Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Molecules ; 22(7)2017 Jul 03.
Article in English | MEDLINE | ID: mdl-28671638

ABSTRACT

Antagonists of the Escherichia coli type-1 fimbrial adhesin FimH are recognized as attractive alternatives for antibiotic therapies and prophylaxes against acute and recurrent bacterial infections. In this study α-d-mannopyranosides O- or C-linked with an alkyl, alkene, alkyne, thioalkyl, amide, or sulfonamide were investigated to fit a hydrophobic substituent with up to two aryl groups within the tyrosine gate emerging from the mannose-binding pocket of FimH. The results were summarized into a set of structure-activity relationships to be used in FimH-targeted inhibitor design: alkene linkers gave an improved affinity and inhibitory potential, because of their relative flexibility combined with a favourable interaction with isoleucine-52 located in the middle of the tyrosine gate. Of particular interest is a C-linked mannoside, alkene-linked to an ortho-substituted biphenyl that has an affinity similar to its O-mannosidic analog but superior to its para-substituted analog. Docking of its high-resolution NMR solution structure to the FimH adhesin indicated that its ultimate, ortho-placed phenyl ring is able to interact with isoleucine-13, located in the clamp loop that undergoes conformational changes under shear force exerted on the bacteria. Molecular dynamics simulations confirmed that a subpopulation of the C-mannoside conformers is able to interact in this secondary binding site of FimH.


Subject(s)
Adhesins, Escherichia coli/metabolism , Escherichia coli/metabolism , Fimbriae Proteins/metabolism , Mannosides/pharmacology , Adhesins, Escherichia coli/chemistry , Bacterial Adhesion , Binding Sites , Escherichia coli/drug effects , Fimbriae Proteins/chemistry , Mannosides/chemistry , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Structure-Activity Relationship
2.
J Am Chem Soc ; 135(24): 9055-77, 2013 Jun 19.
Article in English | MEDLINE | ID: mdl-23692629

ABSTRACT

The modular synthesis of 7 libraries containing 51 self-assembling amphiphilic Janus dendrimers with the monosaccharides D-mannose and D-galactose and the disaccharide D-lactose in their hydrophilic part is reported. These unprecedented sugar-containing dendrimers are named amphiphilic Janus glycodendrimers. Their self-assembly by simple injection of THF or ethanol solution into water or buffer and by hydration was analyzed by a combination of methods including dynamic light scattering, confocal microscopy, cryogenic transmission electron microscopy, Fourier transform analysis, and micropipet-aspiration experiments to assess mechanical properties. These libraries revealed a diversity of hard and soft assemblies, including unilamellar spherical, polygonal, and tubular vesicles denoted glycodendrimersomes, aggregates of Janus glycodendrimers and rodlike micelles named glycodendrimer aggregates and glycodendrimermicelles, cubosomes denoted glycodendrimercubosomes, and solid lamellae. These assemblies are stable over time in water and in buffer, exhibit narrow molecular-weight distribution, and display dimensions that are programmable by the concentration of the solution from which they are injected. This study elaborated the molecular principles leading to single-type soft glycodendrimersomes assembled from amphiphilic Janus glycodendrimers. The multivalency of glycodendrimersomes with different sizes and their ligand bioactivity were demonstrated by selective agglutination with a diversity of sugar-binding protein receptors such as the plant lectins concanavalin A and the highly toxic mistletoe Viscum album L. agglutinin, the bacterial lectin PA-IL from Pseudomonas aeruginosa, and, of special biomedical relevance, human adhesion/growth-regulatory galectin-3 and galectin-4. These results demonstrated the candidacy of glycodendrimersomes as new mimics of biological membranes with programmable glycan ligand presentations, as supramolecular lectin blockers, vaccines, and targeted delivery devices.


Subject(s)
Dendrimers/chemistry , Galactose/chemistry , Lactose/chemistry , Lectins/metabolism , Mannose/chemistry , Small Molecule Libraries/chemistry , Azides/chemical synthesis , Azides/chemistry , Azides/metabolism , Chemistry Techniques, Synthetic/methods , Dendrimers/chemical synthesis , Dendrimers/metabolism , Galactose/chemical synthesis , Galactose/metabolism , Humans , Lactose/chemical synthesis , Lactose/metabolism , Mannose/chemical synthesis , Mannose/metabolism , Models, Molecular , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/metabolism , Surface-Active Agents/chemical synthesis , Surface-Active Agents/chemistry , Surface-Active Agents/metabolism
3.
J Am Heart Assoc ; 10(4): e018756, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33554615

ABSTRACT

Background Chronic vascular disease atherosclerosis starts with an uptake of atherogenic modified low-density lipoproteins (LDLs) by resident macrophages, resulting in formation of arterial fatty streaks and eventually atheromatous plaques. Increased plasma sialic acid levels, increased neuraminidase activity, and reduced sialic acid LDL content have been previously associated with atherosclerosis and coronary artery disease in human patients, but the mechanism underlying this association has not been explored. Methods and Results We tested the hypothesis that neuraminidases contribute to development of atherosclerosis by removing sialic acid residues from glycan chains of the LDL glycoprotein and glycolipids. Atherosclerosis progression was investigated in apolipoprotein E and LDL receptor knockout mice with genetic deficiency of neuraminidases 1, 3, and 4 or those treated with specific neuraminidase inhibitors. We show that desialylation of the LDL glycoprotein, apolipoprotein B 100, by human neuraminidases 1 and 3 increases the uptake of human LDL by human cultured macrophages and by macrophages in aortic root lesions in Apoe-/- mice via asialoglycoprotein receptor 1. Genetic inactivation or pharmacological inhibition of neuraminidases 1 and 3 significantly delays formation of fatty streaks in the aortic root without affecting the plasma cholesterol and LDL levels in Apoe-/- and Ldlr-/- mouse models of atherosclerosis. Conclusions Together, our results suggest that neuraminidases 1 and 3 trigger the initial phase of atherosclerosis and formation of aortic fatty streaks by desialylating LDL and increasing their uptake by resident macrophages.


Subject(s)
Aorta, Abdominal/pathology , Atherosclerosis/metabolism , Coronary Artery Disease/metabolism , Lipoproteins, LDL/metabolism , Macrophages/metabolism , Neuraminidase/metabolism , Animals , Aorta, Abdominal/metabolism , Atherosclerosis/pathology , Biomarkers/metabolism , Cells, Cultured , Coronary Artery Disease/pathology , Disease Models, Animal , Humans , Macrophages/pathology , Mice , Mice, Knockout , Phagocytosis
SELECTION OF CITATIONS
SEARCH DETAIL