ABSTRACT
BET bromodomain inhibitors (BBDIs) are candidate therapeutic agents for triple-negative breast cancer (TNBC) and other cancer types, but inherent and acquired resistance to BBDIs limits their potential clinical use. Using CRISPR and small-molecule inhibitor screens combined with comprehensive molecular profiling of BBDI response and resistance, we identified synthetic lethal interactions with BBDIs and genes that, when deleted, confer resistance. We observed synergy with regulators of cell cycle progression, YAP, AXL, and SRC signaling, and chemotherapeutic agents. We also uncovered functional similarities and differences among BRD2, BRD4, and BRD7. Although deletion of BRD2 enhances sensitivity to BBDIs, BRD7 loss leads to gain of TEAD-YAP chromatin binding and luminal features associated with BBDI resistance. Single-cell RNA-seq, ATAC-seq, and cellular barcoding analysis of BBDI responses in sensitive and resistant cell lines highlight significant heterogeneity among samples and demonstrate that BBDI resistance can be pre-existing or acquired.
Subject(s)
Drug Resistance, Neoplasm/genetics , Proteins/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Azepines/pharmacology , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Mice, Inbred NOD , Nuclear Proteins/metabolism , Proteins/metabolism , Signal Transduction/drug effects , Transcription Factors/metabolism , Triazoles/pharmacology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolismABSTRACT
Studies of molecular and cellular functions of small-molecule inhibitors in cancer treatment, eliciting effects by targeting genome and epigenome associated proteins, requires measurement of drug-target engagement in single-cell resolution. Here we present EpiChem for in situ single-cell joint mapping of small molecules and multimodal epigenomic landscape. We demonstrate single-cell co-assays of three small molecules together with histone modifications, chromatin accessibility or target proteins in human colorectal cancer (CRC) organoids. Integrated multimodal analysis reveals diverse drug interactions in the context of chromatin states within heterogeneous CRC organoids. We further reveal drug genomic binding dynamics and adaptive epigenome across cell types after small-molecule drug treatment in CRC organoids. This method provides a unique tool to exploit the mechanisms of cell type-specific drug actions.
Subject(s)
Chromatin , Colorectal Neoplasms , Epigenome , Organoids , Single-Cell Analysis , Humans , Single-Cell Analysis/methods , Chromatin/metabolism , Chromatin/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Organoids/metabolism , Epigenomics/methods , Antineoplastic Agents/pharmacology , Histones/metabolism , Small Molecule Libraries/pharmacologyABSTRACT
Drugs that block the activity of the methyltransferase EZH2 are in clinical development for the treatment of non-Hodgkin lymphomas harboring EZH2 gain-of-function mutations that enhance its polycomb repressive function. We have previously reported that EZH2 can act as a transcriptional activator in castration-resistant prostate cancer (CRPC). Now we show that EZH2 inhibitors can also block the transactivation activity of EZH2 and inhibit the growth of CRPC cells. Gene expression and epigenomics profiling of cells treated with EZH2 inhibitors demonstrated that in addition to derepressing gene expression, these compounds also robustly down-regulate a set of DNA damage repair (DDR) genes, especially those involved in the base excision repair (BER) pathway. Methylation of the pioneer factor FOXA1 by EZH2 contributes to the activation of these genes, and interaction with the transcriptional coactivator P300 via the transactivation domain on EZH2 directly turns on the transcription. In addition, CRISPR-Cas9-mediated knockout screens in the presence of EZH2 inhibitors identified these BER genes as the determinants that underlie the growth-inhibitory effect of EZH2 inhibitors. Interrogation of public data from diverse types of solid tumors expressing wild-type EZH2 demonstrated that expression of DDR genes is significantly correlated with EZH2 dependency and cellular sensitivity to EZH2 inhibitors. Consistent with these findings, treatment of CRPC cells with EZH2 inhibitors dramatically enhances their sensitivity to genotoxic stress. These studies reveal a previously unappreciated mechanism of action of EZH2 inhibitors and provide a mechanistic basis for potential combination cancer therapies.
Subject(s)
DNA Damage/genetics , DNA Damage/physiology , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Transcriptional Activation , CRISPR-Cas Systems , Cell Line, Tumor , DNA Repair/genetics , DNA Repair/physiology , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Humans , Male , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolismABSTRACT
CD47 expressed on cancer cells enables macrophage immune evasion. Blocking CD47 using anti-CD47 monoclonal antibodies (mAbs) is a promising strategy. The anti-CD47 mAb TJC4 has anti-tumor activity but lacks hematological toxicity. Venetoclax, a B-cell lymphoma 2 (BCL-2) inhibitor for B-cell malignancy, induces phosphatidylserine (PS) extracellular exposure, representing an "eat-me" signal for macrophages. The present study aimed to explore whether TJC4-Venetoclax combined therapy exerts synergistic anti-cancer properties in B-cell lymphoma. In vitro, flow cytometry and microscopy assessed whether TJC4 monotherapy or combination treatment could promote macrophage-mediated phagocytosis of tumor cells. Induced PS exposure on the cell membrane was measured using flow cytometry with Annexin V-FITC staining. In vivo, Venetoclax and TJC4's synergistic anti-tumor effects were evaluated. B cell lymphoma cell lines express high levels of CD47 and patients with diffuse large B cell lymphoma expressing CD47 have a worse clinical prognosis. TJC4 eliminates tumor cells via macrophage-mediated phagocytosis. In vitro and in vivo, the TJC4-Venetoclax combination increased phagocytosis significantly compared with either agent alone, showing synergistic phagocytosis, and displayed synergistic anti-cancer properties in B-cell lymphoma. Our results support the TJC4-Venetoclax combination as a promising therapy, and suppressing BCL-2 and CD47 simultaneously could represent a novel therapeutic paradigm for B-cell lymphoma.
Subject(s)
Antineoplastic Agents , Lymphoma, Large B-Cell, Diffuse , Antibodies, Monoclonal , Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic , Cell Line, Tumor , Humans , Immunologic Factors , Immunotherapy/methods , Lymphoma, Large B-Cell, Diffuse/drug therapy , Phosphatidylserines , Proto-Oncogene Proteins c-bcl-2 , SulfonamidesABSTRACT
The present study investigated the efficacy and toxicity profile of first-line asparaginase (ASP)-based versus non-ASP-based regimens in treating early-stage extranodal NK/T-cell lymphoma (ENKTCL) in non-anthracycline therapy era. This multi-center, real-world retrospective study consisted 305 newly diagnosed localized ENKTCL patients who were treated with sequential chemoradiation between 2010 and 2020 in China: 190 cases received ASP-based regimens and 115 cases received non-ASP-based regimens. Propensity score matching and multivariable analyses were used to compare survivals and toxicities between the two treatment groups. Non-ASP-based regimens achieved comparable survivals compared with ASP-based regimens in the entire cohort. The 5-year overall survival (OS), progression-free survival (PFS) rates were 84.7% and 73.5% for non-ASP-based regimens, and 87.7% (P=0.464) and 74.6% (P=0.702) for ASP-based regimens. The non-inferior survivals of non-ASP-based regimens were consistent after adjustment using PSM and multivariable analyses. However, survival benefits of ASP varied in different treatment modalities. Among patients receiving sequential chemotherapy and radiation (CT+RT±CT), ASP-based regimens achieved higher complete remission rate (54.3 vs. 34.5%, P=0.047) and more favorable survivals compared with non-ASP-based regimens (5-year OS, 87.0 vs. 69.0%, P=0.028). However, for patients receiving sequential radiation and chemotherapy (RT+CT), non-ASP-based regimens achieved comparable favorable survivals as ASP-based regimens. Besides, liver injury, malnutrition, and coagulative dysfunction were significantly more commonly documented in ASP-based regimens. These findings suggested that ASP was an effective agent in treating ENKTCL, especially among those receiving induction CT and RT. For patients who received upfront RT, non-ASP-based regimens might be a comparably effective and more tolerable treatment option.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Lymphoma, Extranodal NK-T-Cell , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Chemoradiotherapy , Humans , Lymphoma, Extranodal NK-T-Cell/diagnosis , Lymphoma, Extranodal NK-T-Cell/drug therapy , Lymphoma, Extranodal NK-T-Cell/radiotherapy , Remission Induction , Retrospective StudiesABSTRACT
Triple-negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. BET bromodomain inhibitors, which have shown efficacy in several models of cancer, have not been evaluated in TNBC. These inhibitors displace BET bromodomain proteins such as BRD4 from chromatin by competing with their acetyl-lysine recognition modules, leading to inhibition of oncogenic transcriptional programs. Here we report the preferential sensitivity of TNBCs to BET bromodomain inhibition in vitro and in vivo, establishing a rationale for clinical investigation and further motivation to understand mechanisms of resistance. In paired cell lines selected for acquired resistance to BET inhibition from previously sensitive TNBCs, we failed to identify gatekeeper mutations, new driver events or drug pump activation. BET-resistant TNBC cells remain dependent on wild-type BRD4, which supports transcription and cell proliferation in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify strong association with MED1 and hyper-phosphorylation of BRD4 attributable to decreased activity of PP2A, identified here as a principal BRD4 serine phosphatase. Together, these studies provide a rationale for BET inhibition in TNBC and present mechanism-based combination strategies to anticipate clinical drug resistance.
Subject(s)
Azepines/pharmacology , Azepines/therapeutic use , Drug Resistance, Neoplasm/drug effects , Nuclear Proteins/antagonists & inhibitors , Protein Structure, Tertiary/drug effects , Transcription Factors/antagonists & inhibitors , Triazoles/pharmacology , Triazoles/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Animals , Binding, Competitive/drug effects , Casein Kinase II/metabolism , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Chromatin/genetics , Chromatin/metabolism , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic/drug effects , Epigenesis, Genetic/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Genome, Human/drug effects , Genome, Human/genetics , Humans , Mediator Complex Subunit 1/metabolism , Mice , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphorylation/drug effects , Phosphoserine/metabolism , Protein Binding/drug effects , Protein Phosphatase 2/metabolism , Proteomics , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor AssaysABSTRACT
Single-cell RNA sequencing methods focusing on the 5'-end of transcripts can reveal promoter and enhancer activity and efficiently profile immune receptor repertoire. However, ultra-high-throughput 5'-end single-cell RNA sequencing methods have not been described. We introduce FIPRESCI, 5'-end single-cell combinatorial indexing RNA-Seq, enabling massive sample multiplexing and increasing the throughput of the droplet microfluidics system by over tenfold. We demonstrate FIPRESCI enables the generation of approximately 100,000 single-cell transcriptomes from E10.5 whole mouse embryos in a single-channel experiment, and simultaneous identification of subpopulation differences and T cell receptor signatures of peripheral blood T cells from 12 cancer patients.
Subject(s)
Microfluidics , Single-Cell Analysis , Animals , Mice , Microfluidics/methods , Single-Cell Analysis/methods , Transcriptome , Sequence Analysis, RNA/methods , High-Throughput Nucleotide Sequencing , RNA/geneticsABSTRACT
Bidirectional signal transduction between tumor epithelial cells and tumor microenvironment (TME) is important for tumor development. Here we show that Lin28b/let-7 pathway is indispensable for modulating the expression of Wnt5a in tumor epithelium, which could be secreted and then up-regulates Lin28b in cancer-associated fibroblasts (CAFs). Moreover, we demonstrate that Lin28b in CAFs promoted growth of PDAC by inducing cytokine PCSK9's production. Using an orthotopic mouse model of PDAC, we find that depletion of Lin28b in CAFs reduced tumor weight, highlighting the importance of Lin28b in PDAC stroma. Thus, our study shows that the Lin28b-Wnt5a axis plays a critical role in bidirectional crosstalk between pancreatic tumor epithelium and TME and results in a pro-|tumorigenic contexture.
Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , Cancer-Associated Fibroblasts/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Epithelium/metabolism , Fibroblasts/metabolism , Pancreatic Neoplasms/pathology , Proprotein Convertase 9/metabolism , Tumor Microenvironment , Pancreatic NeoplasmsABSTRACT
Immune checkpoint inhibition combined with chemotherapy is currently approved as first-line treatment for patients with advanced PD-L1-positive triple-negative breast cancer (TNBC). However, a significant proportion of metastatic TNBC is PD-L1-negative and, in this population, chemotherapy alone largely remains the standard-of-care and novel therapeutic strategies are needed to improve clinical outcomes. Here, we describe a triple combination of anti-PD-L1 immune checkpoint blockade, epigenetic modulation thorough bromodomain and extra-terminal (BET) bromodomain inhibition (BBDI), and chemotherapy with paclitaxel that effectively inhibits both primary and metastatic tumor growth in two different syngeneic murine models of TNBC. Detailed cellular and molecular profiling of tumors from single and combination treatment arms revealed increased T- and B-cell infiltration and macrophage reprogramming from MHCIIlow to a MHCIIhigh phenotype in mice treated with triple combination. Triple combination also had a major impact on gene expression and chromatin profiles shifting cells to a more immunogenic and senescent state. Our results provide strong preclinical evidence to justify clinical testing of BBDI, paclitaxel, and immune checkpoint blockade combination.
Subject(s)
Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/pathology , B7-H1 Antigen/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Nuclear Proteins , Transcription Factors , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Immunotherapy/methodsABSTRACT
Human de novo genes can originate from neutral long non-coding RNA (lncRNA) loci and are evolutionarily significant in general, yet how and why this all-or-nothing transition to functionality happens remains unclear. Here, in 74 human/hominoid-specific de novo genes, we identified distinctive U1 elements and RNA splice-related sequences accounting for RNA nuclear export, differentiating mRNAs from lncRNAs, and driving the origin of de novo genes from lncRNA loci. The polymorphic sites facilitating the lncRNA-mRNA conversion through regulating nuclear export are selectively constrained, maintaining a boundary that differentiates mRNAs from lncRNAs. The functional new genes actively passing through it thus showed a mode of pre-adaptive origin, in that they acquire functions along with the achievement of their coding potential. As a proof of concept, we verified the regulations of splicing and U1 recognition on the nuclear export efficiency of one of these genes, the ENSG00000205704, in human neural progenitor cells. Notably, knock-out or over-expression of this gene in human embryonic stem cells accelerates or delays the neuronal maturation of cortical organoids, respectively. The transgenic mice with ectopically expressed ENSG00000205704 showed enlarged brains with cortical expansion. We thus demonstrate the key roles of nuclear export in de novo gene origin. These newly originated genes should reflect the novel uniqueness of human brain development.
Subject(s)
RNA, Long Noncoding , Mice , Animals , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA Splicing , RNA, Messenger/genetics , Brain/metabolismABSTRACT
Inflammatory breast cancer (IBC) is a difficult-to-treat disease with poor clinical outcomes due to high risk of metastasis and resistance to treatment. In breast cancer, CD44+CD24- cells possess stem cell-like features and contribute to disease progression, and we previously described a CD44+CD24-pSTAT3+ breast cancer cell subpopulation that is dependent on JAK2/STAT3 signaling. Here we report that CD44+CD24- cells are the most frequent cell type in IBC and are commonly pSTAT3+. Combination of JAK2/STAT3 inhibition with paclitaxel decreased IBC xenograft growth more than either agent alone. IBC cell lines resistant to paclitaxel and doxorubicin were developed and characterized to mimic therapeutic resistance in patients. Multi-omic profiling of parental and resistant cells revealed enrichment of genes associated with lineage identity and inflammation in chemotherapy-resistant derivatives. Integrated pSTAT3 chromatin immunoprecipitation sequencing and RNA sequencing (RNA-seq) analyses showed pSTAT3 regulates genes related to inflammation and epithelial-to-mesenchymal transition (EMT) in resistant cells, as well as PDE4A, a cAMP-specific phosphodiesterase. Metabolomic characterization identified elevated cAMP signaling and CREB as a candidate therapeutic target in IBC. Investigation of cellular dynamics and heterogeneity at the single cell level during chemotherapy and acquired resistance by CyTOF and single cell RNA-seq identified mechanisms of resistance including a shift from luminal to basal/mesenchymal cell states through selection for rare preexisting subpopulations or an acquired change. Finally, combination treatment with paclitaxel and JAK2/STAT3 inhibition prevented the emergence of the mesenchymal chemo-resistant subpopulation. These results provide mechanistic rational for combination of chemotherapy with inhibition of JAK2/STAT3 signaling as a more effective therapeutic strategy in IBC. SIGNIFICANCE: Chemotherapy resistance in inflammatory breast cancer is driven by the JAK2/STAT3 pathway, in part via cAMP/PKA signaling and a cell state switch, which can be overcome using paclitaxel combined with JAK2 inhibitors.
Subject(s)
Breast Neoplasms , Inflammatory Breast Neoplasms , Humans , Female , Inflammatory Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Signal Transduction , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Stem Cells/metabolism , STAT3 Transcription Factor/metabolismABSTRACT
Triple-negative breast cancer (TNBC) is a heterogeneous disease with limited treatment options. To characterize TNBC heterogeneity, we defined transcriptional, epigenetic, and metabolic subtypes and subtype-driving super-enhancers and transcription factors by combining functional and molecular profiling with computational analyses. Single-cell RNA sequencing revealed relative homogeneity of the major transcriptional subtypes (luminal, basal, and mesenchymal) within samples. We found that mesenchymal TNBCs share features with mesenchymal neuroblastoma and rhabdoid tumors and that the PRRX1 transcription factor is a key driver of these tumors. PRRX1 is sufficient for inducing mesenchymal features in basal but not in luminal TNBC cells via reprogramming super-enhancer landscapes, but it is not required for mesenchymal state maintenance or for cellular viability. Our comprehensive, large-scale, multiplatform, multiomics study of both experimental and clinical TNBC is an important resource for the scientific and clinical research communities and opens venues for future investigation.
Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/metabolismABSTRACT
Aurora-A kinase is frequently overexpressed/activated in various types of human malignancy, including prostate cancer. In this study, we demonstrate elevated levels of Aurora-A in androgen-refractory LNCaP-RF but not androgen-sensitive LNCaP cells, which prompted us to examine whether Aurora-A regulates the androgen receptor (AR) and whether elevated Aurora-A is involved in androgen-independent cell growth. We show that ectopic expression of Aurora-A induces AR transactivation activity in the presence and absence of androgen. Aurora-A interacts with AR and phosphorylates AR at Thr(282) and Ser(293) in vitro and in vivo. Aurora-A induces AR transactivation activity in a phosphorylation-dependent manner. Ectopic expression of Aurora-A in LNCaP cells induces prostate-specific antigen expression and cell survival, whereas knockdown of Aurora-A sensitizes LNCaP-RF cells to apoptosis and cell growth arrest. These data indicate that AR is a substrate of Aurora-A and that elevated Aurora-A could contribute to androgen-independent cell growth by phosphorylation and activation of AR.
Subject(s)
Androgens/pharmacology , Protein Serine-Threonine Kinases/metabolism , Receptors, Androgen/metabolism , Transcriptional Activation/physiology , Androgens/metabolism , Apoptosis/drug effects , Apoptosis/physiology , Aurora Kinases , Cell Line, Tumor , Gene Expression Regulation/physiology , Gene Knockdown Techniques , Humans , Male , Phosphorylation/drug effects , Phosphorylation/physiology , Prostate-Specific Antigen/biosynthesis , Protein Serine-Threonine Kinases/genetics , Receptors, Androgen/genetics , Transcriptional Activation/drug effectsABSTRACT
The protein kinase mammalian sterile 20-like kinase 1 (MST1) is a mammalian homologue of the Drosophila hippo and plays a critical role in regulation of programmed cell death. MST1 exerts pro-apoptotic function through cleavage, autophosphorylation-Thr(183) and subsequent translocation to the nucleus where it phosphorylates a number of molecules, including LATS1/2, FOXO, JNK, and histone H2B. Here, we show that the cleavage of MST1 is inhibited by the phosphatidylinositol 3-kinase/Akt pathway. Akt interacts with MST1 and phosphorylates a highly conserved residue threonine 120 of MST1, which leads to inhibition of its kinase activity and nuclear translocation as well as the autophosphorylation of Thr(183). Phospho-MST1-Thr(120) failed to activate downstream targets FOXO3a and JNK. Further, inverse correlation between pMST1-Thr(120) and pMST1-Thr(183) was observed in human ovarian tumors. These findings indicate that the phosphorylation of MST1-Thr(120) by Akt could be a major mechanism of regulation of the Hippo/MST1 pathway by cell survival signaling.
Subject(s)
Apoptosis , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Threonine/metabolism , Active Transport, Cell Nucleus , Animals , COS Cells , Cell Line , Cell Nucleus/metabolism , Chlorocebus aethiops , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Immunoblotting , Insulin-Like Growth Factor I/pharmacology , Intracellular Signaling Peptides and Proteins , Microscopy, Fluorescence , Mutation , Phosphorylation/drug effects , Protein Binding , Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , TransfectionABSTRACT
IKKepsilon has recently been identified as a breast cancer oncogene. Elevated levels of IKKepsilon are associated with cell survival and growth. Here, we show that IKKepsilon interacts with and phosphorylates estrogen receptor alpha (ERalpha) on serine 167 in vitro and in vivo. As a result, IKKepsilon induces ERalpha transactivation activity and enhances ERalpha binding to DNA. Cyclin D1, a major target of ERalpha, is transcriptionally up-regulated by IKKepsilon in a phospho-ERalpha-Ser-167-dependent manner. Further, overexpression of IKKepsilon induces tamoxifen resistance, whereas knockdown of IKKepsilon sensitizes cells to tamoxifen-induced cell death. These data suggest that ERalpha is a bona fide substrate of IKKepsilon and IKKepsilon plays an important role in tamoxifen resistance. Thus, IKKepsilon represents a critical therapeutic target in breast cancer.
Subject(s)
Estrogen Receptor alpha/metabolism , I-kappa B Kinase/metabolism , Serine/metabolism , Tamoxifen/pharmacology , Amino Acid Substitution , Antineoplastic Agents, Hormonal/pharmacology , Apoptosis/drug effects , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Cyclin D1/genetics , Drug Resistance, Neoplasm , Estrogen Receptor alpha/genetics , Humans , I-kappa B Kinase/genetics , Immunoblotting , Phosphorylation , Protein Binding , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Serine/genetics , Transcriptional Activation , TransfectionABSTRACT
OBJECTIVE: To explore the correlation of mutation landscape with clinical outcomes in patients with peripheral T-cell lymphoma (PTCL). METHODS: We retrospectively analyzed the clinicopathological and prognosis data of 53 patients with PTCL from November 2011 to December 2017. Targeted next-generation sequencing of a 659-gene panel was performed for tissues from 53 patients with PTCLs. The correlation of mutation landscape with clinical outcomes was analyzed. RESULTS: TET2 was the most frequently mutated gene (64%), followed by RHOA (43%), PCLO (23%), DNMT3A (19%), IDH2 (17%), PIEZO1 (17%) and TP53 (15%). When mutated genes were categorized into functional groups, the most common mutations were those involved in epigenetic/chromatin modification (75%), T-cell activation (74%), and the DNA repair/TP53 pathway (64%). TET2/TP53 mutations were significantly associated with positive B symptoms (P = 0.045), and elevated lactate dehydrogenase (LDH) level (P = 0.011). Moreover, TET2/TP53 mutation was a risk factor for PTCL patient survival (HR 3.574, 95% CI 1.069 - 11.941, P = 0.039). The occurrence of JAK/STAT pathway mutations in angioimmunoblastic T-cell lymphoma (AITL) patients conferred a worse progression-free survival (HR 2.366, 95% CI 0.9130-6.129, P = 0.0334). CONCLUSIONS: Heterogeneous gene mutations occur in PTCL, some of which have a negative impact on the survival outcome.
ABSTRACT
I-kappa-B kinase e (IKBKE; IKKepsilon) has been recently identified as a breast cancer oncogene, and its alteration appears to be an early event in breast cancer development. In this study, we demonstrated that IKKepsilon is frequently overexpressed and activated in human ovarian cancer cell lines and primary tumors. Of 96 ovarian cancer specimens examined, 63 exhibited elevated levels of IKKepsilon. Furthermore, alterations of IKKepsilon were associated with late-stage and high-grade tumors, suggesting a role of IKKepsilon in ovarian tumor progression rather than in tumor initiation. Overall survival in patients with elevated levels of IKKepsilon was significantly lower than patients whose tumors expressed normal levels of IKKepsilon. Moreover, both early and late-stage tumors that overexpressed IKKepsilon conferred a poor prognosis, as compared with those that did not possess elevated IKKepsilon levels. Notably, overexpression of IKKepsilon rendered cells resistant to cisplatin, whereas knockdown of IKKepsilon overcame cisplatin resistance in both A2780CP and C13 cells, which express high levels of endogenous IKKepsilon. Therefore, these data demonstrate for the first time that deregulation of IKKepsilon is a highly recurrent event in human ovarian cancer and could play a pivotal role in tumor progression and cisplatin resistance. IKKepsilon could also serve as a prognostic marker and potential therapeutic target for this malignancy.