Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters

Publication year range
1.
Immunity ; 56(8): 1939-1954.e12, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37442134

ABSTRACT

Lung infection during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via the angiotensin-I-converting enzyme 2 (ACE2) receptor induces a cytokine storm. However, the precise mechanisms involved in severe COVID-19 pneumonia are unknown. Here, we showed that interleukin-10 (IL-10) induced the expression of ACE2 in normal alveolar macrophages, causing them to become vectors for SARS-CoV-2. The inhibition of this system in hamster models attenuated SARS-CoV-2 pathogenicity. Genome-wide association and quantitative trait locus analyses identified a IFNAR2-IL10RB readthrough transcript, COVID-19 infectivity-enhancing dual receptor (CiDRE), which was highly expressed in patients harboring COVID-19 risk variants at the IFNAR2 locus. We showed that CiDRE exerted synergistic effects via the IL-10-ACE2 axis in alveolar macrophages and functioned as a decoy receptor for type I interferons. Collectively, our data show that high IL-10 and CiDRE expression are potential risk factors for severe COVID-19. Thus, IL-10R and CiDRE inhibitors might be useful COVID-19 therapies.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Interleukin-10/genetics , Macrophages, Alveolar/metabolism , Genome-Wide Association Study , Peptidyl-Dipeptidase A/metabolism
2.
Genome Res ; 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35961773

ABSTRACT

In eukaryotes, capped RNAs include long transcripts such as messenger RNAs and long noncoding RNAs, as well as shorter transcripts such as spliceosomal RNAs, small nucleolar RNAs, and enhancer RNAs. Long capped transcripts can be profiled using cap analysis gene expression (CAGE) sequencing and other methods. Here, we describe a sequencing library preparation protocol for short capped RNAs, apply it to a differentiation time course of the human cell line THP-1, and systematically compare the landscape of short capped RNAs to that of long capped RNAs. Transcription initiation peaks associated with genes in the sense direction have a strong preference to produce either long or short capped RNAs, with one out of six peaks detected in the short capped RNA libraries only. Gene-associated short capped RNAs have highly specific 3' ends, typically overlapping splice sites. Enhancers also preferentially generate either short or long capped RNAs, with 10% of enhancers observed in the short capped RNA libraries only. Enhancers producing either short or long capped RNAs show enrichment for GWAS-associated disease SNPs. We conclude that deep sequencing of short capped RNAs reveals new families of noncoding RNAs and elucidates the diversity of transcripts generated at known and novel promoters and enhancers.

3.
Genome Res ; 30(7): 1073-1081, 2020 07.
Article in English | MEDLINE | ID: mdl-32079618

ABSTRACT

Long noncoding RNAs (lncRNAs) have emerged as key coordinators of biological and cellular processes. Characterizing lncRNA expression across cells and tissues is key to understanding their role in determining phenotypes, including human diseases. We present here FC-R2, a comprehensive expression atlas across a broadly defined human transcriptome, inclusive of over 109,000 coding and noncoding genes, as described in the FANTOM CAGE-Associated Transcriptome (FANTOM-CAT) study. This atlas greatly extends the gene annotation used in the original recount2 resource. We demonstrate the utility of the FC-R2 atlas by reproducing key findings from published large studies and by generating new results across normal and diseased human samples. In particular, we (a) identify tissue-specific transcription profiles for distinct classes of coding and noncoding genes, (b) perform differential expression analysis across thirteen cancer types, identifying novel noncoding genes potentially involved in tumor pathogenesis and progression, and (c) confirm the prognostic value for several enhancer lncRNAs expression in cancer. Our resource is instrumental for the systematic molecular characterization of lncRNA by the FANTOM6 Consortium. In conclusion, comprised of over 70,000 samples, the FC-R2 atlas will empower other researchers to investigate functions and biological roles of both known coding genes and novel lncRNAs.


Subject(s)
Transcriptome , Databases, Genetic , Enhancer Elements, Genetic , Gene Expression Profiling , Genome, Human , Humans , Neoplasms/genetics , Organ Specificity , Prognosis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism
4.
Bioinformatics ; 38(22): 5126-5128, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36173306

ABSTRACT

MOTIVATION: Cell type-specific activities of cis-regulatory elements (CRE) are central to understanding gene regulation and disease predisposition. Single-cell RNA 5'end sequencing (sc-end5-seq) captures the transcription start sites (TSS) which can be used as a proxy to measure the activity of transcribed CREs (tCREs). However, a substantial fraction of TSS identified from sc-end5-seq data may not be genuine due to various artifacts, hindering the use of sc-end5-seq for de novo discovery of tCREs. RESULTS: We developed SCAFE-Single-Cell Analysis of Five-prime Ends-a software suite that processes sc-end5-seq data to de novo identify TSS clusters based on multiple logistic regression. It annotates tCREs based on the identified TSS clusters and generates a tCRE-by-cell count matrix for downstream analyses. The software suite consists of a set of flexible tools that could either be run independently or as pre-configured workflows. AVAILABILITY AND IMPLEMENTATION: SCAFE is implemented in Perl and R. The source code and documentation are freely available for download under the MIT License from https://github.com/chung-lab/SCAFE. Docker images are available from https://hub.docker.com/r/cchon/scafe. The submitted software version and test data are archived at https://doi.org/10.5281/zenodo.7023163 and https://doi.org/10.5281/zenodo.7024060, respectively. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Regulatory Sequences, Nucleic Acid , Software , Workflow , Transcription Initiation Site
5.
Glia ; 70(7): 1267-1288, 2022 07.
Article in English | MEDLINE | ID: mdl-35262217

ABSTRACT

The human brain is a complex, three-dimensional structure. To better recapitulate brain complexity, recent efforts have focused on the development of human-specific midbrain organoids. Human iPSC-derived midbrain organoids consist of differentiated and functional neurons, which contain active synapses, as well as astrocytes and oligodendrocytes. However, the absence of microglia, with their ability to remodel neuronal networks and phagocytose apoptotic cells and debris, represents a major disadvantage for the current midbrain organoid systems. Additionally, neuroinflammation-related disease modeling is not possible in the absence of microglia. So far, no studies about the effects of human iPSC-derived microglia on midbrain organoid neural cells have been published. Here we describe an approach to derive microglia from human iPSCs and integrate them into iPSC-derived midbrain organoids. Using single nuclear RNA Sequencing, we provide a detailed characterization of microglia in midbrain organoids as well as the influence of their presence on the other cells of the organoids. Furthermore, we describe the effects that microglia have on cell death and oxidative stress-related gene expression. Finally, we show that microglia in midbrain organoids affect synaptic remodeling and increase neuronal excitability. Altogether, we show a more suitable system to further investigate brain development, as well as neurodegenerative diseases and neuroinflammation.


Subject(s)
Induced Pluripotent Stem Cells , Organoids , Humans , Induced Pluripotent Stem Cells/metabolism , Mesencephalon , Microglia/metabolism , Neurogenesis/genetics , Organoids/metabolism
6.
Proc Natl Acad Sci U S A ; 116(48): 24242-24251, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31719197

ABSTRACT

Supercentenarians, people who have reached 110 y of age, are a great model of healthy aging. Their characteristics of delayed onset of age-related diseases and compression of morbidity imply that their immune system remains functional. Here we performed single-cell transcriptome analysis of 61,202 peripheral blood mononuclear cells (PBMCs), derived from 7 supercentenarians and 5 younger controls. We identified a marked increase of cytotoxic CD4 T cells (CD4 cytotoxic T lymphocytes [CTLs]) as a signature of supercentenarians. Furthermore, single-cell T cell receptor sequencing of 2 supercentenarians revealed that CD4 CTLs had accumulated through massive clonal expansion, with the most frequent clonotypes accounting for 15 to 35% of the entire CD4 T cell population. The CD4 CTLs exhibited substantial heterogeneity in their degree of cytotoxicity as well as a nearly identical transcriptome to that of CD8 CTLs. This indicates that CD4 CTLs utilize the transcriptional program of the CD8 lineage while retaining CD4 expression. Indeed, CD4 CTLs extracted from supercentenarians produced IFN-γ and TNF-α upon ex vivo stimulation. Our study reveals that supercentenarians have unique characteristics in their circulating lymphocytes, which may represent an essential adaptation to achieve exceptional longevity by sustaining immune responses to infections and diseases.


Subject(s)
CD4-Positive T-Lymphocytes , Adult , Aged , Aged, 80 and over , B-Lymphocytes , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Case-Control Studies , Cell Differentiation , Cells, Cultured , Clonal Evolution , Gene Expression Profiling , Humans , Interferon-gamma/metabolism , Leukocytes, Mononuclear/physiology , Middle Aged , Single-Cell Analysis , Tumor Necrosis Factor-alpha/metabolism
7.
Cell Tissue Res ; 382(3): 463-476, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32737576

ABSTRACT

Human stem cell-derived organoids have great potential for modelling physiological and pathological processes. They recapitulate in vitro the organization and function of a respective organ or part of an organ. Human midbrain organoids (hMOs) have been described to contain midbrain-specific dopaminergic neurons that release the neurotransmitter dopamine. However, the human midbrain contains also additional neuronal cell types, which are functionally interacting with each other. Here, we analysed hMOs at high-resolution by means of single-cell RNA sequencing (scRNA-seq), imaging and electrophysiology to unravel cell heterogeneity. Our findings demonstrate that hMOs show essential neuronal functional properties as spontaneous electrophysiological activity of different neuronal subtypes, including dopaminergic, GABAergic, glutamatergic and serotonergic neurons. Recapitulating these in vivo features makes hMOs an excellent tool for in vitro disease phenotyping and drug discovery.


Subject(s)
Dopaminergic Neurons/metabolism , Organoids/metabolism , Sequence Analysis, RNA/methods , Transcriptome/physiology , Cell Differentiation , Humans
8.
Nucleic Acids Res ; 46(D1): D781-D787, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29045713

ABSTRACT

Published single-cell datasets are rich resources for investigators who want to address questions not originally asked by the creators of the datasets. The single-cell datasets might be obtained by different protocols and diverse analysis strategies. The main challenge in utilizing such single-cell data is how we can make the various large-scale datasets to be comparable and reusable in a different context. To challenge this issue, we developed the single-cell centric database 'SCPortalen' (http://single-cell.clst.riken.jp/). The current version of the database covers human and mouse single-cell transcriptomics datasets that are publicly available from the INSDC sites. The original metadata was manually curated and single-cell samples were annotated with standard ontology terms. Following that, common quality assessment procedures were conducted to check the quality of the raw sequence. Furthermore, primary data processing of the raw data followed by advanced analyses and interpretation have been performed from scratch using our pipeline. In addition to the transcriptomics data, SCPortalen provides access to single-cell image files whenever available. The target users of SCPortalen are all researchers interested in specific cell types or population heterogeneity. Through the web interface of SCPortalen users are easily able to search, explore and download the single-cell datasets of their interests.


Subject(s)
Databases, Genetic , Datasets as Topic , Mice/genetics , Single-Cell Analysis , Transcriptome , Animals , Data Accuracy , Data Curation , Gene Expression , Gene Ontology , Humans , Molecular Sequence Annotation , User-Computer Interface , Workflow
9.
J Cell Sci ; 129(13): 2573-85, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27199372

ABSTRACT

Lymphangiogenesis plays a crucial role during development, in cancer metastasis and in inflammation. Activation of VEGFR-3 (also known as FLT4) by VEGF-C is one of the main drivers of lymphangiogenesis, but the transcriptional events downstream of VEGFR-3 activation are largely unknown. Recently, we identified a wave of immediate early transcription factors that are upregulated in human lymphatic endothelial cells (LECs) within the first 30 to 80 min after VEGFR-3 activation. Expression of these transcription factors must be regulated by additional pre-existing transcription factors that are rapidly activated by VEGFR-3 signaling. Using transcription factor activity analysis, we identified the homeobox transcription factor HOXD10 to be specifically activated at early time points after VEGFR-3 stimulation, and to regulate expression of immediate early transcription factors, including NR4A1. Gain- and loss-of-function studies revealed that HOXD10 is involved in LECs migration and formation of cord-like structures. Furthermore, HOXD10 regulates expression of VE-cadherin, claudin-5 and NOS3 (also known as e-NOS), and promotes lymphatic endothelial permeability. Taken together, these results reveal an important and unanticipated role of HOXD10 in the regulation of VEGFR-3 signaling in lymphatic endothelial cells, and in the control of lymphangiogenesis and permeability.


Subject(s)
Homeodomain Proteins/genetics , Neoplasms/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Transcription Factors/genetics , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor Receptor-3/genetics , Cell Line , Cell Membrane Permeability/genetics , Cell Movement/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Gene Expression Regulation, Neoplastic , Humans , Lymphangiogenesis/genetics , Neoplasm Metastasis , Neoplasms/pathology , Signal Transduction , Vascular Endothelial Growth Factor C/biosynthesis , Vascular Endothelial Growth Factor Receptor-3/biosynthesis
10.
Genome Res ; 24(4): 708-17, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24676093

ABSTRACT

CAGE (cap analysis gene expression) and RNA-seq are two major technologies used to identify transcript abundances as well as structures. They measure expression by sequencing from either the 5' end of capped molecules (CAGE) or tags randomly distributed along the length of a transcript (RNA-seq). Library protocols for clonally amplified (Illumina, SOLiD, 454 Life Sciences [Roche], Ion Torrent), second-generation sequencing platforms typically employ PCR preamplification prior to clonal amplification, while third-generation, single-molecule sequencers can sequence unamplified libraries. Although these transcriptome profiling platforms have been demonstrated to be individually reproducible, no systematic comparison has been carried out between them. Here we compare CAGE, using both second- and third-generation sequencers, and RNA-seq, using a second-generation sequencer based on a panel of RNA mixtures from two human cell lines to examine power in the discrimination of biological states, detection of differentially expressed genes, linearity of measurements, and quantification reproducibility. We found that the quantified levels of gene expression are largely comparable across platforms and conclude that CAGE and RNA-seq are complementary technologies that can be used to improve incomplete gene models. We also found systematic bias in the second- and third-generation platforms, which is likely due to steps such as linker ligation, cleavage by restriction enzymes, and PCR amplification. This study provides a perspective on the performance of these platforms, which will be a baseline in the design of further experiments to tackle complex transcriptomes uncovered in a wide range of cell types.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , RNA/genetics , Transcriptome/genetics , Gene Expression Profiling , Humans , Sequence Analysis, RNA/methods
11.
J Immunol ; 194(12): 6035-44, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25957166

ABSTRACT

Basic leucine zipper transcription factor Batf2 is poorly described, whereas Batf and Batf3 have been shown to play essential roles in dendritic cell, T cell, and B cell development and regulation. Batf2 was drastically induced in IFN-γ-activated classical macrophages (M1) compared with unstimulated or IL-4-activated alternative macrophages (M2). Batf2 knockdown experiments from IFN-γ-activated macrophages and subsequent expression profiling demonstrated important roles for regulation of immune responses, inducing inflammatory and host-protective genes Tnf, Ccl5, and Nos2. Mycobacterium tuberculosis (Beijing strain HN878)-infected macrophages further induced Batf2 and augmented host-protective Batf2-dependent genes, particularly in M1, whose mechanism was suggested to be mediated through both TLR2 and TLR4 by LPS and heat-killed HN878 (HKTB) stimulation experiments. Irf1 binding motif was enriched in the promoters of Batf2-regulated genes. Coimmunoprecipitation study demonstrated Batf2 association with Irf1. Furthermore, Irf1 knockdown showed downregulation of IFN-γ- or LPS/HKTB-activated host-protective genes Tnf, Ccl5, Il12b, and Nos2. Conclusively, Batf2 is an activation marker gene for M1 involved in gene regulation of IFN-γ-activated classical macrophages, as well as LPS/HKTB-induced macrophage stimulation, possibly by Batf2/Irf1 gene induction. Taken together, these results underline the role of Batf2/Irf1 in inducing inflammatory responses in M. tuberculosis infection.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Interferon Regulatory Factor-1/genetics , Macrophages/immunology , Macrophages/metabolism , Mycobacterium Infections/genetics , Mycobacterium Infections/immunology , Mycobacterium/immunology , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , Cluster Analysis , Disease Models, Animal , Gene Expression , Gene Expression Profiling , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Interferon Regulatory Factor-1/metabolism , Interferon-gamma/pharmacology , Lipopolysaccharides/immunology , Macrophage Activation/immunology , Male , Mice , Mycobacterium Infections/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Protein Binding , Tumor Necrosis Factors/genetics , Tumor Necrosis Factors/metabolism
12.
Proc Natl Acad Sci U S A ; 111(31): 11467-72, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-25049417

ABSTRACT

Next-generation sequencing experiments have shown that microRNAs (miRNAs) are expressed in many different isoforms (isomiRs), whose biological relevance is often unclear. We found that mature miR-21, the most widely researched miRNA because of its importance in human disease, is produced in two prevalent isomiR forms that differ by 1 nt at their 3' end, and moreover that the 3' end of miR-21 is posttranscriptionally adenylated by the noncanonical poly(A) polymerase PAPD5. PAPD5 knockdown caused an increase in the miR-21 expression level, suggesting that PAPD5-mediated adenylation of miR-21 leads to its degradation. Exoribonuclease knockdown experiments followed by small-RNA sequencing suggested that PARN degrades miR-21 in the 3'-to-5' direction. In accordance with this model, microarray expression profiling demonstrated that PAPD5 knockdown results in a down-regulation of miR-21 target mRNAs. We found that disruption of the miR-21 adenylation and degradation pathway is a general feature in tumors across a wide range of tissues, as evidenced by data from The Cancer Genome Atlas, as well as in the noncancerous proliferative disease psoriasis. We conclude that PAPD5 and PARN mediate degradation of oncogenic miRNA miR-21 through a tailing and trimming process, and that this pathway is disrupted in cancer and other proliferative diseases.


Subject(s)
Adenine/metabolism , MicroRNAs/metabolism , Neoplasms/genetics , RNA Nucleotidyltransferases/metabolism , RNA Stability , Base Sequence , Cytosine/metabolism , Exoribonucleases/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , High-Throughput Nucleotide Sequencing , Humans , MCF-7 Cells , MicroRNAs/chemistry , MicroRNAs/genetics , Models, Biological , Molecular Sequence Data , Neoplasms/pathology , Nucleic Acid Conformation , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Ribonuclease III/metabolism
13.
Nucleic Acids Res ; 42(14): 8905-13, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25013174

ABSTRACT

Transcriptional Regulatory Networks (TRNs) coordinate multiple transcription factors (TFs) in concert to maintain tissue homeostasis and cellular function. The re-establishment of target cell TRNs has been previously implicated in direct trans-differentiation studies where the newly introduced TFs switch on a set of key regulatory factors to induce de novo expression and function. However, the extent to which TRNs in starting cell types, such as dermal fibroblasts, protect cells from undergoing cellular reprogramming remains largely unexplored. In order to identify TFs specific to maintaining the fibroblast state, we performed systematic knockdown of 18 fibroblast-enriched TFs and analyzed differential mRNA expression against the same 18 genes, building a Matrix-RNAi. The resulting expression matrix revealed seven highly interconnected TFs. Interestingly, suppressing four out of seven TFs generated lipid droplets and induced PPARG and CEBPA expression in the presence of adipocyte-inducing medium only, while negative control knockdown cells maintained fibroblastic character in the same induction regime. Global gene expression analyses further revealed that the knockdown-induced adipocytes expressed genes associated with lipid metabolism and significantly suppressed fibroblast genes. Overall, this study reveals the critical role of the TRN in protecting cells against aberrant reprogramming, and demonstrates the vulnerability of donor cell's TRNs, offering a novel strategy to induce transgene-free trans-differentiations.


Subject(s)
Cell Transdifferentiation/genetics , Fibroblasts/metabolism , Gene Regulatory Networks , Transcription Factors/metabolism , Adipocytes/cytology , Adipocytes/metabolism , Adult , Cells, Cultured , Fibroblasts/cytology , Humans , Infant, Newborn , RNA Interference , Transcription Factors/antagonists & inhibitors , Transcriptome
14.
Mamm Genome ; 26(9-10): 391-402, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26253466

ABSTRACT

Big leaps in science happen when scientists from different backgrounds interact. In the past 15 years, the FANTOM Consortium has brought together scientists from different fields to analyze and interpret genomic data produced with novel technologies, including mouse full-length cDNAs and, more recently, expression profiling at single-nucleotide resolution by cap-analysis gene expression. The FANTOM Consortium has provided the most comprehensive mouse cDNA collection for functional studies and extensive maps of the human and mouse transcriptome comprising promoters, enhancers, as well as the network of their regulatory interactions. More importantly, serendipitous observations of the FANTOM dataset led us to realize that the mammalian genome is pervasively transcribed, even from retrotransposon elements, which were previously considered junk DNA. The majority of products from the mammalian genome are long non-coding RNAs (lncRNAs), including sense-antisense, intergenic, and enhancer RNAs. While the biological function has been elucidated for some lncRNAs, more than 98 % of them remain without a known function. We argue that large-scale studies are urgently needed to address the functional role of lncRNAs.


Subject(s)
Gene Expression Profiling , Genomics , RNA, Long Noncoding/genetics , Transcriptome/genetics , Animals , DNA, Complementary/genetics , Genome , Humans , Mice , Promoter Regions, Genetic , Regulatory Sequences, Nucleic Acid/genetics
15.
Exp Cell Res ; 319(3): 68-76, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23142027

ABSTRACT

Adipogenesis is the process of cell differentiation by which mesenchymal stem cells (MSC) become adipocytes. Investigating the transcriptional regulatory process during adipogenesis may provide strategies to prevent obesity and other metabolic disorders. In recent years, numerous zinc finger proteins (ZFPs) have been implicated in regulating differentiation and cell fate determination. To investigate the regulatory role of ZFPs involved in adipogenesis, we performed genome-wide microarray expression profiling of an adipogenesis time series. Particularly focusing on the transiently responsive ZFPs, we identified and characterized the functional role of ZNF395 in adipogenesis. A systematic ablation of the ZNF395 transcript during adipogenesis revealed 40% reduction of adipocytes when compared to control. Furthermore, the number of adipocytes as well as the expression of key adipocyte markers were greatly induced when MSC were co-transduced with ZNF395 and PPARG2. To further elucidate the functional role of ZNF395 during adipogenesis, we attempted to trans-differentiate human dermal fibroblasts with PPARG2. The test remarkably revealed that ZNF395 in conjunction with PPARG2 greatly induced adipogenesis from dermal fibroblasts when compared to PPARG2 alone. These loss and gain of function experiments firmly establish that ZNF395 coordinate the transcriptional regulatory pathway with PPARG2, which may be necessary for the genesis of adipocytes.


Subject(s)
Adipogenesis/genetics , DNA-Binding Proteins/physiology , Transcription Factors/physiology , Adipocytes/drug effects , Adipocytes/metabolism , Adipocytes/physiology , Adipogenesis/drug effects , Adipogenesis/physiology , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Fibroblasts/metabolism , Fibroblasts/physiology , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Microarray Analysis , PPAR gamma/genetics , PPAR gamma/metabolism , PPAR gamma/physiology , RNA, Small Interfering/pharmacology , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription Factors/metabolism , Zinc Fingers/physiology
16.
Nucleic Acids Res ; 40(21): e165, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22879381

ABSTRACT

Combinatorial interactions of transcription modulators are critical to regulate cell-specific expression and to drive direct cell reprogramming (e.g. trans-differentiation). However, the identification of key transcription modulators from myriad of candidate genes is laborious and time consuming. To rapidly identify key regulatory factors involved in direct cell reprogramming, we established a multiplex single-cell screening system using a fibroblast-to-monocyte transition model. The system implements a single-cell 'shotgun-transduction' strategy followed by nested-single-cell-polymerase chain reaction (Nesc-PCR) gene expression analysis. To demonstrate this, we simultaneously transduced 18 monocyte-enriched transcription modulators in fibroblasts followed by selection of single cells expressing monocyte-specific CD14 and HLA-DR cell-surface markers from a heterogeneous population. Highly multiplex Nesc-PCR expression analysis revealed a variety of gene combinations with a significant enrichment of SPI1 (86/86) and a novel transcriptional modulator, HCLS1 (76/86), in the CD14(+)/HLA-DR(+) single cells. We could further demonstrate the synergistic role of HCLS1 in regulating monocyte-specific gene expressions and phagocytosis in dermal fibroblasts in the presence of SPI1. This study establishes a platform for a multiplex single-cell screening of combinatorial transcription modulators to drive any direct cell reprogramming.


Subject(s)
Cell Transdifferentiation/genetics , Single-Cell Analysis/methods , Transcription, Genetic , Cells, Cultured , Fibroblasts/metabolism , Gene Expression , Humans , Lentivirus/genetics , Monocytes/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
17.
Cell Genom ; 4(8): 100625, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39084228

ABSTRACT

Several X-linked genes escape from X chromosome inactivation (XCI), while differences in escape across cell types and tissues are still poorly characterized. Here, we developed scLinaX for directly quantifying relative gene expression from the inactivated X chromosome with droplet-based single-cell RNA sequencing (scRNA-seq) data. The scLinaX and differentially expressed gene analyses with large-scale blood scRNA-seq datasets consistently identified the stronger escape in lymphocytes than in myeloid cells. An extension of scLinaX to a 10x multiome dataset (scLinaX-multi) suggested a stronger escape in lymphocytes than in myeloid cells at the chromatin-accessibility level. The scLinaX analysis of human multiple-organ scRNA-seq datasets also identified the relatively strong degree of escape from XCI in lymphoid tissues and lymphocytes. Finally, effect size comparisons of genome-wide association studies between sexes suggested the underlying impact of escape on the genotype-phenotype association. Overall, scLinaX and the quantified escape catalog identified the heterogeneity of escape across cell types and tissues.


Subject(s)
Single-Cell Analysis , X Chromosome Inactivation , X Chromosome Inactivation/genetics , Humans , Single-Cell Analysis/methods , Female , Lymphocytes/metabolism , Male , Genome-Wide Association Study , Animals , Myeloid Cells/metabolism , Mice , Sequence Analysis, RNA/methods , Organ Specificity , Genes, X-Linked/genetics
18.
PLoS One ; 19(5): e0295971, 2024.
Article in English | MEDLINE | ID: mdl-38709794

ABSTRACT

The human genome is pervasively transcribed and produces a wide variety of long non-coding RNAs (lncRNAs), constituting the majority of transcripts across human cell types. Some specific nuclear lncRNAs have been shown to be important regulatory components acting locally. As RNA-chromatin interaction and Hi-C chromatin conformation data showed that chromatin interactions of nuclear lncRNAs are determined by the local chromatin 3D conformation, we used Hi-C data to identify potential target genes of lncRNAs. RNA-protein interaction data suggested that nuclear lncRNAs act as scaffolds to recruit regulatory proteins to target promoters and enhancers. Nuclear lncRNAs may therefore play a role in directing regulatory factors to locations spatially close to the lncRNA gene. We provide the analysis results through an interactive visualization web portal at https://fantom.gsc.riken.jp/zenbu/reports/#F6_3D_lncRNA.


Subject(s)
Chromatin , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Chromatin/metabolism , Chromatin/genetics , Humans , Molecular Sequence Annotation , Cell Nucleus/metabolism , Cell Nucleus/genetics , Genome, Human , Promoter Regions, Genetic
19.
Nat Genet ; 36(7): 683-5, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15220917

ABSTRACT

Kaposi sarcoma is considered a neoplasm of lymphatic endothelium infected with Kaposi sarcoma-associated herpesvirus. It is characterized by the expression of lymphatic lineage-specific genes by Kaposi sarcoma tumor cells. Here we show that infection of differentiated blood vascular endothelial cells with Kaposi sarcoma-associated herpesvirus leads to their lymphatic reprogramming; induction of approximately 70% of the main lymphatic lineage-specific genes, including PROX1, a master regulator of lymphatic development; and downregulation of blood vascular genes.


Subject(s)
Endothelium/pathology , Herpesvirus 8, Human/physiology , Lymphatic Vessels/pathology , Cells, Cultured , Down-Regulation , Endothelium/metabolism , Endothelium/virology , Gene Expression Profiling , Lymphatic Vessels/metabolism , Lymphatic Vessels/virology
20.
NAR Genom Bioinform ; 5(3): lqad075, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37608799

ABSTRACT

In the genomic era, data dissemination and visualization is an integral part of scientific publications and research projects involving international consortia producing massive genome-wide data sets, intra-organizational collaborations, or individual labs. However, creating custom supporting websites is oftentimes impractical due to the required programming effort, web server infrastructure, and data storage facilities, as well as the long-term maintenance burden. ZENBU-Reports (https://fantom.gsc.riken.jp/zenbu/reports) is a web application to create interactive scientific web portals by using graphical interfaces while providing storage and secured collaborative sharing for data uploaded by users. ZENBU-Reports provides the scientific visualization elements commonly used in supplementary websites, publications and presentations, presenting a complete solution for the interactive display and dissemination of data and analysis results during the full lifespan of a scientific project both during the active research phase and after publication of the results.

SELECTION OF CITATIONS
SEARCH DETAIL