Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Org Biomol Chem ; 20(40): 7949-7955, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36178274

ABSTRACT

Substituted benzo[cd]indoles are one of the most attractive frameworks because of their wide range of biological and optical activities. Herein, a copper-catalyzed one-step synthesis of biologically important polysubstituted benzo[cd]indoles starting from 8-alkynyl-1-naphthylamine derivatives is reported. In this protocol, many substituents tolerated the reaction conditions and produced (Z)-benzo[cd]indoles in good yields. Preliminary mechanistic studies indicated that the reaction proceeds via a stereoselective intramolecular trans-addition and SN-Ar reaction with high selectivity and high yields. The synthesized polysubstituted (Z)-benzo[cd]indoles possess sulfonamide building blocks, which make them candidates for bioactive molecules.


Subject(s)
Copper , Indoles , Catalysis , Sulfonamides , 1-Naphthylamine
2.
RSC Adv ; 13(9): 6210-6216, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36825294

ABSTRACT

In this article, a practical and metal-free method for the synthesis of poly-functionalized 3-selenyl/sulfenyl/telluriumindoles from o-alkynyl arylamines has been achieved. In this protocol, the in situ formation of selenenyl chloride, sulfenyl chloride or tellurenyl chloride is considered as the key intermediate and the 3-selenyl/sulfenyl/telluriumindoles can be obtained in good to excellent yields. Furthermore, the product 2-phenyl-3-(phenylselanyl)-1-tosyl-1H-indole can be selectively oxidized to compounds 2-phenyl-3-(phenylseleninyl)-1-tosyl-1H-indole and 2-phenyl-3-(phenylselenonyl)-1-tosyl-1H-indole in good yields.

3.
Int J Biol Macromol ; 253(Pt 1): 126575, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37648136

ABSTRACT

Traditional wood adhesives have the problems of excessive dependence on fossil resources and environmental pollution. Cellulose, a renewable biomass resource with a low price and huge output, provides a basis for preparing biomass wood adhesives. In this study, a new type of polyamide resin was prepared by modifying microcrystalline cellulose and reacting with natural citric acid. Specifically, toluenesulfonyl cellulose (TS) was synthesized, and functional amino cellulose (AC) was prepared by a nucleophilic substitution reaction with hyperbranched polyamide (HP). Then cellulose-based hyperbranched polyamide resin (CHP) was prepared by polycondensation with citric acid. The structure of CHP resin was investigated by FTIR, XPS, 13C NMR and GPC, and plywood was prepared to study its mechanical properties. Due to the formation of hyperbranched cross-linked network structure inside the resin, the prepared plywood has excellent properties. The dry shear strength reaches 2.24 MPa, and the strength reaches 1.25 and 1.31 MPa after soaking in water at 63 °C and 93 °C for 3 h. The resin in this study has a simple preparation process and excellent performance, which provides a solid foundation for developing high-performance cellulose-based wood adhesives.


Subject(s)
Adhesives , Nylons , Adhesives/chemistry , Wood/chemistry , Biomass , Cellulose/chemistry
4.
Int J Biol Macromol ; 253(Pt 7): 127446, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37839593

ABSTRACT

Biomass resources are widely considered potential alternatives to formaldehyde-based wood adhesives because of their abundance. In this study, an environmentally friendly biomass adhesive, carboxylated chitosan-glucose (CSC-G), was prepared using chitosan, maleic anhydride, and glucose. The structure and water resistance of the adhesive were analyzed in detail. Maleic anhydride act as a bridge connecting chitosan and glucose, giving the adhesive good water solubility and resistance. The improved water resistance of the CSC-G adhesive was attributed to the formation of covalent cross-linked structures and an increased degree of system cross-linking. Additionally, the curing temperature of the CSC-G adhesive was superior to those of previously reported polyester adhesives. This study not only expands the application scope of fishery waste, but also demonstrates its great potential for the preparation of high-performance plywood.


Subject(s)
Adhesives , Chitosan , Adhesives/chemistry , Chitosan/chemistry , Maleic Anhydrides , Solubility , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL