Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
EMBO J ; 42(18): e112305, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37609947

ABSTRACT

Nanog and Oct4 are core transcription factors that form part of a gene regulatory network to regulate hundreds of target genes for pluripotency maintenance in mouse embryonic stem cells (ESCs). To understand their function in the pluripotency maintenance, we visualised and quantified the dynamics of single molecules of Nanog and Oct4 in a mouse ESCs during pluripotency loss. Interestingly, Nanog interacted longer with its target loci upon reduced expression or at the onset of differentiation, suggesting a feedback mechanism to maintain the pluripotent state. The expression level and interaction time of Nanog and Oct4 correlate with their fluctuation and interaction frequency, respectively, which in turn depend on the ESC differentiation status. The DNA viscoelasticity near the Oct4 target locus remained flexible during differentiation, supporting its role either in chromatin opening or a preferred binding to uncondensed chromatin regions. Based on these results, we propose a new negative feedback mechanism for pluripotency maintenance via the DNA condensation state-dependent interplay of Nanog and Oct4.


Subject(s)
Mouse Embryonic Stem Cells , Single Molecule Imaging , Animals , Mice , Feedback , Chromatin/genetics , Cell Differentiation
2.
Int J Cosmet Sci ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802700

ABSTRACT

OBJECTIVE: Hair beauty treatments glorify human life. As a side effect, there is a risk of deteriorating the health of the hair. Optically polarized microscopy has been used for many decades to evaluate hair conditions owing to its ease of use and low operating costs. However, the low biopermeability of light hinders the observation of detailed structures inside hair. The aim of this study is to establish an evaluation technique of internal damages in a hair by utilizing a near-infrared (NIR) light with a wavelength of 1000-1600 nm, called "second NIR window". METHODS: We built a laser scanning transmission microscope system with an indium gallium arsenide detector, a 1064 nm laser source, and optical circular polarization to visualize the anisotropy characterization of keratin fibres in hair. Samples of Asian black hair before and after bleaching, after permanent-waving, after lithium bromide (LiBr) treatment, and after heating was observed. Some parameters reflecting intra-hair damage were quantitatively compared with the parameters in digitally recorded images with analytical developments. RESULTS: The light transmittance of black hair was dramatically improved by utilizing the second NIR window. Numerical analysis of circular polarization in hair quantified the internal damage in chemically or thermally treated hair and found two different types of damage. The present method enabled quantitative evaluation of the condition changes in the cortex; for example, a decrease in circular polarizability by LiBr treatment and restoration by replacing the LiBr solution with water. In addition, black speckles were observed after the heat treatment. Longer heating and wetting times increased the appearance probability and size of the speckles. According to quantitative analyses, the emergence of black spots was independent of polarizability changes, indicating that they were not pores. CONCLUSION: Circular polarization microscopy based on near-infrared optics in the second NIR window provides an effective evaluation method for quantifying intra-hair damage caused by cosmetic treatments. The present method provides noninvasive, easy, and inexpensive hair evaluation and has potential as a gold standard in hair care research/medical fields.


OBJECTIF: les soins capillaires glorifient la vie humaine. Comme effet secondaire, il existe un risque de détérioration de la santé du cheveu. La microscopie en lumière polarisée est utilisée depuis de nombreuses décennies pour évaluer la santé capillaire en raison de sa facilité d'utilisation et de son faible coût d'exploitation. Cependant, la faible bioperméabilité de la lumière empêche l'observation des structures détaillées à l'intérieur du cheveu. Pour résoudre ce problème, cette étude tente d'établir une technique d'évaluation des atteintes internes d'un cheveu en utilisant une lumière proche infrarouge (NIR) d'une longueur d'onde de 1000 à 1600 nm, appelée « deuxième fenêtre NIR ¼. MÉTHODES: nous avons construit un système de microscope de transmission à balayage laser équipé d'un capteur indium gallium arsenide, d'une source laser de 1064 nm et d'une polarisation circulaire optique pour visualiser la caractérisation de l'anisotropie des fibres de kératine dans les cheveux. Des échantillons de cheveux noirs asiatiques ont subi un traitement avant et après la décoloration, l'ondulation permanente, le bromure de lithium (LiBr) et la chaleur. Certains paramètres reflétant les dommages intra­cheveu ont été comparés quantitativement aux paramètres des images enregistrées numériquement avec des développements analytiques. RÉSULTATS: la transmission de la lumière des cheveux noirs a été considérablement améliorée en utilisant la deuxième fenêtre NIR. L'analyse numérique de la polarisation circulaire des cheveux a quantifié les dommages internes des cheveux traités chimiquement ou thermiquement et a mis en évidence deux types de dommages différents. La présente méthode a permis d'évaluer quantitativement les changements de condition dans le cortex; par exemple, une diminution de la polarisation circulaire par le traitement par LiBr et la restauration en remplaçant la solution LiBr par de l'eau. En outre, des taches noires ont été observées après le traitement thermique. Des temps de chauffage et de mouillage plus longs ont augmenté la fréquence d'apparition et la taille des taches. D'après des analyses quantitatives, l'émergence de points noirs était indépendante des changements de polarisation, indiquant qu'il ne s'agissait pas de pores. CONCLUSION: La microscopie par polarisation circulaire basée sur l'optique proche infrarouge dans la deuxième fenêtre NIR fournit une méthode d'évaluation efficace pour quantifier les dommages intra­cheveu causés par les traitements cosmétiques. La présente méthode fournit une évaluation des cheveux non invasive, facile et peu coûteuse et a un potentiel de référence dans la recherche sur les soins capillaires/les domaines médicaux.

3.
Gastroenterology ; 161(6): 1907-1923.e26, 2021 12.
Article in English | MEDLINE | ID: mdl-34391772

ABSTRACT

BACKGROUND & AIMS: Metaplasia and dysplasia in the corpus are reportedly derived from de-differentiation of chief cells. However, the cellular origin of metaplasia and cancer remained uncertain. Therefore, we investigated whether pepsinogen C (PGC) transcript-expressing cells represent the cellular origin of metaplasia and cancer using a novel Pgc-specific CreERT2 recombinase mouse model. METHODS: We generated a Pgc-mCherry-IRES-CreERT2 (Pgc-CreERT2) knock-in mouse model. Pgc-CreERT2/+ and Rosa-EYFP mice were crossed to generate Pgc-CreERT2/Rosa-EYFP (Pgc-CreERT2/YFP) mice. Gastric tissues were collected, followed by lineage-tracing experiments and histologic and immunofluorescence staining. We further established Pgc-CreERT2;KrasG12D/+ mice and investigated whether PGC transcript-expressing cells are responsible for the precancerous state in gastric glands. To investigate cancer development from PGC transcript-expressing cells with activated Kras, inactivated Apc, and Trp53 signaling pathways, we crossed Pgc-CreERT2/+ mice with conditional KrasG12D, Apcflox, Trp53flox mice. RESULTS: Expectedly, mCherry mainly labeled chief cells in the Pgc-CreERT2 mice. However, mCherry was also detected throughout the neck cell and isthmal stem/progenitor regions, albeit at lower levels. In the Pgc-CreERT2;KrasG12D/+ mice, PGC transcript-expressing cells with KrasG12D/+ mutation presented pseudopyloric metaplasia. The early induction of proliferation at the isthmus may reflect the ability of isthmal progenitors to react rapidly to Pgc-driven KrasG12D/+ oncogenic mutation. Furthermore, Pgc-CreERT2;KrasG12D/+;Apcflox/flox mice presented intramucosal dysplasia/carcinoma and Pgc-CreERT2;KrasG12D/+;Apcflox/flox;Trp53flox/flox mice presented invasive and metastatic gastric carcinoma. CONCLUSIONS: The Pgc-CreERT2 knock-in mouse is an invaluable tool to study the effects of successive oncogenic activation in the mouse corpus. Time-course observations can be made regarding the responses of isthmal and chief cells to oncogenic insults. We can observe stomach-specific tumorigenesis from the beginning to metastatic development.


Subject(s)
Cell Proliferation , Cell Transformation, Neoplastic/genetics , Chief Cells, Gastric/enzymology , Integrases/genetics , Pepsinogen C/genetics , Precancerous Conditions/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Stomach Neoplasms/genetics , Transcriptional Activation , Animals , Cell Dedifferentiation , Cell Lineage , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Chief Cells, Gastric/pathology , Gene Expression Regulation, Neoplastic , Genes, APC , Genetic Predisposition to Disease , Integrases/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Metaplasia , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Pepsinogen C/metabolism , Phenotype , Precancerous Conditions/enzymology , Precancerous Conditions/pathology , Proto-Oncogene Proteins p21(ras)/metabolism , Stomach Neoplasms/enzymology , Stomach Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Red Fluorescent Protein
4.
Genes Dev ; 28(6): 594-607, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24589552

ABSTRACT

During meiosis, homologous chromosome (homolog) pairing is promoted by several layers of regulation that include dynamic chromosome movement and meiotic recombination. However, the way in which homologs recognize each other remains a fundamental issue in chromosome biology. Here, we show that homolog recognition or association initiates upon entry into meiotic prophase before axis assembly and double-strand break (DSB) formation. This homolog association develops into tight pairing only during or after axis formation. Intriguingly, the ability to recognize homologs is retained in Sun1 knockout spermatocytes, in which telomere-directed chromosome movement is abolished, and this is the case even in Spo11 knockout spermatocytes, in which DSB-dependent DNA homology search is absent. Disruption of meiosis-specific cohesin RAD21L precludes the initial association of homologs as well as the subsequent pairing in spermatocytes. These findings suggest the intriguing possibility that homolog recognition is achieved primarily by searching for homology in the chromosome architecture as defined by meiosis-specific cohesin rather than in the DNA sequence itself.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Pairing/physiology , Meiosis/physiology , Spermatocytes/physiology , Animals , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosome Pairing/genetics , Chromosomes/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Female , Gene Knockout Techniques , In Situ Hybridization, Fluorescence , Male , Meiosis/genetics , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Spermatocytes/metabolism , Cohesins
5.
Circulation ; 141(7): 571-588, 2020 02 18.
Article in English | MEDLINE | ID: mdl-31665900

ABSTRACT

BACKGROUND: The maternal circulatory system and hormone balance both change dynamically during pregnancy, delivery, and the postpartum period. Although atrial natriuretic peptides and brain natriuretic peptides produced in the heart control circulatory homeostasis through their common receptor, NPR1, the physiologic and pathophysiologic roles of endogenous atrial natriuretic peptide/brain natriuretic peptide in the perinatal period are not fully understood. METHODS: To clarify the physiologic and pathophysiologic roles of the endogenous atrial natriuretic peptide/brain natriuretic peptide-NPR1 system during the perinatal period, the phenotype of female wild-type and conventional or tissue-specific Npr1-knockout mice during the perinatal period was examined, especially focusing on maternal heart weight, blood pressure, and cardiac function. RESULTS: In wild-type mice, lactation but not pregnancy induced reversible cardiac hypertrophy accompanied by increases in fetal cardiac gene mRNAs and ERK1/2 (extracellular signaling-regulated kinase) phosphorylation. Npr1-knockout mice exhibited significantly higher plasma aldosterone level than did wild-type mice, severe cardiac hypertrophy accompanied by fibrosis, and left ventricular dysfunction in the lactation period. Npr1-knockout mice showed a high mortality rate over consecutive pregnancy-lactation cycles. In the hearts of Npr1-knockout mice during or after the lactation period, an increase in interleukin-6 mRNA expression, phosphorylation of signal transducer and activator of transcription 3, and activation of the calcineurin-nuclear factor of the activated T cells pathway were observed. Pharmacologic inhibition of the mineralocorticoid receptor or neuron-specific deletion of the mineralocorticoid receptor gene significantly ameliorated cardiac hypertrophy in lactating Npr1-knockout mice. Anti-interleukin-6 receptor antibody administration tended to reduce cardiac hypertrophy in lactating Npr1-knockout mice. CONCLUSIONS: These results suggest that the characteristics of lactation-induced cardiac hypertrophy in wild-type mice are different from exercise-induced cardiac hypertrophy, and that the endogenous atrial natriuretic peptide/brain natriuretic peptide-NPR1 system plays an important role in protecting the maternal heart from interleukin-6-induced inflammation and remodeling in the lactation period, a condition mimicking peripartum cardiomyopathy.


Subject(s)
Atrial Natriuretic Factor/deficiency , Cardiomegaly/metabolism , Lactation , MAP Kinase Signaling System , Peripartum Period , Receptors, Atrial Natriuretic Factor/deficiency , Animals , Cardiomegaly/genetics , Cardiomegaly/pathology , Female , Mice , Mice, Knockout
6.
Neurobiol Dis ; 148: 105215, 2021 01.
Article in English | MEDLINE | ID: mdl-33296728

ABSTRACT

We previously showed that optineurin (OPTN) mutations lead to the development of amyotrophic lateral sclerosis. The association between OPTN mutations and the pathogenesis of amyotrophic lateral sclerosis remains unclear. To investigate the mechanism underlying its pathogenesis, we generated Optn knockout mice. We evaluated histopathological observations of these mice and compared with those of OPTN- amyotrophic lateral sclerosis cases to investigate the mechanism underlying the pathogenesis of amyotrophic lateral sclerosis caused by OPTN mutations. The Optn (-/-) mice presented neuronal autophagic vacuoles immunopositive for charged multivesicular body protein 2b, one of the hallmarks of granulovacuolar degenerations, in the cytoplasm of spinal cord motor neurons at the age of 8 months and the OPTN- amyotrophic lateral sclerosis case with homozygous Q398X mutation. In addition, Optn (-/-) mice showed TAR-DNA binding protein 43/sequestosome1/p62 -positive cytoplasmic inclusions and the clearance of nuclear TAR-DNA binding protein 43. The axonal degeneration of the sciatic nerves was observed in Optn (-/-) mice. However, we could not observe significant differences in survival time, body weight, and motor functions, at 24 months. Our findings suggest that homozygous OPTN deletion or mutations might result in autophagic dysfunction and TAR-DNA binding protein 43 mislocalization, thereby leading to neurodegeneration of motor neurons. These findings indicate that the Optn (-/-) mice recapitulate both common and specific pathogenesis of amyotrophic lateral sclerosis associated with autophagic abnormalities. Optn (-/-) mice could serve as a mouse model for the development of therapeutic strategies.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Autophagy/genetics , Cell Cycle Proteins/genetics , DNA-Binding Proteins/metabolism , Hippocampus/metabolism , Membrane Transport Proteins/genetics , Neocortex/metabolism , Spinal Cord/metabolism , Vacuoles/metabolism , Aged, 80 and over , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , Animals , Hippocampus/pathology , Humans , Mice , Mice, Knockout , Middle Aged , Multivesicular Bodies/metabolism , Neocortex/pathology , Spinal Cord/pathology , Vacuoles/pathology
7.
EMBO J ; 36(9): 1227-1242, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28283581

ABSTRACT

The axon initial segment (AIS) is a specialized domain essential for neuronal function, the formation of which begins with localization of an ankyrin-G (AnkG) scaffold. However, the mechanism directing and maintaining AnkG localization is largely unknown. In this study, we demonstrate that in vivo knockdown of microtubule cross-linking factor 1 (MTCL1) in cerebellar Purkinje cells causes loss of axonal polarity coupled with AnkG mislocalization. MTCL1 lacking MT-stabilizing activity failed to restore these defects, and stable MT bundles spanning the AIS were disorganized in knockdown cells. Interestingly, during early postnatal development, colocalization of MTCL1 with these stable MT bundles was observed prominently in the axon hillock and proximal axon. These results indicate that MTCL1-mediated formation of stable MT bundles is crucial for maintenance of AnkG localization. We also demonstrate that Mtcl1 gene disruption results in abnormal motor coordination with Purkinje cell degeneration, and provide evidence suggesting possible involvement of MTCL1 dysfunction in the pathogenesis of spinocerebellar ataxia.


Subject(s)
Axon Initial Segment/physiology , Microtubule-Associated Proteins/metabolism , Purkinje Cells/cytology , Purkinje Cells/physiology , Animals , Gene Knockdown Techniques , Gene Knockout Techniques , Mice , Mice, Knockout , Motor Disorders
8.
Opt Express ; 29(15): 24278-24288, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34614676

ABSTRACT

Multidirectional digital scanned laser light-sheet microscopy (mDSLM) cannot be used with the current pseudo confocal system to reduce blurring and background signals. The multiline scanning for light-sheet illumination and the simple image construction proposed in this study are alternative to the pseudo confocal system. We investigate the effectiveness of our pseudo confocal method combined with mDSLM on artificial phantoms and biological samples. The results indicate that image quality from mDSLM can be improved by the confocal effect; their combination is effective and can be applied to biological investigations.

9.
Proc Natl Acad Sci U S A ; 115(39): 9750-9755, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30190432

ABSTRACT

The molecular mechanisms that guide each neuron to become polarized, forming a single axon and multiple dendrites, remain unknown. Here we show that CAMSAP3 (calmodulin-regulated spectrin-associated protein 3), a protein that regulates the minus-end dynamics of microtubules, plays a key role in maintaining neuronal polarity. In mouse hippocampal neurons, CAMSAP3 was enriched in axons. Although axonal microtubules were generally acetylated, CAMSAP3 was preferentially localized along a less-acetylated fraction of the microtubules. CAMSAP3-mutated neurons often exhibited supernumerary axons, along with an increased number of neurites having nocodazole-resistant/acetylated microtubules compared with wild-type neurons. Analysis using cell lines showed that CAMSAP3 depletion promoted tubulin acetylation, and conversely, mild overexpression of CAMSAP3 inhibited it, suggesting that CAMSAP3 works to retain nonacetylated microtubules. In contrast, CAMSAP2, a protein related to CAMSAP3, was detected along all neurites, and its loss did not affect neuronal polarity, nor did it cause increased tubulin acetylation. Depletion of α-tubulin acetyltransferase-1 (αTAT1), the key enzyme for tubulin acetylation, abolished CAMSAP3 loss-dependent multiple-axon formation. These observations suggest that CAMSAP3 sustains a nonacetylated pool of microtubules in axons, interfering with the action of αTAT1, and this process is important to maintain neuronal polarity.


Subject(s)
Cell Polarity , Microtubule-Associated Proteins/physiology , Microtubules/metabolism , Neurons/metabolism , Acetylation , Animals , Hippocampus/cytology , Mice , Mice, Knockout , Tubulin/metabolism
10.
EMBO Rep ; 19(12)2018 12.
Article in English | MEDLINE | ID: mdl-30413482

ABSTRACT

We have fully integrated public chromatin chromatin immunoprecipitation sequencing (ChIP-seq) and DNase-seq data (n > 70,000) derived from six representative model organisms (human, mouse, rat, fruit fly, nematode, and budding yeast), and have devised a data-mining platform-designated ChIP-Atlas (http://chip-atlas.org). ChIP-Atlas is able to show alignment and peak-call results for all public ChIP-seq and DNase-seq data archived in the NCBI Sequence Read Archive (SRA), which encompasses data derived from GEO, ArrayExpress, DDBJ, ENCODE, Roadmap Epigenomics, and the scientific literature. All peak-call data are integrated to visualize multiple histone modifications and binding sites of transcriptional regulators (TRs) at given genomic loci. The integrated data can be further analyzed to show TR-gene and TR-TR interactions, as well as to examine enrichment of protein binding for given multiple genomic coordinates or gene names. ChIP-Atlas is superior to other platforms in terms of data number and functionality for data mining across thousands of ChIP-seq experiments, and it provides insight into gene regulatory networks and epigenetic mechanisms.


Subject(s)
Chromatin Immunoprecipitation , Data Mining , Sequence Analysis, DNA , Animals , Enhancer Elements, Genetic/genetics , Genetic Loci , Humans , Internet , Transcription Factors/metabolism
11.
Genesis ; 57(2): e23277, 2019 02.
Article in English | MEDLINE | ID: mdl-30597711

ABSTRACT

Live imaging is one of the most powerful technologies for studying the behaviors of cells and molecules in living embryos. Previously, we established a series of reporter mouse lines in which specific organelles are labeled with various fluorescent proteins. In this study, we examined the localizations of fluorescent signals during preimplantation development of these mouse lines, as well as a newly established one, by time-lapse imaging. Each organelle was specifically marked with fluorescent fusion proteins; fluorescent signals were clearly visible during the whole period of time-lapse observation, and the expression of the reporters did not affect embryonic development. We found that some organelles dramatically change their sub-cellular distributions during preimplantation stages. In addition, by crossing mouse lines carrying reporters of two distinct colors, we could simultaneously visualize two types of organelles. These results confirm that our reporter mouse lines can be valuable genetic tools for live imaging of embryonic development.


Subject(s)
Blastocyst/cytology , Cytoskeleton/metabolism , Golgi Apparatus/metabolism , Mitochondria/metabolism , Animals , Biological Transport , Blastocyst/metabolism , Cell Division , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice , Microscopy, Fluorescence/methods , Tight Junctions/metabolism
12.
J Biol Chem ; 293(1): 148-162, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29158260

ABSTRACT

Cardiac development and function require actin-myosin interactions in the sarcomere, a highly organized contractile structure. Sarcomere assembly mediated by formin homology 2 domain-containing 3 (Fhod3), a member of formins that directs formation of straight actin filaments, is essential for embryonic cardiogenesis. However, the role of Fhod3 in the neonatal and adult stages has remained unknown. Here, we generated floxed Fhod3 mice to bypass the embryonic lethality of an Fhod3 knockout (KO). Perinatal KO of Fhod3 in the heart caused juvenile lethality at around day 10 after birth with enlarged hearts composed of severely impaired myofibrils, indicating that Fhod3 is crucial for postnatal heart development. Tamoxifen-induced conditional KO of Fhod3 in the adult heart neither led to lethal effects nor did it affect sarcomere structure and localization of sarcomere components. However, adult Fhod3-deleted mice exhibited a slight cardiomegaly and mild impairment of cardiac function, conditions that were sustained over 1 year without compensation during aging. In addition to these age-related changes, systemic stimulation with the α1-adrenergic receptor agonist phenylephrine, which induces sustained hypertension and hypertrophy development, induced expression of fetal cardiac genes that was more pronounced in adult Fhod3-deleted mice than in the control mice, suggesting that Fhod3 modulates hypertrophic changes in the adult heart. We conclude that Fhod3 plays a crucial role in both postnatal cardiac development and functional maintenance of the adult heart.


Subject(s)
Heart/physiology , Microfilament Proteins/physiology , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Formins , Gene Knockout Techniques , Heart/growth & development , Heart Function Tests/methods , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microfilament Proteins/deficiency , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Muscle Proteins/metabolism , Myocytes, Cardiac/metabolism , Myofibrils/metabolism , Sarcomeres/metabolism
13.
Proc Natl Acad Sci U S A ; 113(2): 332-7, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26715742

ABSTRACT

Polarized epithelial cells exhibit a characteristic array of microtubules that are oriented along the apicobasal axis of the cells. The minus-ends of these microtubules face apically, and the plus-ends face toward the basal side. The mechanisms underlying this epithelial-specific microtubule assembly remain unresolved, however. Here, using mouse intestinal cells and human Caco-2 cells, we show that the microtubule minus-end binding protein CAMSAP3 (calmodulin-regulated-spectrin-associated protein 3) plays a pivotal role in orienting the apical-to-basal polarity of microtubules in epithelial cells. In these cells, CAMSAP3 accumulated at the apical cortices, and tethered the longitudinal microtubules to these sites. Camsap3 mutation or depletion resulted in a random orientation of these microtubules; concomitantly, the stereotypic positioning of the nucleus and Golgi apparatus was perturbed. In contrast, the integrity of the plasma membrane was hardly affected, although its structural stability was decreased. Further analysis revealed that the CC1 domain of CAMSAP3 is crucial for its apical localization, and that forced mislocalization of CAMSAP3 disturbs the epithelial architecture. These findings demonstrate that apically localized CAMSAP3 determines the proper orientation of microtubules, and in turn that of organelles, in mature mammalian epithelial cells.


Subject(s)
Cell Polarity , Epithelial Cells/cytology , Epithelial Cells/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Organelles/metabolism , Amino Acid Sequence , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Caco-2 Cells , Enterocytes/cytology , Enterocytes/metabolism , Enterocytes/ultrastructure , Epithelial Cells/ultrastructure , Green Fluorescent Proteins/metabolism , Homozygote , Humans , Mice, Inbred C57BL , Mice, Mutant Strains , Microtubule-Associated Proteins/chemistry , Models, Biological , Molecular Sequence Data , Mutation/genetics , Nocodazole/pharmacology , Protein Structure, Tertiary , Subcellular Fractions/metabolism , Thiazolidines/pharmacology
14.
Dev Biol ; 429(1): 20-30, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28712875

ABSTRACT

The behavior of visceral endoderm cells was examined as the anterior visceral endoderm (AVE) formed from the distal visceral endoderm (DVE) using the mouse lines R26-H2B-EGFP and R26-PHA7-EGFP to visualize cell nuclei and adherens junction, respectively. The analysis using R26-H2B-EGFP demonstrated global cell rearrangement that was not specific to the DVE cells in the monolayer embryonic visceral endoderm sheet; each population of the endoderm cells moved collectively in a swirling movement as a whole. Most of the AVE cells at E6.5 were not E5.5 DVE cells but were E5.5 cells that were located caudally behind them, as previously reported (Hoshino et al., 2015; Takaoka et al., 2011). In the rearrangement, the posterior embryonic visceral endoderm cells did not move, as extraembryonic visceral endoderm cells did not, and they constituted a distinct population during the process of anterior-posterior axis formation. The analysis using R26-PHA7-EGFP suggested that constriction of the apical surfaces of the cells in prospective anterior portion of the DVE initiated the global cellular movement of the embryonic visceral endoderm to drive AVE formation.


Subject(s)
Body Patterning , Embryo, Mammalian/cytology , Endoderm/cytology , Viscera/embryology , Animals , Cell Cycle , Cell Nucleus/metabolism , Cell Tracking , Green Fluorescent Proteins/metabolism , Mice , Time-Lapse Imaging
15.
Biochem Biophys Res Commun ; 505(3): 951-957, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30309656

ABSTRACT

Obesity is characterized by an expansion of white adipose tissue (WAT) mass, which mainly consists of adipocytes. During the commitment and differentiation of adipocytes, PPARγ functions as a key transcriptional factor for adipogenesis, and is associated with its suppressive coregulator, TAZ. Previous studies have shown the importance of TAZ in adipogenesis using an in vitro model; however, the understanding of its role in adipogenesis in vivo remains limited. Here, we report a unique obese mouse model that is associated with TAZ downregulation, which arose from the overexpression of Yap, a Taz paralog. YAP activation facilitated Hippo signaling feedback, which induced a compensatory reduction in YAP, subsequently neutralizing its functional activity. This feedback also induced TAZ suppression and exclusion from the nucleus. In Yap transgenic mice, TAZ downregulation in adipose stem cells activated PPARγ, leading to their differentiation into mature adipocytes and consequently increased adipose tissue. These results highlight the in vivo necessity of TAZ for adipocyte commitment and differentiation, which could provide insight into anti-obesity therapeutics.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Obesity/metabolism , Phosphoproteins/genetics , Transcription Factors/genetics , Adipogenesis , Animals , Cell Cycle Proteins , Cell Differentiation , Down-Regulation , Mice , Mice, Transgenic , PPAR gamma/physiology , Stem Cells/cytology , Trans-Activators , YAP-Signaling Proteins
16.
Arterioscler Thromb Vasc Biol ; 37(9): 1667-1673, 2017 09.
Article in English | MEDLINE | ID: mdl-28705794

ABSTRACT

OBJECTIVE: Recent genome-wide association studies newly identified the human KIAA1462 gene as a new locus for coronary artery disease. However, the function of the gene product, named JCAD (junctional protein associated with coronary artery disease), is unknown. Because JCAD is expressed at cell-cell junctions in endothelial cells, we hypothesized and tested whether JCAD regulates angiogenic processes in vitro and in vivo. APPROACH AND RESULTS: Cell culture experiments revealed impaired angiogenic ability (proliferation, migration, and cord formation) by the knockdown of JCAD with siRNA (P<0.05 versus control siRNA). We have generated mice lacking JCAD (mKIAA1462-/-) by gene-targeted deletion of JCAD to address in vivo angiogenic function. mKIAA1462-/- mice did not show morphological differences in development of retinal vasculature. Ex vivo aortic ring model demonstrated impaired neovascularization in aorta from mKIAA1462-/- mice than control wild-type mice (P<0.05). Tumor growth was assessed by monitoring tumor volume after the subcutaneous injection of melanoma, LLC (Lewis lung carcinoma), and E0771 cells into the mice. mKIAA1462-/- mice exhibited significantly smaller tumor volume compared with wild-type mice (P<0.001). Histological assessment of the tumor exhibited less smooth muscle actin-positive neovascularization determined by CD31-positive vascular structure in tumor of mKIAA1462-/- mice than wild-type mice, indicating that knockdown of JCAD inhibited the vascular maturation in pathological angiogenic process. CONCLUSIONS: These in vitro and in vivo studies suggest that JCAD has a redundant functional role in physiological angiogenesis but serves a pivotal role in pathological angiogenic process after birth.


Subject(s)
Cell Adhesion Molecules/metabolism , Endothelial Cells/metabolism , Intercellular Junctions/metabolism , Neovascularization, Pathologic , Neovascularization, Physiologic , Retinal Neovascularization , Animals , Carcinoma, Lewis Lung/blood supply , Carcinoma, Lewis Lung/genetics , Carcinoma, Lewis Lung/metabolism , Cell Adhesion Molecules/deficiency , Cell Adhesion Molecules/genetics , Cell Movement , Cell Proliferation , Cells, Cultured , Genotype , Human Umbilical Vein Endothelial Cells/metabolism , Melanoma, Experimental/blood supply , Melanoma, Experimental/genetics , Melanoma, Experimental/metabolism , Mice, Inbred C57BL , Mice, Knockout , Phenotype , RNA Interference , Signal Transduction , Time Factors , Tissue Culture Techniques , Transfection , Tumor Burden
17.
PLoS Genet ; 11(9): e1005503, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26355680

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) is a key molecule in the pathogenesis of familial and idiopathic Parkinson's disease (PD). We have identified two novel LRRK2-associated proteins, a HECT-type ubiquitin ligase, HERC2, and an adaptor-like protein with six repeated Neuralized domains, NEURL4. LRRK2 binds to NEURL4 and HERC2 via the LRRK2 Ras of complex proteins (ROC) domain and NEURL4, respectively. HERC2 and NEURL4 link LRRK2 to the cellular vesicle transport pathway and Notch signaling, through which the LRRK2 complex promotes the recycling of the Notch ligand Delta-like 1 (Dll1)/Delta (Dl) through the modulation of endosomal trafficking. This process negatively regulates Notch signaling through cis-inhibition by stabilizing Dll1/Dl, which accelerates neural stem cell differentiation and modulates the function and survival of differentiated dopaminergic neurons. These effects are strengthened by the R1441G ROC domain-mutant of LRRK2. These findings suggest that the alteration of Notch signaling in mature neurons is a component of PD etiology linked to LRRK2.


Subject(s)
Endosomes/metabolism , Parkinson Disease/enzymology , Protein Serine-Threonine Kinases/physiology , Receptors, Notch/metabolism , Signal Transduction/physiology , Animals , Carrier Proteins/metabolism , Dopamine/metabolism , Drosophila , Guanine Nucleotide Exchange Factors/metabolism , HEK293 Cells , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Protein Binding , Protein Serine-Threonine Kinases/metabolism , Ubiquitin-Protein Ligases
18.
Proc Natl Acad Sci U S A ; 112(13): 4086-91, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25775533

ABSTRACT

Most patients suffering from cancer die of metastatic disease. Surgical removal of solid tumors is performed as an initial attempt to cure patients; however, surgery is often accompanied with trauma, which can promote early recurrence by provoking detachment of tumor cells into the blood stream or inducing systemic inflammation or both. We have previously reported that administration of atrial natriuretic peptide (ANP) during the perioperative period reduces inflammatory response and has a prophylactic effect on postoperative cardiopulmonary complications in lung cancer surgery. Here we demonstrate that cancer recurrence after curative surgery was significantly lower in ANP-treated patients than in control patients (surgery alone). ANP is known to bind specifically to NPR1 [also called guanylyl cyclase-A (GC-A) receptor]. In mouse models, we found that metastasis of GC-A-nonexpressing tumor cells (i.e., B16 mouse melanoma cells) to the lung was increased in vascular endothelium-specific GC-A knockout mice and decreased in vascular endothelium-specific GC-A transgenic mice compared with control mice. We examined the effect of ANP on tumor metastasis in mice treated with lipopolysaccharide, which mimics systemic inflammation induced by surgical stress. ANP inhibited the adhesion of cancer cells to pulmonary arterial and micro-vascular endothelial cells by suppressing the E-selectin expression that is promoted by inflammation. These results suggest that ANP prevents cancer metastasis by inhibiting the adhesion of tumor cells to inflamed endothelial cells.


Subject(s)
Atrial Natriuretic Factor/pharmacology , Endothelial Cells/cytology , Neoplasms/metabolism , Animals , Cell Adhesion , Cell Line, Tumor , Disease-Free Survival , Green Fluorescent Proteins/metabolism , Humans , Inflammation , Kaplan-Meier Estimate , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Melanoma, Experimental , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Metastasis , Neoplasm Recurrence, Local , Neoplasms/pathology , Retrospective Studies
19.
Genes Cells ; 21(9): 994-1005, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27480924

ABSTRACT

Collapsin response mediator protein 2, CRMP2, has been identified as an intracellular signaling mediator for Semaphorin 3A (Sema3A). CRMP2 plays a key role in axon guidance, dendritic morphogenesis, and cell polarization. It has been also implicated in a variety of neurological and psychiatric disorders. However, the in vivo functions of CRMP2 remain unknown. We generated CRMP2 gene-deficient (crmp2(-/-) ) mice. The crmp2(-/-) mice showed irregular development of dendritic spines in cortical neurons. The density of dendritic spines was reduced in the cortical layer V pyramidal neurons of crmp2(-/-) mice as well as in those of sema3A(-/-) and crmp1(-/-) mice. However, no abnormality was found in dendritic patterning in crmp2(-/-) compared to wild-type (WT) neurons. The level of CRMP1 was increased in crmp2(-/-) , but the level of CRMP2 was not altered in crmp1(-/-) compared to WT cortical brain lysates. Dendritic spine density and branching were reduced in double-heterozygous sema3A(+/-) ;crmp2(+/-) and sema3A(+/-) ;crmp1(+/-) mice. The phenotypic defects had no genetic interaction between crmp1 and crmp2. These findings suggest that both CRMP1 and CRMP2 mediate Sema3A signaling to regulate dendritic spine maturation and patterning, but through overlapping and distinct signaling pathways.


Subject(s)
Dendrites/physiology , Intercellular Signaling Peptides and Proteins/metabolism , Nerve Tissue Proteins/metabolism , Animals , Cell Count , Cells, Cultured , Cerebral Cortex/cytology , Dendrites/metabolism , Female , Intercellular Signaling Peptides and Proteins/deficiency , Intercellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Neurogenesis/physiology , Neurons/cytology , Neurons/metabolism , Phosphorylation , Semaphorin-3A/genetics , Semaphorin-3A/metabolism , Signal Transduction/physiology
20.
Dev Biol ; 402(2): 175-91, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25910836

ABSTRACT

The initial landmark of anterior-posterior (A-P) axis formation in mouse embryos is the distal visceral endoderm, DVE, which expresses a series of anterior genes at embryonic day 5.5 (E5.5). Subsequently, DVE cells move to the future anterior region, generating anterior visceral endoderm (AVE). Questions remain regarding how the DVE is formed and how the direction of the movement is determined. This study compares the detailed expression patterns of OTX2, HHEX, CER1, LEFTY1 and DKK1 by immunohistology and live imaging at E4.5-E6.5. At E6.5, the AVE is subdivided into four domains: most anterior (OTX2, HHEX, CER1-low/DKK1-high), anterior (OTX2, HHEX, CER1-high/DKK1-low), main (OTX2, HHEX, CER1, LEFTY1-high) and antero-lateral and posterior (OTX2, HHEX-low). The study demonstrates how this pattern is established. AVE protein expression in the DVE occurs de novo at E5.25-E5.5. Neither HHEX, LEFTY1 nor CER1 expression is asymmetric. In contrast, OTX2 expression is tilted on the future posterior side with the DKK1 expression at its proximal domain; the DVE cells move in the opposite direction of the tilt.


Subject(s)
Body Patterning/physiology , Cell Movement/physiology , Endoderm/physiology , Gene Expression Regulation, Developmental/physiology , Intercellular Signaling Peptides and Proteins/metabolism , Otx Transcription Factors/metabolism , Animals , Body Patterning/genetics , Cytokines , Endoderm/cytology , Homeodomain Proteins/metabolism , Immunohistochemistry , In Situ Hybridization , Left-Right Determination Factors/metabolism , Luminescent Proteins , Mice , Mice, Transgenic , Microscopy, Fluorescence , Proteins/metabolism , Time-Lapse Imaging , Transcription Factors/metabolism , Red Fluorescent Protein
SELECTION OF CITATIONS
SEARCH DETAIL