Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Nature ; 613(7945): 735-742, 2023 01.
Article in English | MEDLINE | ID: mdl-36473496

ABSTRACT

Feedback inhibition of humoral immunity by antibodies was first documented in 19091. Subsequent studies showed that, depending on the context, antibodies can enhance or inhibit immune responses2,3. However, little is known about how pre-existing antibodies influence the development of memory B cells. Here we examined the memory B cell response in individuals who received two high-affinity anti-SARS-CoV-2 monoclonal antibodies and subsequently two doses of an mRNA vaccine4-8. We found that the recipients of the monoclonal antibodies produced antigen-binding and neutralizing titres that were only fractionally lower compared than in control individuals. However, the memory B cells of the individuals who received the monoclonal antibodies differed from those of control individuals in that they predominantly expressed low-affinity IgM antibodies that carried small numbers of somatic mutations and showed altered receptor binding domain (RBD) target specificity, consistent with epitope masking. Moreover, only 1 out of 77 anti-RBD memory antibodies tested neutralized the virus. The mechanism underlying these findings was examined in experiments in mice that showed that germinal centres formed in the presence of the same antibodies were dominated by low-affinity B cells. Our results indicate that pre-existing high-affinity antibodies bias germinal centre and memory B cell selection through two distinct mechanisms: (1) by lowering the activation threshold for B cells, thereby permitting abundant lower-affinity clones to participate in the immune response; and (2) through direct masking of their cognate epitopes. This may in part explain the shifting target profile of memory antibodies elicited by booster vaccinations9.


Subject(s)
Antibodies, Viral , B-Lymphocytes , COVID-19 Vaccines , COVID-19 , Feedback, Physiological , Immunologic Memory , Vaccination , mRNA Vaccines , Animals , Mice , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/therapy , COVID-19/virology , SARS-CoV-2/immunology , mRNA Vaccines/immunology , COVID-19 Vaccines/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Immunoglobulin M/immunology , Germinal Center/cytology , Germinal Center/immunology , Immunization, Secondary , Somatic Hypermutation, Immunoglobulin
2.
Nature ; 607(7917): 128-134, 2022 07.
Article in English | MEDLINE | ID: mdl-35447027

ABSTRACT

The Omicron variant of SARS-CoV-2 infected many vaccinated and convalescent individuals1-3. Despite the reduced protection from infection, individuals who received three doses of an mRNA vaccine were highly protected from more serious consequences of infection4. Here we examine the memory B cell repertoire in a longitudinal cohort of individuals receiving three mRNA vaccine doses5,6. We find that the third dose is accompanied by an increase in, and evolution of, receptor-binding domain (RBD)-specific memory B cells. The increase is due to expansion of memory B cell clones that were present after the second dose as well as the emergence of new clones. The antibodies encoded by these cells showed significantly increased potency and breadth when compared with antibodies obtained after the second dose. Notably, the increase in potency was especially evident among newly developing clones of memory cells, which differed from persisting clones in targeting more conserved regions of the RBD. Overall, more than 50% of the analysed neutralizing antibodies in the memory compartment after the third mRNA vaccine dose neutralized the Omicron variant. Thus, individuals receiving three doses of an mRNA vaccine have a diverse memory B cell repertoire that can respond rapidly and produce antibodies capable of clearing even diversified variants such as Omicron. These data help to explain why a third dose of a vaccine that was not specifically designed to protect against variants is effective against variant-induced serious disease.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Memory B Cells , SARS-CoV-2 , mRNA Vaccines , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Humans , Memory B Cells/immunology , RNA, Messenger/genetics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , mRNA Vaccines/administration & dosage , mRNA Vaccines/immunology
3.
Nature ; 606(7913): 368-374, 2022 06.
Article in English | MEDLINE | ID: mdl-35418681

ABSTRACT

HIV-1 infection remains a public health problem with no cure. Anti-retroviral therapy (ART) is effective but requires lifelong drug administration owing to a stable reservoir of latent proviruses integrated into the genome of CD4+ T cells1. Immunotherapy with anti-HIV-1 antibodies has the potential to suppress infection and increase the rate of clearance of infected cells2,3. Here we report on a clinical study in which people living with HIV received seven doses of a combination of two broadly neutralizing antibodies over 20 weeks in the presence or absence of ART. Without pre-screening for antibody sensitivity, 76% (13 out of 17) of the volunteers maintained virologic suppression for at least 20 weeks off ART. Post hoc sensitivity analyses were not predictive of the time to viral rebound. Individuals in whom virus remained suppressed for more than 20 weeks showed rebound viraemia after one of the antibodies reached serum concentrations below 10 µg ml-1. Two of the individuals who received all seven antibody doses maintained suppression after one year. Reservoir analysis performed after six months of antibody therapy revealed changes in the size and composition of the intact proviral reservoir. By contrast, there was no measurable decrease in the defective reservoir in the same individuals. These data suggest that antibody administration affects the HIV-1 reservoir, but additional larger and longer studies will be required to define the precise effect of antibody immunotherapy on the reservoir.


Subject(s)
Anti-Retroviral Agents , HIV Antibodies , HIV Infections , HIV-1 , Viral Load , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/virology , HIV Antibodies/therapeutic use , HIV Infections/drug therapy , HIV-1/drug effects , HIV-1/growth & development , Humans , Proviruses/drug effects , Viral Load/drug effects , Viremia/drug therapy , Virus Latency/drug effects
4.
Nature ; 600(7889): 517-522, 2021 12.
Article in English | MEDLINE | ID: mdl-34619745

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection produces B cell responses that continue to evolve for at least a year. During that time, memory B cells express increasingly broad and potent antibodies that are resistant to mutations found in variants of concern1. As a result, vaccination of coronavirus disease 2019 (COVID-19) convalescent individuals with currently available mRNA vaccines produces high levels of plasma neutralizing activity against all variants tested1,2. Here we examine memory B cell evolution five months after vaccination with either Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) mRNA vaccine in a cohort of SARS-CoV-2-naive individuals. Between prime and boost, memory B cells produce antibodies that evolve increased neutralizing activity, but there is no further increase in potency or breadth thereafter. Instead, memory B cells that emerge five months after vaccination of naive individuals express antibodies that are similar to those that dominate the initial response. While individual memory antibodies selected over time by natural infection have greater potency and breadth than antibodies elicited by vaccination, the overall neutralizing potency of plasma is greater following vaccination. These results suggest that boosting vaccinated individuals with currently available mRNA vaccines will increase plasma neutralizing activity but may not produce antibodies with equivalent breadth to those obtained by vaccinating convalescent individuals.


Subject(s)
COVID-19 Vaccines/immunology , Evolution, Molecular , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology , 2019-nCoV Vaccine mRNA-1273/immunology , Adult , Aged , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Affinity , BNT162 Vaccine/immunology , Cohort Studies , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Epitopes, B-Lymphocyte/immunology , Female , Humans , Male , Memory B Cells/immunology , Middle Aged , Neutralization Tests , Protein Domains/immunology , Spike Glycoprotein, Coronavirus/chemistry , Young Adult
5.
Nature ; 591(7851): 639-644, 2021 03.
Article in English | MEDLINE | ID: mdl-33461210

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected 78 million individuals and is responsible for over 1.7 million deaths to date. Infection is associated with the development of variable levels of antibodies with neutralizing activity, which can protect against infection in animal models1,2. Antibody levels decrease with time, but, to our knowledge, the nature and quality of the memory B cells that would be required to produce antibodies upon reinfection has not been examined. Here we report on the humoral memory response in a cohort of 87 individuals assessed at 1.3 and 6.2 months after infection with SARS-CoV-2. We find that titres of IgM and IgG antibodies against the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 decrease significantly over this time period, with IgA being less affected. Concurrently, neutralizing activity in plasma decreases by fivefold in pseudotype virus assays. By contrast, the number of RBD-specific memory B cells remains unchanged at 6.2 months after infection. Memory B cells display clonal turnover after 6.2 months, and the antibodies that they express have greater somatic hypermutation, resistance to RBD mutations and increased potency, indicative of continued evolution of the humoral response. Immunofluorescence and PCR analyses of intestinal biopsies obtained from asymptomatic individuals at 4 months after the onset of coronavirus disease 2019 (COVID-19) revealed the persistence of SARS-CoV-2 nucleic acids and immunoreactivity in the small bowel of 7 out of 14 individuals. We conclude that the memory B cell response to SARS-CoV-2 evolves between 1.3 and 6.2 months after infection in a manner that is consistent with antigen persistence.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunity, Humoral/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/genetics , Antigens, Viral/chemistry , Antigens, Viral/genetics , Antigens, Viral/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Biopsy , COVID-19/blood , Cohort Studies , Fluorescent Antibody Technique , Humans , Immunity, Humoral/genetics , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Immunologic Memory/immunology , Intestines/immunology , Middle Aged , Mutation , Somatic Hypermutation, Immunoglobulin , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Time Factors , Young Adult
6.
Nature ; 592(7855): 616-622, 2021 04.
Article in English | MEDLINE | ID: mdl-33567448

ABSTRACT

Here we report on the antibody and memory B cell responses of a cohort of 20 volunteers who received the Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) vaccine against SARS-CoV-21-4. Eight weeks after the second injection of vaccine, volunteers showed high levels of IgM and IgG anti-SARS-CoV-2 spike protein (S) and receptor-binding-domain (RBD) binding titre. Moreover, the plasma neutralizing activity and relative numbers of RBD-specific memory B cells of vaccinated volunteers were equivalent to those of individuals who had recovered from natural infection5,6. However, activity against SARS-CoV-2 variants that encode E484K-, N501Y- or K417N/E484K/N501-mutant S was reduced by a small-but significant-margin. The monoclonal antibodies elicited by the vaccines potently neutralize SARS-CoV-2, and target a number of different RBD epitopes in common with monoclonal antibodies isolated from infected donors5-8. However, neutralization by 14 of the 17 most-potent monoclonal antibodies that we tested was reduced or abolished by the K417N, E484K or N501Y mutation. Notably, these mutations were selected when we cultured recombinant vesicular stomatitis virus expressing SARS-CoV-2 S in the presence of the monoclonal antibodies elicited by the vaccines. Together, these results suggest that the monoclonal antibodies in clinical use should be tested against newly arising variants, and that mRNA vaccines may need to be updated periodically to avoid a potential loss of clinical efficacy.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Synthetic/immunology , 2019-nCoV Vaccine mRNA-1273 , Adult , Aged , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , BNT162 Vaccine , COVID-19 Vaccines/genetics , Cryoelectron Microscopy , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/ultrastructure , Female , Humans , Immunization, Secondary , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Immunologic Memory/immunology , Male , Middle Aged , Models, Molecular , Mutation , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/genetics , mRNA Vaccines
7.
Nature ; 584(7821): 437-442, 2020 08.
Article in English | MEDLINE | ID: mdl-32555388

ABSTRACT

During the coronavirus disease-2019 (COVID-19) pandemic, severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) has led to the infection of millions of people and has claimed hundreds of thousands of lives. The entry of the virus into cells depends on the receptor-binding domain (RBD) of the spike (S) protein of SARS-CoV-2. Although there is currently no vaccine, it is likely that antibodies will be essential for protection. However, little is known about the human antibody response to SARS-CoV-21-5. Here we report on 149 COVID-19-convalescent individuals. Plasma samples collected an average of 39 days after the onset of symptoms had variable half-maximal pseudovirus neutralizing titres; titres were less than 50 in 33% of samples, below 1,000 in 79% of samples and only 1% of samples had titres above 5,000. Antibody sequencing revealed the expansion of clones of RBD-specific memory B cells that expressed closely related antibodies in different individuals. Despite low plasma titres, antibodies to three distinct epitopes on the RBD neutralized the virus with half-maximal inhibitory concentrations (IC50 values) as low as 2 ng ml-1. In conclusion, most convalescent plasma samples obtained from individuals who recover from COVID-19 do not contain high levels of neutralizing activity. Nevertheless, rare but recurring RBD-specific antibodies with potent antiviral activity were found in all individuals tested, suggesting that a vaccine designed to elicit such antibodies could be broadly effective.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Adolescent , Adult , Aged , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/analysis , Antibodies, Viral/analysis , Antibody Specificity , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/prevention & control , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Neutralization Tests , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Young Adult
8.
Nature ; 561(7724): 479-484, 2018 09.
Article in English | MEDLINE | ID: mdl-30258136

ABSTRACT

Individuals infected with HIV-1 require lifelong antiretroviral therapy, because interruption of treatment leads to rapid rebound viraemia. Here we report on a phase 1b clinical trial in which a combination of 3BNC117 and 10-1074, two potent monoclonal anti-HIV-1 broadly neutralizing antibodies that target independent sites on the HIV-1 envelope spike, was administered during analytical treatment interruption. Participants received three infusions of 30 mg kg-1 of each antibody at 0, 3 and 6 weeks. Infusions of the two antibodies were generally well-tolerated. The nine enrolled individuals with antibody-sensitive latent viral reservoirs maintained suppression for between 15 and more than 30 weeks (median of 21 weeks), and none developed viruses that were resistant to both antibodies. We conclude that the combination of the anti-HIV-1 monoclonal antibodies 3BNC117 and 10-1074 can maintain long-term suppression in the absence of antiretroviral therapy in individuals with antibody-sensitive viral reservoirs.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , HIV Antibodies/therapeutic use , HIV Infections/drug therapy , HIV Infections/immunology , HIV-1/immunology , Virus Latency/immunology , Adolescent , Adult , Aged , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/immunology , Anti-HIV Agents/therapeutic use , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/adverse effects , Antibodies, Neutralizing/immunology , Binding Sites, Antibody , Broadly Neutralizing Antibodies , Carrier State/drug therapy , Carrier State/immunology , Carrier State/virology , Drug Combinations , Drug Resistance, Viral , Female , HIV Antibodies/administration & dosage , HIV Antibodies/adverse effects , HIV Antibodies/immunology , HIV Envelope Protein gp160/immunology , HIV Infections/virology , HIV-1/isolation & purification , Historically Controlled Study , Humans , Infusions, Intravenous , Male , Middle Aged , Phylogeny , Viremia/drug therapy , Viremia/immunology , Viremia/prevention & control , Viremia/virology , Virus Activation/immunology , Young Adult
9.
Nature ; 535(7613): 556-60, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27338952

ABSTRACT

Interruption of combination antiretroviral therapy in HIV-1-infected individuals leads to rapid viral rebound. Here we report the results of a phase IIa open label clinical trial evaluating 3BNC117,a broad and potent neutralizing antibody against the CD4 binding site of the HIV-1 Env protein, during analytical treatment interruption in 13 HIV-1-infected individuals. Participants with 3BNC117-sensitive virus outgrowth cultures were enrolled. Results show that two or four 30 mg kg(-1) 3BNC117 infusions,separated by 3 or 2 weeks, respectively, are generally well tolerated.Infusions are associated with a delay in viral rebound of 5-9 weeks after two infusions, and up to 19 weeks after four infusions, or an average of 6.7 and 9.9 weeks, respectively, compared with 2.6 weeks for historical controls (P < 0.00001). Rebound viruses arise predominantly from a single provirus. In most individuals,emerging viruses show increased resistance, indicating escape.However, 30% of participants remained suppressed until antibody concentrations waned below 20 µg ml(-1), and the viruses emerging in all but one of these individuals showed no apparent resistance to 3BCN117, suggesting failure to escape over a period of 9-19 weeks.We conclude that the administration of 3BNC117 exerts strong selective pressure on HIV-1 emerging from latent reservoirs during analytical treatment interruption in humans.


Subject(s)
Anti-HIV Agents/administration & dosage , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/growth & development , HIV-1/immunology , Adolescent , Adult , Aged , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/therapeutic use , Binding Sites/drug effects , Binding Sites/immunology , Broadly Neutralizing Antibodies , CD4 Antigens/metabolism , Disease Reservoirs/virology , Drug Administration Schedule , Female , HIV Antibodies/administration & dosage , HIV Antibodies/therapeutic use , HIV Envelope Protein gp160/antagonists & inhibitors , HIV Envelope Protein gp160/chemistry , HIV Envelope Protein gp160/immunology , HIV Envelope Protein gp160/metabolism , HIV Infections/immunology , HIV-1/drug effects , Historically Controlled Study , Humans , Male , Middle Aged , Proviruses/drug effects , Proviruses/growth & development , Proviruses/immunology , Time Factors , Tissue Distribution , Viral Load/drug effects , Viral Load/immunology , Young Adult
10.
Nature ; 522(7557): 487-91, 2015 06 25.
Article in English | MEDLINE | ID: mdl-25855300

ABSTRACT

HIV-1 immunotherapy with a combination of first generation monoclonal antibodies was largely ineffective in pre-clinical and clinical settings and was therefore abandoned. However, recently developed single-cell-based antibody cloning methods have uncovered a new generation of far more potent broadly neutralizing antibodies to HIV-1 (refs 4, 5). These antibodies can prevent infection and suppress viraemia in humanized mice and nonhuman primates, but their potential for human HIV-1 immunotherapy has not been evaluated. Here we report the results of a first-in-man dose escalation phase 1 clinical trial of 3BNC117, a potent human CD4 binding site antibody, in uninfected and HIV-1-infected individuals. 3BNC117 infusion was well tolerated and demonstrated favourable pharmacokinetics. A single 30 mg kg(-1) infusion of 3BNC117 reduced the viral load in HIV-1-infected individuals by 0.8-2.5 log10 and viraemia remained significantly reduced for 28 days. Emergence of resistant viral strains was variable, with some individuals remaining sensitive to 3BNC117 for a period of 28 days. We conclude that, as a single agent, 3BNC117 is safe and effective in reducing HIV-1 viraemia, and that immunotherapy should be explored as a new modality for HIV-1 prevention, therapy and cure.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/therapy , HIV-1/immunology , Viral Load/immunology , Viremia/therapy , Adult , Amino Acid Sequence , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/adverse effects , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Binding Sites , Broadly Neutralizing Antibodies , CD4 Antigens/metabolism , Case-Control Studies , Evolution, Molecular , Female , HIV Antibodies/administration & dosage , HIV Antibodies/adverse effects , HIV Antibodies/pharmacology , HIV Antibodies/therapeutic use , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/immunology , HIV Infections/immunology , HIV Infections/virology , HIV-1/chemistry , HIV-1/drug effects , Humans , Immunization, Passive/methods , Male , Middle Aged , Molecular Sequence Data , Time Factors , Viral Load/drug effects , Viremia/immunology , Viremia/virology , Young Adult
11.
J Virol ; 92(5)2018 03 01.
Article in English | MEDLINE | ID: mdl-29237833

ABSTRACT

Recently discovered broadly neutralizing antibodies (bNAbs) against HIV-1 demonstrate extensive breadth and potency against diverse HIV-1 strains and represent a promising approach for the treatment and prevention of HIV-1 infection. The breadth and potency of these antibodies have primarily been evaluated by using panels of HIV-1 Env-pseudotyped viruses produced in 293T cells expressing molecularly cloned Env proteins. Here we report on the ability of five bNAbs currently in clinical development to neutralize circulating primary HIV-1 isolates derived from peripheral blood mononuclear cells (PBMCs) and compare the results to those obtained with the pseudovirus panels used to characterize the bNAbs. The five bNAbs demonstrated significantly less breadth and potency against clinical isolates produced in PBMCs than against Env-pseudotyped viruses. The magnitude of this difference in neutralizing activity varied, depending on the antibody epitope. Glycan-targeting antibodies showed differences of only 3- to 4-fold, while antibody 10E8, which targets the membrane-proximal external region, showed a nearly 100-fold decrease in activity between published Env-pseudotyped virus panels and PBMC-derived primary isolates. Utilizing clonal PBMC-derived primary isolates and molecular clones, we determined that the observed discrepancy in bNAb performance is due to the increased sensitivity to neutralization exhibited by 293T-produced Env-pseudotyped viruses. We also found that while full-length molecularly cloned viruses produced in 293T cells exhibit greater sensitivity to neutralization than PBMC-derived viruses do, Env-pseudotyped viruses produced in 293T cells generally exhibit even greater sensitivity to neutralization. As the clinical development of bNAbs progresses, it will be critical to determine the relevance of each of these in vitro neutralization assays to in vivo antibody performance.IMPORTANCE Novel therapeutic and preventive strategies are needed to contain the HIV-1 epidemic. Antibodies with exceptional neutralizing activity against HIV-1 may provide several advantages to traditional HIV drugs, including an improved side-effect profile, a reduced dosing frequency, and immune enhancement. The activity of these antibodies has been established in vitro by utilizing HIV-1 Env-pseudotyped viruses derived from circulating viruses but produced in 293T cells by pairing Env proteins with a backbone vector. We tested PBMC-produced circulating viruses against five anti-HIV-1 antibodies currently in clinical development. We found that the activity of these antibodies against PBMC isolates is significantly less than that against 293T Env-pseudotyped viruses. This decline varied among the antibodies tested, with some demonstrating moderate reductions in activity and others showing an almost 100-fold reduction. As the development of these antibodies progresses, it will be critical to determine how the results of different in vitro tests correspond to performance in the clinic.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV-1/immunology , Leukocytes, Mononuclear/immunology , Adolescent , Adult , Aged , Antibodies, Monoclonal/immunology , Epitopes/immunology , Female , HEK293 Cells , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , Humans , Inhibitory Concentration 50 , Male , Middle Aged , Neutralization Tests , New York , Young Adult , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology
13.
J Exp Med ; 220(9)2023 09 04.
Article in English | MEDLINE | ID: mdl-37368240

ABSTRACT

Despite mRNA vaccination, elderly individuals remain especially vulnerable to severe consequences of SARS-CoV-2 infection. Here, we compare the memory B cell responses in a cohort of elderly and younger individuals who received mRNA booster vaccinations. Plasma neutralizing potency and breadth were similar between the two groups. By contrast, the absolute number of SARS-CoV-2-specific memory B cells was lower in the elderly. Antibody sequencing revealed that the SARS-CoV-2-specific elderly memory compartments were more clonal and less diverse. Notably, memory antibodies from the elderly preferentially targeted the ACE2-binding site on the RBD, while those from younger individuals targeted less accessible but more conserved epitopes. Nevertheless, individual memory antibodies elicited by booster vaccines in the elderly and younger individuals showed similar levels of neutralizing activity and breadth against SARS-CoV-2 variants. Thus, the relatively diminished protective effects of vaccination against serious disease in the elderly are associated with a smaller number of antigen-specific memory B cells that express altered antibody repertoires.


Subject(s)
COVID-19 , Memory B Cells , Aged , Humans , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Antibodies , RNA, Messenger/genetics , Antibodies, Neutralizing , Antibodies, Viral
14.
J Exp Med ; 219(8)2022 08 01.
Article in English | MEDLINE | ID: mdl-35776090

ABSTRACT

The single-dose Ad.26.COV.2 (Janssen) vaccine elicits lower levels of neutralizing antibodies and shows more limited efficacy in protection against infection than either of the two available mRNA vaccines. In addition, Ad.26.COV.2 has been less effective in protection against severe disease during the Omicron surge. Here, we examined the memory B cell response to single-dose Ad.26.COV.2 vaccination. Compared with mRNA vaccines, Ad.26.COV.2 recipients had significantly lower numbers of RBD-specific memory B cells 1.5 or 6 mo after vaccination. Despite the lower numbers, the overall quality of the memory B cell responses appears to be similar, such that memory antibodies elicited by both vaccine types show comparable neutralizing potency against SARS-CoV-2 Wuhan-Hu-1, Delta, and Omicron BA.1 variants. The data help explain why boosting Ad.26.COV.2 vaccine recipients with mRNA vaccines is effective and why the Ad26.COV2.S vaccine can maintain some protective efficacy against severe disease during the Omicron surge.


Subject(s)
COVID-19 , Vaccines , Ad26COVS1 , Antibodies, Neutralizing , COVID-19/prevention & control , Humans , SARS-CoV-2 , mRNA Vaccines
15.
bioRxiv ; 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35194607

ABSTRACT

The omicron variant of SARS-CoV-2 infected very large numbers of SARS-CoV-2 vaccinated and convalescent individuals 1-3 . The penetrance of this variant in the antigen experienced human population can be explained in part by the relatively low levels of plasma neutralizing activity against Omicron in people who were infected or vaccinated with the original Wuhan-Hu-1 strain 4-7 . The 3 rd mRNA vaccine dose produces an initial increase in circulating anti-Omicron neutralizing antibodies, but titers remain 10-20-fold lower than against Wuhan-Hu-1 and are, in many cases, insufficient to prevent infection 7 . Despite the reduced protection from infection, individuals that received 3 doses of an mRNA vaccine were highly protected from the more serious consequences of infection 8 . Here we examine the memory B cell repertoire in a longitudinal cohort of individuals receiving 3 mRNA vaccine doses 9,10 . We find that the 3 rd dose is accompanied by an increase in, and evolution of, anti-receptor binding domain specific memory B cells. The increase is due to expansion of memory B cell clones that were present after the 2 nd vaccine dose as well as the emergence of new clones. The antibodies encoded by these cells showed significantly increased potency and breadth when compared to antibodies obtained after the 2 nd vaccine dose. Notably, the increase in potency was especially evident among newly developing clones of memory cells that differed from the persisting clones in targeting more conserved regions of the RBD. Overall, more than 50% of the analyzed neutralizing antibodies in the memory compartment obtained from individuals receiving a 3 rd mRNA vaccine dose neutralized Omicron. Thus, individuals receiving 3 doses of an mRNA vaccine encoding Wuhan-Hu-1, have a diverse memory B cell repertoire that can respond rapidly and produce antibodies capable of clearing even diversified variants such as Omicron. These data help explain why a 3 rd dose of an mRNA vaccine that was not specifically designed to protect against variants is effective against variant-induced serious disease.

16.
J Exp Med ; 219(12)2022 12 05.
Article in English | MEDLINE | ID: mdl-36149398

ABSTRACT

Individuals who receive a third mRNA vaccine dose show enhanced protection against severe COVID-19, but little is known about the impact of breakthrough infections on memory responses. Here, we examine the memory antibodies that develop after a third or fourth antigenic exposure by Delta or Omicron BA.1 infection, respectively. A third exposure to antigen by Delta breakthrough increases the number of memory B cells that produce antibodies with comparable potency and breadth to a third mRNA vaccine dose. A fourth antigenic exposure with Omicron BA.1 infection increased variant-specific plasma antibody and memory B cell responses. However, the fourth exposure did not increase the overall frequency of memory B cells or their general potency or breadth compared to a third mRNA vaccine dose. In conclusion, a third antigenic exposure by Delta infection elicits strain-specific memory responses and increases in the overall potency and breadth of the memory B cells. In contrast, the effects of a fourth antigenic exposure with Omicron BA.1 are limited to increased strain-specific memory with little effect on the potency or breadth of memory B cell antibodies. The results suggest that the effect of strain-specific boosting on memory B cell compartment may be limited.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Humans , Memory B Cells , RNA, Messenger/genetics , Vaccines, Synthetic , mRNA Vaccines
17.
J Exp Med ; 219(10)2022 10 03.
Article in English | MEDLINE | ID: mdl-36006380

ABSTRACT

The SARS-CoV-2 pandemic prompted a global vaccination effort and the development of numerous COVID-19 vaccines at an unprecedented scale and pace. As a result, current COVID-19 vaccination regimens comprise diverse vaccine modalities, immunogen combinations, and dosing intervals. Here, we compare vaccine-specific antibody and memory B cell responses following two-dose mRNA, single-dose Ad26.COV.2S, and two-dose ChAdOx1, or combination ChAdOx1/mRNA vaccination. Plasma-neutralizing activity, as well as the magnitude, clonal composition, and antibody maturation of the RBD-specific memory B cell compartments, showed substantial differences between the vaccination regimens. While individual monoclonal antibodies derived from memory B cells exhibited similar binding affinities and neutralizing potency against Wuhan-Hu-1 SARS-CoV-2, there were significant differences in epitope specificity and neutralizing breadth against viral variants of concern. Although the ChAdOx1 vaccine was inferior to mRNA and Ad26.COV.2S in several respects, biochemical and structural analyses revealed enrichment in a subgroup of memory B cell neutralizing antibodies with distinct RBD-binding properties resulting in remarkable potency and breadth.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity, Humoral , RNA, Messenger , SARS-CoV-2 , Vaccination
18.
Eur J Immunol ; 40(1): 36-46, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19830741

ABSTRACT

DC present exogenous proteins to MHC class I-restricted CD8+ T cells. This function does not require endogenous antigen synthesis within DC, providing the potential to elicit CD8+ T-cell responses to immune complexes, inactivated microbes, dying cells, and proteins such as OVA. In mice, the CD8+ or DEC-205+ DC are specialized for cross-presentation, and this subset can be increased 10-fold in numbers following Fms-like tyrosine kinase 3 ligand (Flt3L) treatment in vivo. Therefore, we studied cross-presentation by abundant Flt3L DC using HIV gag protein. When enriched by positive selection with anti-CD11c beads, cells from Flt3L mice are not only more abundant but are also more highly enriched in CD11chigh DC, particularly the DEC-205+ subset. DC cross-present HIV gag to primed CD8+ T cells, but when the antigen is delivered within an antibody to DEC-205 receptor, cross-presentation becomes 100-fold more efficient than non-targeted antigen. This finding requires gag to be engineered into anti-DEC antibody, not just mixed with antibody. Flt3L DC are a valuable tool to study cross-presentation, since their use overcomes the obstacle posed by the low number of cross-presenting DC in the steady state. These findings support future experiments to use Flt3L to enhance presentation of DC-targeted vaccines.


Subject(s)
Antibodies/immunology , Antigens, CD/immunology , Dendritic Cells/immunology , HIV/immunology , Lectins, C-Type/immunology , Membrane Proteins/immunology , Receptors, Cell Surface/immunology , gag Gene Products, Human Immunodeficiency Virus/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Line , Cricetinae , Cross Reactions , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Minor Histocompatibility Antigens
19.
bioRxiv ; 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33501451

ABSTRACT

To date severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected over 100 million individuals resulting in over two million deaths. Many vaccines are being deployed to prevent coronavirus disease 2019 (COVID-19) including two novel mRNA-based vaccines 1,2 . These vaccines elicit neutralizing antibodies and appear to be safe and effective, but the precise nature of the elicited antibodies is not known 3-6 . Here we report on the antibody and memory B cell responses in a cohort of 20 volunteers who received either the Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) vaccines. Consistent with prior reports, 8 weeks after the second vaccine injection volunteers showed high levels of IgM, and IgG anti-SARS-CoV-2 spike protein (S) and receptor binding domain (RBD) binding titers 3,5,6 . Moreover, the plasma neutralizing activity, and the relative numbers of RBD-specific memory B cells were equivalent to individuals who recovered from natural infection 7,8 . However, activity against SARS-CoV-2 variants encoding E484K or N501Y or the K417N:E484K:N501Y combination was reduced by a small but significant margin. Consistent with these findings, vaccine-elicited monoclonal antibodies (mAbs) potently neutralize SARS-CoV-2, targeting a number of different RBD epitopes in common with mAbs isolated from infected donors. Structural analyses of mAbs complexed with S trimer suggest that vaccine- and virus-encoded S adopts similar conformations to induce equivalent anti-RBD antibodies. However, neutralization by 14 of the 17 most potent mAbs tested was reduced or abolished by either K417N, or E484K, or N501Y mutations. Notably, the same mutations were selected when recombinant vesicular stomatitis virus (rVSV)/SARS-CoV-2 S was cultured in the presence of the vaccine elicited mAbs. Taken together the results suggest that the monoclonal antibodies in clinical use should be tested against newly arising variants, and that mRNA vaccines may need to be updated periodically to avoid potential loss of clinical efficacy.

20.
bioRxiv ; 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33173867

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected 78 million individuals and is responsible for over 1.7 million deaths to date. Infection is associated with development of variable levels of antibodies with neutralizing activity that can protect against infection in animal models. Antibody levels decrease with time, but the nature and quality of the memory B cells that would be called upon to produce antibodies upon re-infection has not been examined. Here we report on the humoral memory response in a cohort of 87 individuals assessed at 1.3 and 6.2 months after infection. We find that IgM, and IgG anti-SARS-CoV-2 spike protein receptor binding domain (RBD) antibody titers decrease significantly with IgA being less affected. Concurrently, neutralizing activity in plasma decreases by five-fold in pseudotype virus assays. In contrast, the number of RBD-specific memory B cells is unchanged. Memory B cells display clonal turnover after 6.2 months, and the antibodies they express have greater somatic hypermutation, increased potency and resistance to RBD mutations, indicative of continued evolution of the humoral response. Analysis of intestinal biopsies obtained from asymptomatic individuals 4 months after coronavirus disease-2019 (COVID-19) onset, using immunofluorescence, or polymerase chain reaction, revealed persistence of SARS-CoV-2 nucleic acids and immunoreactivity in the small bowel of 7 out of 14 volunteers. We conclude that the memory B cell response to SARS-CoV-2 evolves between 1.3 and 6.2 months after infection in a manner that is consistent with antigen persistence.

SELECTION OF CITATIONS
SEARCH DETAIL