Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genes Dev ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39168637

ABSTRACT

The SAGA complex is an evolutionarily conserved histone acetyltransferase complex and transcription coactivator essential for development and disease. Dysregulation of SAGA is implicated in various human diseases, including cancer. In this issue of Genes & Development, Chen et al. (doi/10.1101/gad.351789.124) uncover a critical role for SAGA in multiple myeloma wherein SAGA's ADA2B component is required for the expression of mTORC1 pathway genes and targets of the MYC, E2F, and MAF (musculoaponeurotic fibrosarcoma) transcription factors. SAGA cooperates with MYC and MAF to sustain oncogenic gene expression programs vital for multiple myeloma survival and thus may serve as a therapeutic target for future cancer therapies.

2.
Mol Cell ; 83(11): 1872-1886.e5, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37172591

ABSTRACT

Deregulated inflammation is a critical feature driving the progression of tumors harboring mutations in the liver kinase B1 (LKB1), yet the mechanisms linking LKB1 mutations to deregulated inflammation remain undefined. Here, we identify deregulated signaling by CREB-regulated transcription coactivator 2 (CRTC2) as an epigenetic driver of inflammatory potential downstream of LKB1 loss. We demonstrate that LKB1 mutations sensitize both transformed and non-transformed cells to diverse inflammatory stimuli, promoting heightened cytokine and chemokine production. LKB1 loss triggers elevated CRTC2-CREB signaling downstream of the salt-inducible kinases (SIKs), increasing inflammatory gene expression in LKB1-deficient cells. Mechanistically, CRTC2 cooperates with the histone acetyltransferases CBP/p300 to deposit histone acetylation marks associated with active transcription (i.e., H3K27ac) at inflammatory gene loci, promoting cytokine expression. Together, our data reveal a previously undefined anti-inflammatory program, regulated by LKB1 and reinforced through CRTC2-dependent histone modification signaling, that links metabolic and epigenetic states to cell-intrinsic inflammatory potential.


Subject(s)
Histones , Protein Serine-Threonine Kinases , Humans , Histones/genetics , Histones/metabolism , Acetylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Cytokines/metabolism , Inflammation/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Cell ; 159(3): 558-71, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25417107

ABSTRACT

The recognition of modified histones by "reader" proteins constitutes a key mechanism regulating gene expression in the chromatin context. Compared with the great variety of readers for histone methylation, few protein modules that recognize histone acetylation are known. Here, we show that the AF9 YEATS domain binds strongly to histone H3K9 acetylation and, to a lesser extent, H3K27 and H3K18 acetylation. Crystal structural studies revealed that AF9 YEATS adopts an eight-stranded immunoglobin fold and utilizes a serine-lined aromatic "sandwiching" cage for acetyllysine readout, representing a novel recognition mechanism that is distinct from that of known acetyllysine readers. ChIP-seq experiments revealed a strong colocalization of AF9 and H3K9 acetylation genome-wide, which is important for the chromatin recruitment of the H3K79 methyltransferase DOT1L. Together, our studies identified the evolutionarily conserved YEATS domain as a novel acetyllysine-binding module and established a direct link between histone acetylation and DOT1L-mediated H3K79 methylation in transcription control.


Subject(s)
Histone Code , Methyltransferases/chemistry , Methyltransferases/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Acetylation , Amino Acid Sequence , Gene Expression Regulation , Histone Acetyltransferases/chemistry , Histone Acetyltransferases/metabolism , Histone-Lysine N-Methyltransferase , Histones/metabolism , Humans , Methylation , Models, Molecular , Molecular Sequence Data , Protein Processing, Post-Translational , Protein Structure, Tertiary , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment , Transcription, Genetic
4.
Mol Cell ; 80(6): 1013-1024.e6, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33338401

ABSTRACT

Impaired DNA crosslink repair leads to Fanconi anemia (FA), characterized by a unique manifestation of bone marrow failure and pancytopenia among diseases caused by DNA damage response defects. As a germline disorder, why the hematopoietic hierarchy is specifically affected is not fully understood. We find that reprogramming transcription during hematopoietic differentiation results in an overload of genotoxic stress, which causes aborted differentiation and depletion of FA mutant progenitor cells. DNA damage onset most likely arises from formaldehyde, an obligate by-product of oxidative protein demethylation during transcription regulation. Our results demonstrate that rapid and extensive transcription reprogramming associated with hematopoietic differentiation poses a major threat to genome stability and cell viability in the absence of the FA pathway. The connection between differentiation and DNA damage accumulation reveals a novel mechanism of genome scarring and is critical to exploring therapies to counteract the aplastic anemia for the treatment of FA patients.


Subject(s)
Cell Differentiation/drug effects , Cellular Reprogramming/genetics , Fanconi Anemia/genetics , Formaldehyde/toxicity , DNA Damage/drug effects , DNA Repair/genetics , Fanconi Anemia/blood , Fanconi Anemia/pathology , Formaldehyde/metabolism , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/genetics , Genomic Instability/genetics , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/drug effects , Humans , K562 Cells , Transcription, Genetic
5.
Genes Dev ; 32(1): 58-69, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29437725

ABSTRACT

Histone acetylation is associated with active transcription in eukaryotic cells. It helps to open up the chromatin by neutralizing the positive charge of histone lysine residues and providing binding platforms for "reader" proteins. The bromodomain (BRD) has long been thought to be the sole protein module that recognizes acetylated histones. Recently, we identified the YEATS domain of AF9 (ALL1 fused gene from chromosome 9) as a novel acetyl-lysine-binding module and showed that the ENL (eleven-nineteen leukemia) YEATS domain is an essential acetyl-histone reader in acute myeloid leukemias. The human genome encodes four YEATS domain proteins, including GAS41, a component of chromatin remodelers responsible for H2A.Z deposition onto chromatin; however, the importance of the GAS41 YEATS domain in human cancer remains largely unknown. Here we report that GAS41 is frequently amplified in human non-small cell lung cancer (NSCLC) and is required for cancer cell proliferation, survival, and transformation. Biochemical and crystal structural studies demonstrate that GAS41 binds to histone H3 acetylated on H3K27 and H3K14, a specificity that is distinct from that of AF9 or ENL. ChIP-seq (chromatin immunoprecipitation [ChIP] followed by high-throughput sequencing) analyses in lung cancer cells reveal that GAS41 colocalizes with H3K27ac and H3K14ac on the promoters of actively transcribed genes. Depletion of GAS41 or disruption of the interaction between its YEATS domain and acetylated histones impairs the association of histone variant H2A.Z with chromatin and consequently suppresses cancer cell growth and survival both in vitro and in vivo. Overall, our study identifies GAS41 as a histone acetylation reader that promotes histone H2A.Z deposition in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Histones/metabolism , Lung Neoplasms/metabolism , Transcription Factors/metabolism , Acetylation , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation , Gene Amplification , Genes, cdc , Histones/physiology , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Promoter Regions, Genetic , Protein Interaction Domains and Motifs , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/physiology
6.
Mol Cell ; 62(2): 181-193, 2016 04 21.
Article in English | MEDLINE | ID: mdl-27105114

ABSTRACT

Recognition of histone covalent modifications by chromatin-binding protein modules ("readers") constitutes a major mechanism for epigenetic regulation, typified by bromodomains that bind acetyllysine. Non-acetyl histone lysine acylations (e.g., crotonylation, butyrylation, propionylation) have been recently identified, but readers that prefer these acylations have not been characterized. Here we report that the AF9 YEATS domain displays selectively higher binding affinity for crotonyllysine over acetyllysine. Structural studies revealed an extended aromatic sandwiching cage with crotonyl specificity arising from π-aromatic and hydrophobic interactions between crotonyl and aromatic rings. These features are conserved among the YEATS, but not the bromodomains. Using a cell-based model, we showed that AF9 co-localizes with crotonylated histone H3 and positively regulates gene expression in a YEATS domain-dependent manner. Our studies define the evolutionarily conserved YEATS domain as a family of crotonyllysine readers and specifically demonstrate that the YEATS domain of AF9 directly links histone crotonylation to active transcription.


Subject(s)
Crotonates/metabolism , Histones/metabolism , Nuclear Proteins/metabolism , Protein Processing, Post-Translational , Transcription, Genetic , Transcriptional Activation , Acetylation , Animals , Binding Sites , Chromatin Assembly and Disassembly , Epigenesis, Genetic , HEK293 Cells , Histones/chemistry , Histones/genetics , Humans , Hydrophobic and Hydrophilic Interactions , Lysine , Mice , Models, Molecular , Mutation , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Protein Domains , RAW 264.7 Cells , RNA-Binding Proteins/metabolism , Transcription Factors , Transfection
7.
Mol Cell ; 63(3): 470-84, 2016 08 04.
Article in English | MEDLINE | ID: mdl-27477906

ABSTRACT

Histone acetylation, including acetylated H3K14 (H3K14ac), is generally linked to gene activation. Monomethylated histone H3 lysine 4 (H3K4me1), together with other gene-activating marks, denotes active genes. In contrast to usual gene-activating functions of H3K14ac and H3K4me1, we here show that the dual histone modification mark H3K4me1-H3K14ac is recognized by ZMYND8 (also called RACK7) and can function to counteract gene expression. We identified ZMYND8 as a transcriptional corepressor of the H3K4 demethylase JARID1D. ZMYND8 antagonized the expression of metastasis-linked genes, and its knockdown increased the cellular invasiveness in vitro and in vivo. The plant homeodomain (PHD) and Bromodomain cassette in ZMYND8 mediated the combinatorial recognition of H3K4me1-H3K14ac and H3K4me0-H3K14ac by ZMYND8. These findings uncover an unexpected role for the signature H3K4me1-H3K14ac in attenuating gene expression and reveal a metastasis-suppressive epigenetic mechanism in which ZMYND8's PHD-Bromo cassette couples H3K4me1-H3K14ac with downregulation of metastasis-linked genes.


Subject(s)
Cell Movement , DNA Methylation , Gene Expression Regulation, Neoplastic , Histones/metabolism , Lung Neoplasms/metabolism , Prostatic Neoplasms/metabolism , Receptors, Cell Surface/metabolism , Acetylation , Animals , Binding Sites , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Histone Demethylases/genetics , Histone Demethylases/metabolism , Histones/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Male , Mice, Nude , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Models, Molecular , Neoplasm Invasiveness , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , RNA Interference , Receptors for Activated C Kinase , Receptors, Cell Surface/genetics , Time Factors , Transcription, Genetic , Transfection , Tumor Burden , Tumor Suppressor Proteins
8.
Genes Dev ; 30(10): 1187-97, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27198228

ABSTRACT

Histone H3 methylation on Lys4 (H3K4me) is associated with active gene transcription in all eukaryotes. In Saccharomyces cerevisiae, Set1 is the sole lysine methyltransferase required for mono-, di-, and trimethylation of this site. Although H3K4me3 is linked to gene expression, whether H3K4 methylation regulates other cellular processes, such as mitosis, is less clear. Here we show that both Set1 and H3K4 mutants display a benomyl resistance phenotype that requires components of the spindle assembly checkpoint (SAC), including Bub3 and Mad2. These proteins inhibit Cdc20, an activator of the anaphase-promoting complex/cyclosome (APC/C). Mutations in Cdc20 that block Mad2 interactions suppress the benomyl resistance of both set1 and H3K4 mutant cells. Furthermore, the HORMA domain in Mad2 directly binds H3, identifying a new histone H3 "reader" motif. Mad2 undergoes a conformational change important for execution of the SAC. We found that the closed (active) conformation of both yeast and human Mad2 is capable of binding methylated H3K4, but, in contrast, the open (inactive) Mad2 conformation limits interaction with methylated H3. Collectively, our data indicate that interactions between Mad2 and H3K4 regulate resolution of the SAC by limiting closed Mad2 availability for Cdc20 inhibition.


Subject(s)
Histones/metabolism , M Phase Cell Cycle Checkpoints/genetics , Mad2 Proteins/metabolism , Benomyl/pharmacology , Cdc20 Proteins/genetics , Cdc20 Proteins/metabolism , Drug Resistance/genetics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Humans , M Phase Cell Cycle Checkpoints/drug effects , Methylation , Mutation , Protein Binding/genetics , Protein Conformation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Spindle Apparatus/genetics , Spindle Apparatus/pathology , Transcriptional Activation/drug effects , Transcriptional Activation/physiology , Tubulin Modulators/pharmacology
9.
Small ; : e2305268, 2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37661582

ABSTRACT

Polymerization-induced microphase separation (PIMS) is a versatile technique for producing nanostructured materials. In previous PIMS studies, the predominant approach involved employing homopolymers as macromolecular chain transfer agents (macroCTAs) to mediate the formation of nanostructured materials. In this article, the use of AB diblock copolymers as macroCTAs to design PIMS systems for 3D printing of nanostructured materials is investigated. Specifically, the influence of diblock copolymer composition and block sequence on the resulting nanostructures, and their subsequent impact on bulk properties is systematically investigated. Through careful manipulation of the A/B block ratios, the morphology and size of the nanodomains are successfully controlled. Remarkably, the sequence of A and B blocks significantly affects the microphase separation process, resulting in distinct morphologies. The effect can be attributed to changes in the interaction parameters (χAB , χBC , χAC ) between the different block segments. Furthermore, the block sequence and composition exert profound influence on the thermomechanical, tensile, and swelling properties of 3D printed nanostructured materials. By leveraging this knowledge, it becomes possible to design advanced 3D printable materials with tailored properties, opening new avenues for material engineering.

10.
Nat Immunol ; 12(1): 29-36, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21131967

ABSTRACT

Signaling via the methylation of lysine residues in proteins has been linked to diverse biological and disease processes, yet the catalytic activity and substrate specificity of many human protein lysine methyltransferases (PKMTs) are unknown. We screened over 40 candidate PKMTs and identified SETD6 as a methyltransferase that monomethylated chromatin-associated transcription factor NF-κB subunit RelA at Lys310 (RelAK310me1). SETD6-mediated methylation rendered RelA inert and attenuated RelA-driven transcriptional programs, including inflammatory responses in primary immune cells. RelAK310me1 was recognized by the ankryin repeat of the histone methyltransferase GLP, which under basal conditions promoted a repressed chromatin state at RelA target genes through GLP-mediated methylation of histone H3 Lys9 (H3K9). NF-κB-activation-linked phosphorylation of RelA at Ser311 by protein kinase C-ζ (PKC-ζ) blocked the binding of GLP to RelAK310me1 and relieved repression of the target gene. Our findings establish a previously uncharacterized mechanism by which chromatin signaling regulates inflammation programs.


Subject(s)
Arthritis, Rheumatoid/immunology , NF-kappa B/metabolism , Protein Methyltransferases/metabolism , Transcription Factor RelA/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Chromatin Assembly and Disassembly/genetics , DNA Methylation , HEK293 Cells , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Humans , Inflammation , Lysine/metabolism , NF-kappa B/genetics , NF-kappa B/immunology , Protein Binding/genetics , Protein Methyltransferases/genetics , Protein Methyltransferases/immunology , RNA, Small Interfering/genetics , Signal Transduction/genetics , Signal Transduction/immunology , Transcription Factor RelA/genetics , Transcription Factor RelA/immunology
11.
Cancer Treat Res ; 190: 245-272, 2023.
Article in English | MEDLINE | ID: mdl-38113004

ABSTRACT

Histone proteins in eukaryotic cells are subjected to a wide variety of post-translational modifications, which are known to play an important role in the partitioning of the genome into distinctive compartments and domains. One of the major functions of histone modifications is to recruit reader proteins, which recognize the epigenetic marks and transduce the molecular signals in chromatin to downstream effects. Histone readers are defined protein domains with well-organized three-dimensional structures. In this Chapter, we will outline major histone readers, delineate their biochemical and structural features in histone recognition, and describe how dysregulation of histone readout leads to human cancer.


Subject(s)
Histones , Neoplasms , Humans , Histones/chemistry , Histones/genetics , Histones/metabolism , Epigenesis, Genetic , Chromatin , Protein Processing, Post-Translational , Neoplasms/genetics
12.
Nature ; 543(7644): 265-269, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28241141

ABSTRACT

Cancer cells are characterized by aberrant epigenetic landscapes and often exploit chromatin machinery to activate oncogenic gene expression programs. Recognition of modified histones by 'reader' proteins constitutes a key mechanism underlying these processes; therefore, targeting such pathways holds clinical promise, as exemplified by the development of bromodomain and extra-terminal (BET) inhibitors. We recently identified the YEATS domain as an acetyl-lysine-binding module, but its functional importance in human cancer remains unknown. Here we show that the YEATS domain-containing protein ENL, but not its paralogue AF9, is required for disease maintenance in acute myeloid leukaemia. CRISPR-Cas9-mediated depletion of ENL led to anti-leukaemic effects, including increased terminal myeloid differentiation and suppression of leukaemia growth in vitro and in vivo. Biochemical and crystal structural studies and chromatin-immunoprecipitation followed by sequencing analyses revealed that ENL binds to acetylated histone H3, and co-localizes with H3K27ac and H3K9ac on the promoters of actively transcribed genes that are essential for leukaemia. Disrupting the interaction between the YEATS domain and histone acetylation via structure-based mutagenesis reduced the recruitment of RNA polymerase II to ENL-target genes, leading to the suppression of oncogenic gene expression programs. Notably, disrupting the functionality of ENL further sensitized leukaemia cells to BET inhibitors. Together, our data identify ENL as a histone acetylation reader that regulates oncogenic transcriptional programs in acute myeloid leukaemia, and suggest that displacement of ENL from chromatin may be a promising epigenetic therapy, alone or in combination with BET inhibitors, for aggressive leukaemia.


Subject(s)
Acetylation , Gene Expression Regulation, Neoplastic , Histones/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Oncogenes/genetics , Transcriptional Elongation Factors/metabolism , Animals , CRISPR-Cas Systems , Cell Line, Tumor , Epigenesis, Genetic , Female , Gene Editing , Histones/chemistry , Humans , Leukemia, Myeloid, Acute/drug therapy , Lysine/metabolism , Mice , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Protein Domains , RNA Polymerase II/metabolism , Transcription, Genetic , Transcriptional Elongation Factors/chemistry , Transcriptional Elongation Factors/deficiency , Transcriptional Elongation Factors/genetics
13.
Nucleic Acids Res ; 49(1): 114-126, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33290558

ABSTRACT

Histone modifications and their functional readout serve as an important mechanism for gene regulation. Lysine benzoylation (Kbz) on histones is a recently identified acylation mark associated with active transcription. However, it remains to be explored whether putative readers exist to recognize this epigenetic mark. Here, our systematic binding studies demonstrated that the DPF and YEATS, but not the Bromodomain family members, are readers for histone Kbz. Co-crystal structural analyses revealed a 'hydrophobic encapsulation' and a 'tip-sensor' mechanism for Kbz readout by DPF and YEATS, respectively. Moreover, the DPF and YEATS family members display subtle yet unique features to create somewhat flexible engagements of different acylation marks. For instance, YEATS2 but not the other YEATS proteins exhibits best preference for Kbz than lysine acetylation and crotonylation due to its wider 'tip-sensor' pocket. The levels of histone benzoylation in cultured cells or in mice are upregulated upon sodium benzoate treatment, highlighting its dynamic regulation. In summary, our work identifies the first readers for histone Kbz and reveals the molecular basis underlying Kbz recognition, thus paving the way for further functional dissections of histone benzoylation.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Epigenomics , Histone Code , Multigene Family , Sodium Benzoate/pharmacology , Transcription Factors/metabolism , Acylation , Amino Acid Sequence , Animals , Cell Line , Chromosomal Proteins, Non-Histone/chemistry , Crystallography, X-Ray , DNA-Binding Proteins/chemistry , Histone Acetyltransferases/metabolism , Histones/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Lysine/chemistry , Mice , Mice, Inbred C57BL , Models, Molecular , Protein Binding , Protein Conformation , Protein Processing, Post-Translational , Recombinant Proteins/metabolism , Substrate Specificity , Transcription Factors/chemistry
14.
Sensors (Basel) ; 23(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37687925

ABSTRACT

Accurate prediction of solar irradiance holds significant value for renewable energy usage and power grid management. However, traditional forecasting methods often overlook the time dependence of solar irradiance sequences and the varying importance of different influencing factors. To address this issue, this study proposes a dual-path information fusion and twin attention-driven solar irradiance forecasting model. The proposed framework comprises three components: a residual attention temporal convolution block (RACB), a dual-path information fusion module (DIFM), and a twin self-attention module (TSAM). These components collectively enhance the performance of multi-step solar irradiance forecasting. First, the RACB is designed to enable the network to adaptively learn important features while suppressing irrelevant ones. Second, the DIFM is implemented to reinforce the model's robustness against input data variations and integrate multi-scale features. Lastly, the TSAM is introduced to extract long-term temporal dependencies from the sequence and facilitate multi-step prediction. In the solar irradiance forecasting experiments, the proposed model is compared with six benchmark models across four datasets. In the one-step predictions, the average performance metrics RMSE, MAE, and MAPE of the four datasets decreased within the ranges of 0.463-2.390 W/m2, 0.439-2.005 W/m2, and 1.3-9.2%, respectively. Additionally, the average R2 value across the four datasets increased by 0.008 to 0.059. The experimental results indicate that the model proposed in this study exhibits enhanced accuracy and robustness in predictive performance, making it a reliable alternative for solar irradiance forecasting.

15.
Sensors (Basel) ; 23(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37448048

ABSTRACT

Fault alarm time lag is one of the difficulties in fault diagnosis of wind turbine generators (WTGs), and the existing methods are insufficient to achieve accurate and rapid fault diagnosis of WTGs, and the operation and maintenance costs of WTGs are too high. To invent a new method for fast and accurate fault diagnosis of WTGs, this study constructs a stacking integration model based on the machine learning algorithms light gradient boosting machine (LightGBM), extreme gradient boosting (XGBoost), and stochastic gradient descent regressor (SGDRegressor) using publicly available datasets from Energias De Portugal (EDP). This model is automatically tuned for hyperparameters during training using Bayesian tuning, and the coefficient of determination (R2) and root mean square error (RMSE) were used to evaluate the model to determine its applicability and accuracy. The fitted residuals of the test set were calculated, the Pauta criterion (3σ) and the temporal sliding window were applied, and a final adaptive threshold method for accurate fault diagnosis and alarming was created. The model validation results show that the adaptive threshold method proposed in this study is better than the fixed threshold for diagnosis, and the alarm times for the GENERATOR fault type, GENERATOR_BEARING fault type, and TRANSFORMER fault type are 1.5 h, 5.8 h, and 3 h earlier, respectively.


Subject(s)
Algorithms , Electric Power Supplies , Bayes Theorem , Machine Learning , Portugal
16.
Angew Chem Int Ed Engl ; 62(25): e202302451, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-36988047

ABSTRACT

We report an aqueous and near-infrared (NIR) light mediated photoinduced reversible addition-fragmentation chain transfer (photo-RAFT) polymerization system catalyzed by tetrasulfonated zinc phthalocyanine (ZnPcS4 - ) in the presence of peroxides. Taking advantage of its fast polymerization rates and high oxygen tolerance, this system is successfully applied for the preparation of hydrogels. Exploiting the enhanced penetration of NIR light, photoinduced gelation is effectively performed through non-transparent biological barriers. Notably, the RAFT agents embedded in these hydrogel networks can be reactivated on-demand, enabling the hydrogel healing under NIR light irradiation. In contrast to the minimal healing capability (<15 %) of hydrogels prepared by free radical polymerization (FRP), RAFT-mediated networks display more than 80 % recovery of tensile strength. Although healable polymer networks under UV and blue lights have already been established, this work is the first photochemistry system using NIR light, facilitating photoinduced healing of hydrogels through thick non-transparent barriers.


Subject(s)
Hydrogels , Polymers , Hydrogels/pharmacology , Polymerization , Water , Infrared Rays
17.
Mol Cell ; 56(2): 298-310, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25263594

ABSTRACT

BS69 (also called ZMYND11) contains tandemly arranged PHD, BROMO, and PWWP domains, which are chromatin recognition modalities. Here, we show that BS69 selectively recognizes histone variant H3.3 lysine 36 trimethylation (H3.3K36me3) via its chromatin-binding domains. We further identify BS69 association with RNA splicing regulators, including the U5 snRNP components of the spliceosome, such as EFTUD2. Remarkably, RNA sequencing shows that BS69 mainly regulates intron retention (IR), which is the least understood RNA alternative splicing event in mammalian cells. Biochemical and genetic experiments demonstrate that BS69 promotes IR by antagonizing EFTUD2 through physical interactions. We further show that regulation of IR by BS69 also depends on its binding to H3K36me3-decorated chromatin. Taken together, our study identifies an H3.3K36me3-specific reader and a regulator of IR and reveals that BS69 connects histone H3.3K36me3 to regulated RNA splicing, providing significant, important insights into chromatin regulation of pre-mRNA processing.


Subject(s)
Alternative Splicing , Carrier Proteins/metabolism , Chromatin/metabolism , Histones/metabolism , RNA Precursors/genetics , RNA, Messenger/genetics , Base Sequence , Carrier Proteins/genetics , Cell Cycle Proteins , Cell Line, Tumor , Chromatin/genetics , Co-Repressor Proteins , DNA Methylation/genetics , DNA-Binding Proteins , HeLa Cells , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Humans , Introns/genetics , Lysine/genetics , Lysine/metabolism , Peptide Elongation Factors/antagonists & inhibitors , Peptide Elongation Factors/genetics , Peptide Elongation Factors/metabolism , Protein Binding , Protein Structure, Tertiary , RNA Interference , RNA Processing, Post-Transcriptional/genetics , RNA, Small Interfering , Ribonucleoprotein, U5 Small Nuclear/antagonists & inhibitors , Ribonucleoprotein, U5 Small Nuclear/genetics , Ribonucleoprotein, U5 Small Nuclear/metabolism , Sequence Analysis, RNA , Spliceosomes/genetics
18.
Biochem J ; 478(14): 2789-2791, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34297041

ABSTRACT

Post-translational modifications (PTMs) on histone proteins are known as epigenetic marks that demarcate the status of chromatin. These modifications are 'read' by specific reader proteins, which in turn recruit additional factors to modulate chromatin accessibility and the activity of the underlying DNA. Accumulating evidence suggests that these modifications are not restricted solely to histones, many non-histone proteins may function in a similar way through mimicking the histones. In this commentary, we briefly discuss a systematic study of the discovery of histone H3 N-terminal mimicry proteins (H3TMs), and their implications in chromatin regulation and drug discoveries.


Subject(s)
Chromatin/metabolism , DNA/metabolism , Histones/metabolism , Protein Processing, Post-Translational , Animals , Chromatin/genetics , Chromatin Assembly and Disassembly , DNA/genetics , Humans , Lysine/metabolism , Methylation , Models, Biological
19.
Angew Chem Int Ed Engl ; 61(35): e202206272, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-35732587

ABSTRACT

Nanostructured polymeric materials play important roles in many advanced applications, however, controlling the morphologies of polymeric thermosets remains a challenge. This work uses multi-arm macroCTAs to mediate polymerization-induced microphase separation (PIMS) and prepare nanostructured materials via photoinduced 3D printing. The characteristic length scale of microphase-separated domains is determined by the macroCTA arm length, while nanoscale morphologies are controlled by the macroCTA architecture. Specifically, using 2- and 4- arm macroCTAs provides materials with different morphologies compared to analogous monofunctional linear macroCTAs at similar compositions. The mechanical properties of these nanostructured thermosets can also be tuned while maintaining the desired morphologies. Using multi-arm macroCTAs can thus broaden the scope of accessible nanostructures for extended applications, including the fabrication of actuators and potential drug delivery devices.

20.
Crit Rev Biochem Mol Biol ; 54(1): 1-10, 2019 02.
Article in English | MEDLINE | ID: mdl-30691308

ABSTRACT

Although relatively small in size, the ZZ-type zinc finger (ZZ) domain is a versatile signaling module that is implicated in a diverse set of cell signaling events. Here, we highlight the most recent studies focused on the ZZ domain function as a histone reader and a sensor of protein degradation signals. We review and compare the molecular and structural mechanisms underlying targeting the amino-terminal sequences of histone H3 and arginylated substrates by the ZZ domain. We also discuss the ZZ domain sensitivity to histone PTMs and summarize biological outcomes associated with the recognition of histone and non-histone ligands by the ZZ domain-containing proteins and complexes.


Subject(s)
Epigenesis, Genetic , Zinc Fingers , Acetylation , Animals , Autophagy , Chromatin/genetics , Chromatin/metabolism , Histones/genetics , Histones/metabolism , Humans , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL