Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Am J Hum Genet ; 111(1): 11-23, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38181729

ABSTRACT

Precision medicine initiatives across the globe have led to a revolution of repositories linking large-scale genomic data with electronic health records, enabling genomic analyses across the entire phenome. Many of these initiatives focus solely on research insights, leading to limited direct benefit to patients. We describe the biobank at the Colorado Center for Personalized Medicine (CCPM Biobank) that was jointly developed by the University of Colorado Anschutz Medical Campus and UCHealth to serve as a unique, dual-purpose research and clinical resource accelerating personalized medicine. This living resource currently has more than 200,000 participants with ongoing recruitment. We highlight the clinical, laboratory, regulatory, and HIPAA-compliant informatics infrastructure along with our stakeholder engagement, consent, recontact, and participant engagement strategies. We characterize aspects of genetic and geographic diversity unique to the Rocky Mountain region, the primary catchment area for CCPM Biobank participants. We leverage linked health and demographic information of the CCPM Biobank participant population to demonstrate the utility of the CCPM Biobank to replicate complex trait associations in the first 33,674 genotyped individuals across multiple disease domains. Finally, we describe our current efforts toward return of clinical genetic test results, including high-impact pathogenic variants and pharmacogenetic information, and our broader goals as the CCPM Biobank continues to grow. Bringing clinical and research interests together fosters unique clinical and translational questions that can be addressed from the large EHR-linked CCPM Biobank resource within a HIPAA- and CLIA-certified environment.


Subject(s)
Learning Health System , Precision Medicine , Humans , Biological Specimen Banks , Colorado , Genomics
2.
Physiol Genomics ; 55(9): 357-367, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37458464

ABSTRACT

High-altitude (>2,500 m) residence increases the risk of pregnancy vascular disorders such as fetal growth restriction and preeclampsia, each characterized by impaired placental function. Genetic attributes of highland ancestry confer relative protection against vascular disorders of pregnancy at high altitudes. Although ion channels have been implicated in placental function regulation, neither their expression in high-altitude placentas nor their relationship to high-altitude preeclampsia has been determined. Here, we measured the expression of 26 ion-channel genes in placentas from preeclampsia cases and normotensive controls in La Paz, Bolivia (3,850 m). In addition, we correlated gene transcription to maternal and infant ancestry proportions. Gene expression was assessed by PCR, genetic ancestry evaluated by ADMIXTURE, and ion channel proteins localized by immunofluorescence. In preeclamptic placentas, 11 genes were downregulated (ABCC9, ATP2A2, CACNA1C, KCNE1, KCNJ8, KCNK3, KCNMA1, KCNQ1, KCNQ4, PKD2, and TRPV6) and two were upregulated (KCNQ3 and SCNN1G). KCNE1 expression was positively correlated with high-altitude Amerindian ancestry and negatively correlated with non-high altitude. SCNN1G was negatively correlated with African ancestry, despite minimal African admixture. Most ion channels were localized in syncytiotrophoblasts (Cav1.2, TRPP2, TRPV6, and Kv7.1), whereas expression of Kv7.4 was primarily in microvillous membranes, Kir6.1 in chorionic plate and fetal vessels, and MinK in stromal cells. Our findings suggest a role for differential placental ion channel expression in the development of preeclampsia. Functional studies are needed to determine processes affected by these ion channels in the placenta and whether therapies directed at modulating their activity could influence the onset or severity of preeclampsia.


Subject(s)
Placenta , Pre-Eclampsia , Pregnancy , Female , Humans , Placenta/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Altitude , Ion Channels/genetics , Ion Channels/metabolism , Gene Expression
3.
Mol Biol Evol ; 38(6): 2582-2596, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33616658

ABSTRACT

Human natural killer (NK) cells are essential for controlling infection, cancer, and fetal development. NK cell functions are modulated by interactions between polymorphic inhibitory killer cell immunoglobulin-like receptors (KIR) and polymorphic HLA-A, -B, and -C ligands expressed on tissue cells. All HLA-C alleles encode a KIR ligand and contribute to reproduction and immunity. In contrast, only some HLA-A and -B alleles encode KIR ligands and they focus on immunity. By high-resolution analysis of KIR and HLA-A, -B, and -C genes, we show that the Chinese Southern Han (CHS) are significantly enriched for interactions between inhibitory KIR and HLA-A and -B. This enrichment has had substantial input through population admixture with neighboring populations, who contributed HLA class I haplotypes expressing the KIR ligands B*46:01 and B*58:01, which subsequently rose to high frequency by natural selection. Consequently, over 80% of Southern Han HLA haplotypes encode more than one KIR ligand. Complementing the high number of KIR ligands, the CHS KIR locus combines a high frequency of genes expressing potent inhibitory KIR, with a low frequency of those expressing activating KIR. The Southern Han centromeric KIR region encodes strong, conserved, inhibitory HLA-C-specific receptors, and the telomeric region provides a high number and diversity of inhibitory HLA-A and -B-specific receptors. In all these characteristics, the CHS represent other East Asians, whose NK cell repertoires are thus enhanced in quantity, diversity, and effector strength, likely augmenting resistance to endemic viral infections.


Subject(s)
Evolution, Molecular , Genes, MHC Class I , Killer Cells, Natural/physiology , Receptors, KIR/genetics , China , HLA-A Antigens/metabolism , HLA-B Antigens/metabolism , Humans , Receptors, KIR/metabolism
5.
Biopolymers ; 106(2): 144-159, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26799790

ABSTRACT

We have utilized a de novo designed two-stranded α-helical coiled-coil template to display conserved α-helical epitopes from the stem region of hemagglutinin (HA) glycoproteins of influenza A. The immunogens have all the surface-exposed residues of the native α-helix in the native HA protein of interest displayed on the surface of the two-stranded α-helical coiled-coil template. This template when used as an immunogen elicits polyclonal antibodies which bind to the α-helix in the native protein. We investigated the highly conserved sequence region 421-476 of HA by inserting 21 or 28 residue sequences from this region into our template. The cross-reactivity of the resulting rabbit polyclonal antibodies prepared to these immunogens was determined using a series of HA proteins from H1N1, H2N2, H3N2, H5N1, H7N7, and H7N9 virus strains which are representative of Group 1 and Group 2 virus subtypes of influenza A. Antibodies from region 449-476 were Group 1 specific. Antibodies to region 421-448 showed the greatest degree of cross-reactivity to Group 1 and Group 2 and suggested that this region has a great potential as a "universal" synthetic peptide vaccine for influenza A. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 144-159, 2016.

6.
J Clin Endocrinol Metab ; 109(2): 402-412, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-37683082

ABSTRACT

CONTEXT: Thyroid nodule ultrasound-based risk stratification schemas rely on the presence of high-risk sonographic features. However, some malignant thyroid nodules have benign appearance on thyroid ultrasound. New methods for thyroid nodule risk assessment are needed. OBJECTIVE: We investigated polygenic risk score (PRS) accounting for inherited thyroid cancer risk combined with ultrasound-based analysis for improved thyroid nodule risk assessment. METHODS: The convolutional neural network classifier was trained on thyroid ultrasound still images and cine clips from 621 thyroid nodules. Phenome-wide association study (PheWAS) and PRS PheWAS were used to optimize PRS for distinguishing benign and malignant nodules. PRS was evaluated in 73 346 participants in the Colorado Center for Personalized Medicine Biobank. RESULTS: When the deep learning model output was combined with thyroid cancer PRS and genetic ancestry estimates, the area under the receiver operating characteristic curve (AUROC) of the benign vs malignant thyroid nodule classifier increased from 0.83 to 0.89 (DeLong, P value = .007). The combined deep learning and genetic classifier achieved a clinically relevant sensitivity of 0.95, 95% CI [0.88-0.99], specificity of 0.63 [0.55-0.70], and positive and negative predictive values of 0.47 [0.41-0.58] and 0.97 [0.92-0.99], respectively. AUROC improvement was consistent in European ancestry-stratified analysis (0.83 and 0.87 for deep learning and deep learning combined with PRS classifiers, respectively). Elevated PRS was associated with a greater risk of thyroid cancer structural disease recurrence (ordinal logistic regression, P value = .002). CONCLUSION: Augmenting ultrasound-based risk assessment with PRS improves diagnostic accuracy.


Subject(s)
Thyroid Neoplasms , Thyroid Nodule , Humans , Thyroid Nodule/diagnostic imaging , Thyroid Nodule/genetics , Genetic Risk Score , Sensitivity and Specificity , Neoplasm Recurrence, Local , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/genetics , Ultrasonography/methods
7.
Hypertension ; 81(2): 319-329, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38018457

ABSTRACT

BACKGROUND: The chronic hypoxia of high-altitude residence poses challenges for tissue oxygen supply and metabolism. Exposure to high altitude during pregnancy increases the incidence of hypertensive disorders of pregnancy and fetal growth restriction and alters placental metabolism. High-altitude ancestry protects against altitude-associated fetal growth restriction, indicating hypoxia tolerance that is genetic in nature. Yet, not all babies are protected and placental pathologies associated with fetal growth restriction occur in some Andean highlanders. METHODS: We examined placental metabolic function in 79 Andeans (18-45 years; 39 preeclamptic and 40 normotensive) living in La Paz, Bolivia (3600-4100 m) delivered by unlabored Cesarean section. Using a selection-nominated approach, we examined links between putatively adaptive genetic variation and phenotypes related to oxygen delivery or placental metabolism. RESULTS: Mitochondrial oxidative capacity was associated with fetal oxygen delivery in normotensive but not preeclamptic placenta and was also suppressed in term preeclamptic pregnancy. Maternal haplotypes in or within 200 kb of selection-nominated genes were associated with lower placental mitochondrial respiratory capacity (PTPRD [protein tyrosine phosphatase receptor-δ]), lower maternal plasma erythropoietin (CPT2 [carnitine palmitoyl transferase 2], proopiomelanocortin, and DNMT3 [DNA methyltransferase 3]), and lower VEGF (vascular endothelial growth factor) in umbilical venous plasma (TBX5 [T-box transcription factor 5]). A fetal haplotype within 200 kb of CPT2 was associated with increased placental mitochondrial complex II capacity, placental nitrotyrosine, and GLUT4 (glucose transporter type 4) protein expression. CONCLUSIONS: Our findings reveal novel associations between putatively adaptive gene regions and phenotypes linked to oxygen delivery and placental metabolic function in highland Andeans, suggesting that such effects may be of genetic origin. Our findings also demonstrate maladaptive metabolic mechanisms in the context of preeclampsia, including dysregulation of placental oxygen consumption.


Subject(s)
Placenta , Pre-Eclampsia , Humans , Pregnancy , Female , Placenta/metabolism , Cesarean Section , Fetal Growth Retardation , Vascular Endothelial Growth Factor A/metabolism , Hypoxia/metabolism , Oxygen/metabolism , Phenotype , Genomics
8.
Article in English | MEDLINE | ID: mdl-36767733

ABSTRACT

Over 6.37 million people have died from COVID-19 worldwide, but factors influencing COVID-19-related mortality remain understudied. We aimed to describe and identify risk factors for COVID-19 mortality in the Colorado Center for Personalized Medicine (CCPM) Biobank using integrated data sources, including Electronic Health Records (EHRs). We calculated cause-specific mortality and case-fatality rates for COVID-19 and common pre-existing health conditions defined by diagnostic phecodes and encounters in EHRs. We performed multivariable logistic regression analyses of the association between each pre-existing condition and COVID-19 mortality. Of the 155,859 Biobank participants enrolled as of July 2022, 20,797 had been diagnosed with COVID-19. Of 5334 Biobank participants who had died, 190 were attributed to COVID-19. The case-fatality rate was 0.91% and the COVID-19 mortality rate was 122 per 100,000 persons. The odds of dying from COVID-19 were significantly increased among older men, and those with 14 of the 61 pre-existing conditions tested, including hypertensive chronic kidney disease (OR: 10.14, 95% CI: 5.48, 19.16) and type 2 diabetes with renal manifestations (OR: 5.59, 95% CI: 3.42, 8.97). Male patients who are older and have pre-existing kidney diseases may be at higher risk for death from COVID-19 and may require special care.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Humans , Male , Aged , Diabetes Mellitus, Type 2/epidemiology , SARS-CoV-2 , Colorado/epidemiology , Biological Specimen Banks , Precision Medicine , Risk Factors
9.
Nat Med ; 29(7): 1845-1856, 2023 07.
Article in English | MEDLINE | ID: mdl-37464048

ABSTRACT

An individual's disease risk is affected by the populations that they belong to, due to shared genetics and environmental factors. The study of fine-scale populations in clinical care is important for identifying and reducing health disparities and for developing personalized interventions. To assess patterns of clinical diagnoses and healthcare utilization by fine-scale populations, we leveraged genetic data and electronic medical records from 35,968 patients as part of the UCLA ATLAS Community Health Initiative. We defined clusters of individuals using identity by descent, a form of genetic relatedness that utilizes shared genomic segments arising due to a common ancestor. In total, we identified 376 clusters, including clusters with patients of Afro-Caribbean, Puerto Rican, Lebanese Christian, Iranian Jewish and Gujarati ancestry. Our analysis uncovered 1,218 significant associations between disease diagnoses and clusters and 124 significant associations with specialty visits. We also examined the distribution of pathogenic alleles and found 189 significant alleles at elevated frequency in particular clusters, including many that are not regularly included in population screening efforts. Overall, this work progresses the understanding of health in understudied communities and can provide the foundation for further study into health inequities.


Subject(s)
Delivery of Health Care , Patient Acceptance of Health Care , Humans , Los Angeles , Iran , Ethnicity
10.
Clin Transl Sci ; 14(5): 1713-1718, 2021 09.
Article in English | MEDLINE | ID: mdl-33650294

ABSTRACT

To compare etonogestrel pharmacokinetic and pharmacodynamic outcomes by both self-reported race/ethnicity and genetically determined ancestry among contraceptive implant users. We conducted a secondary analysis of our parent pharmacogenomic study of 350 implant users. We genotyped these reproductive-aged (18-45 years) women for 88 ancestry-informative single nucleotide polymorphisms. We then assigned each participant a proportion value for African (AFR), European (EUR), and Indigenous American (AMR) ancestry based on reference population data. We correlated genetic ancestry with self-reported race/ethnicity and utilized genetic ancestry proportion values as variables for previously performed association analyses with serum etonogestrel concentrations and progestin-related side effects (e.g., bothersome bleeding and subjective weight gain). We successfully estimated genetically determined ancestry for 332 participants. EUR, AFR, and AMR ancestry were each highly correlated with self-reported White/non-Hispanic race (r = 0.64, p = 4.14 × 10-40 ), Black/African American race (r = 0.88, p = 1.36 × 10-107 ), and Hispanic/Latina ethnicity (r = 0.68, p = 4.03 × 10-47 ), respectively. Neither genetically determined ancestry nor self-reported race/ethnicity were significantly associated with serum etonogestrel concentrations. AFR ancestry and self-reported Black race had similar associations with reporting monthly periods (odds ratio [OR] 2.18, p = 0.09 vs. OR 2.22, p = 0.02) and having received treatment for bothersome bleeding (OR 5.19, p = 0.005 vs. OR 4.73, p = 2.0 × 10-4 ). In multivariable logistic regression for subjective weight gain, AMR ancestry dropped out of the model in preference for self-reported Hispanic/Latina ethnicity. We found no new associations between genetically determined ancestry and contraceptive implant pharmacodynamics/pharmacokinetics. Self-reported race/ethnicity were strong surrogates for genetically determined ancestry among this population of contraceptive implant users. Our data suggest that self-reported race/ethnicity, capturing societal and cultural aspects, remain important to the investigation of progestin-related side effects.


Subject(s)
Contraceptive Agents, Hormonal/pharmacokinetics , Desogestrel/adverse effects , Pharmacogenetics/methods , Adolescent , Adult , Black People/genetics , Contraceptive Agents, Hormonal/administration & dosage , Contraceptive Agents, Hormonal/adverse effects , Desogestrel/administration & dosage , Desogestrel/pharmacokinetics , Drug Implants , Feasibility Studies , Female , Humans , Indians, North American/genetics , Pharmacogenomic Variants , Polymorphism, Single Nucleotide , Self Report/statistics & numerical data , Uterine Hemorrhage/chemically induced , Uterine Hemorrhage/genetics , Weight Gain/drug effects , Weight Gain/genetics , White People/genetics , Young Adult
11.
Sci Rep ; 11(1): 6884, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33767307

ABSTRACT

Schistosomiasis persists in Asian regions despite aggressive elimination measures. To identify factors enabling continued parasite transmission, we performed reduced representation genome sequencing on Schistosoma japonicum miracidia collected across multiple years from transmission hotspots in Sichuan, China. We discovered strong geographic structure, suggesting that local, rather than imported, reservoirs are key sources of persistent infections in the region. At the village level, parasites collected after referral for praziquantel treatment are closely related to local pre-treatment populations. Schistosomes within villages are also highly related, suggesting that only a few parasites from a limited number of hosts drive re-infection. The close familial relationships among miracidia from different human hosts also implicate short transmission routes among humans. At the individual host level, genetic evidence indicates that multiple humans retained infections following referral for treatment. Our findings suggest that end-game schistosomiasis control measures should focus on completely extirpating local parasite reservoirs and confirming successful treatment of infected human hosts.


Subject(s)
Genetic Variation , Metagenomics , Schistosoma japonicum/genetics , Schistosomiasis japonica/parasitology , Selection, Genetic , Animals , China/epidemiology , Genotype , Humans , Schistosoma japonicum/classification , Schistosoma japonicum/isolation & purification , Schistosomiasis japonica/epidemiology , Schistosomiasis japonica/transmission
12.
Mob DNA ; 11: 11, 2020.
Article in English | MEDLINE | ID: mdl-32095164

ABSTRACT

BACKGROUND: Previously, 3% of the human genome has been annotated as simple sequence repeats (SSRs), similar to the proportion annotated as protein coding. The origin of much of the genome is not well annotated, however, and some of the unidentified regions are likely to be ancient SSR-derived regions not identified by current methods. The identification of these regions is complicated because SSRs appear to evolve through complex cycles of expansion and contraction, often interrupted by mutations that alter both the repeated motif and mutation rate. We applied an empirical, kmer-based, approach to identify genome regions that are likely derived from SSRs. RESULTS: The sequences flanking annotated SSRs are enriched for similar sequences and for SSRs with similar motifs, suggesting that the evolutionary remains of SSR activity abound in regions near obvious SSRs. Using our previously described P-clouds approach, we identified 'SSR-clouds', groups of similar kmers (or 'oligos') that are enriched near a training set of unbroken SSR loci, and then used the SSR-clouds to detect likely SSR-derived regions throughout the genome. CONCLUSIONS: Our analysis indicates that the amount of likely SSR-derived sequence in the human genome is 6.77%, over twice as much as previous estimates, including millions of newly identified ancient SSR-derived loci. SSR-clouds identified poly-A sequences adjacent to transposable element termini in over 74% of the oldest class of Alu (roughly, AluJ), validating the sensitivity of the approach. Poly-A's annotated by SSR-clouds also had a length distribution that was more consistent with their poly-A origins, with mean about 35 bp even in older Alus. This work demonstrates that the high sensitivity provided by SSR-Clouds improves the detection of SSR-derived regions and will enable deeper analysis of how decaying repeats contribute to genome structure.

13.
Nat Commun ; 9(1): 2774, 2018 07 17.
Article in English | MEDLINE | ID: mdl-30018307

ABSTRACT

Broad paradigms of vertebrate genomic repeat element evolution have been largely shaped by analyses of mammalian and avian genomes. Here, based on analyses of genomes sequenced from over 60 squamate reptiles (lizards and snakes), we show that patterns of genomic repeat landscape evolution in squamates challenge such paradigms. Despite low variance in genome size, squamate genomes exhibit surprisingly high variation among species in abundance (ca. 25-73% of the genome) and composition of identifiable repeat elements. We also demonstrate that snake genomes have experienced microsatellite seeding by transposable elements at a scale unparalleled among eukaryotes, leading to some snake genomes containing the highest microsatellite content of any known eukaryote. Our analyses of transposable element evolution across squamates also suggest that lineage-specific variation in mechanisms of transposable element activity and silencing, rather than variation in species-specific demography, may play a dominant role in driving variation in repeat element landscapes across squamate phylogeny.


Subject(s)
Genetic Variation , Lizards/genetics , Microsatellite Repeats , Phylogeny , Snakes/genetics , Animals , Birds/classification , Birds/genetics , DNA Transposable Elements , Evolution, Molecular , Genome Size , Genomics , Lizards/classification , Mammals/classification , Mammals/genetics , Snakes/classification
14.
PLoS Negl Trop Dis ; 11(1): e0005292, 2017 01.
Article in English | MEDLINE | ID: mdl-28107347

ABSTRACT

BACKGROUND: In areas where schistosomiasis control programs have been implemented, morbidity and prevalence have been greatly reduced. However, to sustain these reductions and move towards interruption of transmission, new tools for disease surveillance are needed. Genomic methods have the potential to help trace the sources of new infections, and allow us to monitor drug resistance. Large-scale genotyping efforts for schistosome species have been hindered by cost, limited numbers of established target loci, and the small amount of DNA obtained from miracidia, the life stage most readily acquired from humans. Here, we present a method using next generation sequencing to provide high-resolution genomic data from S. japonicum for population-based studies. METHODOLOGY/PRINCIPAL FINDINGS: We applied whole genome amplification followed by double digest restriction site associated DNA sequencing (ddRADseq) to individual S. japonicum miracidia preserved on Whatman FTA cards. We found that we could effectively and consistently survey hundreds of thousands of variants from 10,000 to 30,000 loci from archived miracidia as old as six years. An analysis of variation from eight miracidia obtained from three hosts in two villages in Sichuan showed clear population structuring by village and host even within this limited sample. CONCLUSIONS/SIGNIFICANCE: This high-resolution sequencing approach yields three orders of magnitude more information than microsatellite genotyping methods that have been employed over the last decade, creating the potential to answer detailed questions about the sources of human infections and to monitor drug resistance. Costs per sample range from $50-$200, depending on the amount of sequence information desired, and we expect these costs can be reduced further given continued reductions in sequencing costs, improvement of protocols, and parallelization. This approach provides new promise for using modern genome-scale sampling to S. japonicum surveillance, and could be applied to other schistosome species and other parasitic helminthes.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Microsatellite Repeats , Schistosoma japonicum/genetics , Animals , China/epidemiology , Female , Genetic Variation , Genetics, Population , Genome , Genotyping Techniques , Humans , Male , Pilot Projects , Schistosomiasis japonica/epidemiology , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL