity in promoting tumor progression.

11.
Int J Hyperthermia ; 37(1): 384-391, 2020.
Article in English | MEDLINE | ID: mdl-32323585

ABSTRACT

Purpose: To compared the benefits of sorafenib with microwave ablation (MWA) in intermediate-stage hepatocellular carcinoma (HCC) patients with tumor size ≤7 cm and tumor number ≤5 after Transcatheter Arterial Chemoembolization (TACE) failure.Methods: A retrospective, single-center study was conducted using a one-to-one propensity score matching (PSM) analysis and involved 52 intermediate-stage HCC patients with absence of evidence of intrahepatic vascular invasion and extrahepatic metastasis after TACE failure and underwent treatment with MWA or sorafenib between 2007 and 2019. The overall survival (OS) and progression-free survival (PFS) were evaluated by the Kaplan-Meier method. The factors with OS and PFS were determined by Cox regression.Results: Of the 52 patients included in our study, 30 (57.7%) underwent MWA and 22 (42.3%) received sorafenib. After PSM, 22 pairs were enrolled into different groups for further analysis. Patients in the MWA-group had a significantly longer median PFS than patients in the sorafenib-group on both before (median, 9.3 vs. 2.8 months, p = .001) and after PSM (median, 9.0 vs. 2.8 months, p = .006). They also had a significantly longer median OS than patients in the sorafenib-group on before (median, 48.8 vs. 16.6 months, p = .001) and after PSM (median, Not reached vs. 16.6 months, p = .001). Besides, Cox regression analysis showed that the treatment and age were the independent prognostic factors of OS and PFS (p<0.05).Conclusions: MWA was superior to sorafenib in improving survival for intermediate-stage hepatocellular carcinoma (HCC) patients with tumor size ≤7 cm and tumor number ≤5 after TACE failure.Key PointsCompared with sorafenib, microwave ablation may be a more reasonable alternative treatment for intermediate-stage hepatocellular carcinoma (HCC) patients with tumor size ≤7 cm and tumor number ≤5 after TACE refractoriness.The treatment (MWA vs sorafenib) and the age of patients were the independent prognostic factors of OS and PFS.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/surgery , Chemoembolization, Therapeutic/methods , Liver Neoplasms/drug therapy , Liver Neoplasms/surgery , Radiofrequency Ablation/methods , Sorafenib/therapeutic use , Humans , Male , Middle Aged , Propensity Score , Retrospective Studies , Sorafenib/pharmacology , Treatment Outcome
12.
Mikrochim Acta ; 187(9): 517, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32851503

ABSTRACT

For the first time a nickel foam electrode (NFE) is applied in the field of electrochemical vapor generation (EVG) to carry out the electrochemical vapor phase conversion of mercury. Systematical electrochemical and morphological research has demonstrated that the specific surface area of the NFE was several times larger than that of the metal/non-metal electrode with the same geometric size. At the same time, the 3D porous channel composed of multi-layer nickel wire ensures the full contact between reactant and interface. The evident enhancement of spectral signals on a Ni electrode (283%), compared with Pt (27%) and graphite (109%), confirmed that the NFE effectively enhances the yield of mercury reduction. The NFE exhibits low limit of detection (0.017 µg L-1) and a wide linear range (0.2-20 µg L-1) with recoveries of actual samples in the range 87.8-117% towards Hg2+. Although the NFE has no advantage in electronic transmission and catalytic performance, its excellent stability, especially anti-interference and other characteristics, is sufficient for the analysis of hazardous mercury in complex matrix including certified reference materials and real samples.


Subject(s)
Electrochemical Techniques/methods , Gases/analysis , Mercury/analysis , Nickel/chemistry , Electrochemical Techniques/instrumentation , Electrodes , Food Contamination/analysis , Gases/chemistry , Limit of Detection , Mercury/chemistry , Oryza/chemistry , Oxidation-Reduction , Porosity , Rivers/chemistry , Tea/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
13.
Carcinogenesis ; 40(3): 474-486, 2019 05 14.
Article in English | MEDLINE | ID: mdl-30371740

ABSTRACT

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Genomic copy number deletion at chromosome 14q31.1-32.13 was frequently observed in HCC; however, the relevant functional target(s) at that locus is not well determined. Here, we performed integrative genomic analyses and identified zinc finger CCCH-type containing 14 (ZC3H14) as a promising candidate at 14q31.1-32.13. We observed frequent copy number deletion (17.1%) and downregulation of ZC3H14 in primary HCC tissues. Downregulation of ZC3H14 was significantly associated with poor outcomes of patients with HCC. Overexpression of ZC3H14 in HCC cell lines significantly suppressed HCC cells growth in vitro and metastasis in vivo. In contrast, RNA interference silencing of ZC3H14 inhibited its tumor-suppressive function. Mechanismly, through combing bioinformatics analyses and experimental investigation, we demonstrated that loss of ZC3H14 promotes HCC progression through enhancing integrin pathway. This study suggests that ZC3H14 functions as a novel tumor suppressor and is a candidate prognostic biomarker for HCC patients.


Subject(s)
Carcinoma, Hepatocellular/pathology , Chromosome Deletion , Chromosomes, Human, Pair 14 , Down-Regulation , Integrins/metabolism , Liver Neoplasms/pathology , Poly(A)-Binding Proteins/genetics , Signal Transduction , Animals , Carcinoma, Hepatocellular/metabolism , Female , Genes, Tumor Suppressor , Heterografts , Humans , Liver Neoplasms/metabolism , Mice , Mice, Nude
14.
Biochem Biophys Res Commun ; 512(2): 412-420, 2019 04 30.
Article in English | MEDLINE | ID: mdl-30898320

ABSTRACT

Oxidative stress is widely involved in pathophysiological processes of cardiac remodeling. Molecules associated with antioxidant functions may be ideal targets for reversing cardiac remodeling. Sestrin2 is the important component of endogenous antioxidant defense, while there is little information on the pathophysiological roles of it in cardiac remodeling. The aim of this study was to investigate whether Sestrin2 is closely involved in cardiac remodeling, and whether the protective effect of pentamethylquercetin (PMQ) on cardiac remodeling is related to upregulation of the Sestrin2 endogenous antioxidant system. We generated a transverse aorta constriction (TAC)-induced pressure-overload cardiac-remodeling model in mice, and also established an isoproterenol (ISO)-induced neonatal rat cardiomyocyte (NRCM) hypertrophy model. The data showed Sestrin2 expression was downregulated significantly, and Nrf2 and HO-1 expression was also reduced in myocardial tissue or NRCM of model group, whereas keap1 expression was upregulated. PMQ significantly ameliorated cardiac remodeling and rectified the abnormal expression of Sestrin2/Nrf2/keap1. Sestrin2 small interfering RNA (SiRNA) reduced the protective effect of PMQ on NRCMs, as well as abolished its regulating effect on the Nrf2/keap1 pathway. In conclusion, Sestrin2 may be an important target in the anti-myocardial remodeling of PMQ.


Subject(s)
Cardiotonic Agents/pharmacology , Peroxidases/metabolism , Quercetin/analogs & derivatives , Ventricular Remodeling/drug effects , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Cell Enlargement/drug effects , Enzyme Activation/drug effects , Kelch-Like ECH-Associated Protein 1/metabolism , Male , Mice , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NF-E2-Related Factor 2/metabolism , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oxidative Stress/drug effects , Quercetin/pharmacology , RNA, Small Interfering/genetics , Rats , Ventricular Remodeling/physiology
15.
Curr Microbiol ; 76(5): 583-589, 2019 May.
Article in English | MEDLINE | ID: mdl-30826907

ABSTRACT

Vibrio cholerae, the causative agent of severe watery diarrheal disease cholera, requires production of a number of virulence factors during infection which results from the activity of a cascading system of regulatory factors by sensing to different environmental signals. TcpP, a membrane-localized transcription activator in V. cholerae, activates virulence factors production by responding to human host signals. To better characterize the transmembrane helix in regard to its roles on TcpP positive effectors sensitivity, site-directed mutagenesis was performed to identify specific mutations in this region which could enhance TcpP transcription activity in the absence of stimuli, like bile salts. We found that TcpP L152A constitutively forms homodimer and activates toxT expression in the absence of bile salts. However, being active, TcpP L152A needs to form disulfide bonds between the cysteine residues in the periplasmic domain of TcpP. We also found that TcpP L152A showed a competitive advantage in the infant mouse colonization model by coadministrating the bile salt-sequestering resin cholestyramine. All these results demonstrate that the transmembrane helix of TcpP plays an important role in regulating TcpP transcription activity in response to its positive effectors.


Subject(s)
Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Vibrio cholerae/genetics , Virulence Factors/genetics , Animals , Bile Acids and Salts/chemistry , Cholestyramine Resin/chemistry , Escherichia coli/genetics , Gene Expression , Mice , Mice, Inbred ICR , Mutagenesis, Site-Directed , Transcription Factors/genetics , Transcriptional Activation , Vibrio cholerae/metabolism , Virulence/genetics , Virulence Factors/metabolism
16.
Yi Chuan ; 40(1): 12-21, 2018 Jan 20.
Article in English | MEDLINE | ID: mdl-29367189

ABSTRACT

The Tre-2/Bub2/Cdc16 (TBC) domain is a conserved protein motif consisting of approximately 200 amino acids, and is present in many eukaryotic proteins. TBC domain-containing proteins (TBC proteins) function as GTPase activating proteins (GAPs) for the small GTPase Rab, which can promote the hydrolysis of Rab-GTP to Rab-GDP in regulation of specific intracellular trafficking pathways. Several TBC proteins play important roles in cellular functions in mammals, and defects of which are closely associated with numerous disease processes. In this review, we summarize the structures and functions of the mammalian TBC proteins and recent advances in understanding their critical roles in the development of human diseases. This review serves as a reference for further investigations on the functions of TBC proteins in disease pathogeneses.


Subject(s)
Apc6 Subunit, Anaphase-Promoting Complex-Cyclosome/physiology , GTPase-Activating Proteins/physiology , Proto-Oncogene Proteins/physiology , Ubiquitin Thiolesterase/physiology , rab GTP-Binding Proteins/metabolism , GTPase-Activating Proteins/chemistry , Humans
17.
Mol Microbiol ; 102(5): 909-924, 2016 12.
Article in English | MEDLINE | ID: mdl-27610607

ABSTRACT

Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, has evolved signal transduction systems to control co-ordinately the expression of virulence determinants. It was previously shown that the presence of the bile salts glycocholate and taurocholate in the small intestine causes dimerization of the transmembrane transcription factor TcpP by inducing intermolecular disulphide bonds in the TcpP periplasmic domain. In this study, they further investigated the mechanism of how taurocholate affects V. cholerae virulence determinants. In vitro assay of TcpP oxidation by VcDsbA showed that VcDsbA induced TcpP dimerization in the presence of taurocholate. Taurocholate bound to VcDsbA with a KD of 40 ± 2.5 µM, and also bound other Dsb proteins, including EcDsbA, EcDsbC and VcDsbC. Taurocholate inhibited VcDsbA reductase activity without affecting VcDsbA secondary structure or thermostability. VcDsbA and its substrates were more extensively reduced in the presence of taurocholate, as compared with their redox state in the absence of taurocholate. The data presented here not only provide new insights into the mechanism by which bile salts induce V. cholerae virulence but also suggest a means by which to develop inhibitors against DsbA.


Subject(s)
Bile Acids and Salts/metabolism , Vibrio cholerae/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Bacterial , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Taurocholic Acid/genetics , Taurocholic Acid/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Vibrio cholerae/genetics , Vibrio cholerae/pathogenicity , Virulence/genetics , Virulence Factors/genetics , Virulence Factors/metabolism
18.
J Gen Virol ; 96(Pt 1): 85-94, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25234643

ABSTRACT

MicroRNAs (miRNAs) are a class of short endogenous RNA molecules with the ability to control development, autophagy, apoptosis and the stress response in eukaryotes by pairing with partially complementary sites in the 3' UTRs of targeted genes. Recent studies have demonstrated that miRNAs serve as critical effectors in intricate networks of host-pathogen interactions. Notably, we found that Bos taurus bta-miR-29b (referred to as miR-29b herein) was significantly upregulated >2.3-fold in bovine viral diarrhoea virus (BVDV) strain NADL-infected Madin-Darby bovine kidney (MDBK) cells 6 h post-infection compared with normal MDBK cells. However, the roles of miR-29b in BVDV infection and pathogenesis remain unclear. Here, we report the inhibitory effects of miR-29b on BVDV NADL replication and viral infection-related autophagy. miR-29b overexpression mediated by miRNA precursor-expressing lentivirus resulted in the attenuation of BVDV NADL infection-related autophagy by directly downregulating the intracellular expression levels of two key autophagy-associated proteins, ATG14 and ATG9A. Moreover, ATG14 and ATG9A overexpression rescue not only reversed miR-29b-inhibited autophagy, but also increased BVDV NADL replication. In previous studies, we found that the early stages of autophagy contributed to BVDV NADL replication in MDBK cells and that the inhibition of autophagy repressed BVDV NADL replication, which was also proved in the present study. Collectively, our results establish a novel link between miR-29b and viral replication, and also provide a new pathway for the intimate interaction between host cells and pathogens.


Subject(s)
Adaptor Proteins, Vesicular Transport/genetics , Autophagy/genetics , Diarrhea Viruses, Bovine Viral/genetics , Lentivirus/genetics , MicroRNAs/genetics , Virus Replication/genetics , Animals , Bovine Virus Diarrhea-Mucosal Disease/genetics , Bovine Virus Diarrhea-Mucosal Disease/virology , Cattle , Cell Line , DNA Replication/genetics , Dogs , HEK293 Cells , Host-Pathogen Interactions/genetics , Humans , Madin Darby Canine Kidney Cells
19.
Microb Pathog ; 76: 61-6, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25245007

ABSTRACT

Macroautophagy (autophagy) is an evolutionarily conserved control process that maintains cellular homeostasis in eukaryotic cells. Autophagy principally serves an adaptive role to degrade dysfunctional proteins and to clean damaged organelles in response to pathogenic, viral, or microbial infection, nutrient deprivation and endoplasmic reticulum (ER) stress. In previous study, we showed bovine viral diarrhea virus (BVDV) NADL infection induced autophagy and significantly elevated the expression levels of autophagy-related genes, Beclin1 and ATG14, at 12 h post-infection in MDBK cells. However, the specific mechanisms involved in controlling autophagic activity remain unclear. Here, we investigate the effects of BVDV NADL envelope glycoproteins overexpression on inducing autophagy. The results show that viral envelope glycoproteins E(rns) and E2 overexpression mediated by lentivirus increase the formation of autophagosome, the percentage of GFP-LC3 puncta-positive cells and the expression levels of Beclin1 and ATG14. Whereas E1 overexpression doesn't affect autophagic activity. Collectively, these findings suggest that the viral envelope glycoproteins E(rns) and E2 are involved in inducing autophagy, and provide a mechanistic insight into the regulation of autophagy in viral infected cells.


Subject(s)
Autophagy , Diarrhea Viruses, Bovine Viral/physiology , Glycoproteins/metabolism , Host-Pathogen Interactions , Viral Envelope Proteins/metabolism , Adaptor Proteins, Vesicular Transport/analysis , Animals , Apoptosis Regulatory Proteins/analysis , Cattle , Cell Line , Gene Expression Profiling
20.
Can J Microbiol ; 60(7): 455-60, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24965127

ABSTRACT

MicroRNAs (miRNAs) are small, endogenous, noncoding RNA molecules that serve as powerful regulators of multiple cellular processes, including apoptosis, differentiation, growth, and proliferation. Bovine viral diarrhea virus (BVDV) contributes significantly to health-related economic losses in the beef and dairy industries. Although BVDV-induced apoptosis correlates with increased intracellular viral RNA accumulation and with bta-miR-29b (miR-29b) expression upregulation in Madin-Darby bovine kidney (MDBK) cells infected with BVDV strain NADL, the role of miR-29b in regulating BVDV-infection-related apoptosis remains unexplored. Here, we report that miR-29b serves as a new miRNA regulating apoptosis. We showed that miR-29b target sequences were present in the 3' untranslated regions of 2 key apoptosis regulators mRNAs, cysteine aspartases-7 (caspase-7) and nuclear apoptosis-inducing factor 1 (NAIF1). Indeed, upon miRNA overexpression, both mRNA and protein levels of caspase-7 and NAIF1 were decreased. We further found that miR-29b attenuated apoptosis by directly regulating intracellular levels of caspase-7 and NAIF1. Moreover, apoptosis blockage by miR-29b was rescued upon co-infection of MDBK cells with lentiviruses expressing caspase-7 and NAIF1. Importantly, miR-29b decreased BVDV NADL envelope glycoprotein E1 mRNA levels and suppressed viral replication. These studies advance our understanding of the mechanisms of miRNAs in mediating the cells combating viral infections.


Subject(s)
Apoptosis Inducing Factor/genetics , Apoptosis , Caspase 7/genetics , Diarrhea Viruses, Bovine Viral/physiology , MicroRNAs/physiology , Virus Replication/genetics , Animals , Apoptosis/genetics , Apoptosis Inducing Factor/metabolism , Caspase 7/metabolism , Cattle , Cell Line , Diarrhea Viruses, Bovine Viral/genetics , Humans , MicroRNAs/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA, Messenger/physiology , RNA, Viral/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL