Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 701
Filter
Add more filters

Publication year range
1.
Cell ; 185(7): 1117-1129.e8, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35298912

ABSTRACT

Game animals are wildlife species traded and consumed as food and are potential reservoirs for SARS-CoV and SARS-CoV-2. We performed a meta-transcriptomic analysis of 1,941 game animals, representing 18 species and five mammalian orders, sampled across China. From this, we identified 102 mammalian-infecting viruses, with 65 described for the first time. Twenty-one viruses were considered as potentially high risk to humans and domestic animals. Civets (Paguma larvata) carried the highest number of potentially high-risk viruses. We inferred the transmission of bat-associated coronavirus from bats to civets, as well as cross-species jumps of coronaviruses from bats to hedgehogs, from birds to porcupines, and from dogs to raccoon dogs. Of note, we identified avian Influenza A virus H9N2 in civets and Asian badgers, with the latter displaying respiratory symptoms, as well as cases of likely human-to-wildlife virus transmission. These data highlight the importance of game animals as potential drivers of disease emergence.


Subject(s)
Animals, Wild/virology , Communicable Diseases, Emerging/virology , Disease Reservoirs , Mammals/virology , Virome , Animals , China , Phylogeny , Zoonoses
2.
Cell ; 184(8): 2020-2032.e14, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33861963

ABSTRACT

Interspecies chimera formation with human pluripotent stem cells (hPSCs) represents a necessary alternative to evaluate hPSC pluripotency in vivo and might constitute a promising strategy for various regenerative medicine applications, including the generation of organs and tissues for transplantation. Studies using mouse and pig embryos suggest that hPSCs do not robustly contribute to chimera formation in species evolutionarily distant to humans. We studied the chimeric competency of human extended pluripotent stem cells (hEPSCs) in cynomolgus monkey (Macaca fascicularis) embryos cultured ex vivo. We demonstrate that hEPSCs survived, proliferated, and generated several peri- and early post-implantation cell lineages inside monkey embryos. We also uncovered signaling events underlying interspecific crosstalk that may help shape the unique developmental trajectories of human and monkey cells within chimeric embryos. These results may help to better understand early human development and primate evolution and develop strategies to improve human chimerism in evolutionarily distant species.


Subject(s)
Chimerism , Embryo, Mammalian/cytology , Pluripotent Stem Cells/cytology , Animals , Blastocyst/cytology , Blastocyst/metabolism , Cell Differentiation , Cell Lineage , Cells, Cultured , Embryo, Mammalian/metabolism , Female , Humans , Macaca fascicularis , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/transplantation , RNA-Seq , Single-Cell Analysis , Transcriptome
4.
Cell ; 156(4): 836-43, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24486104

ABSTRACT

Monkeys serve as important model species for studying human diseases and developing therapeutic strategies, yet the application of monkeys in biomedical researches has been significantly hindered by the difficulties in producing animals genetically modified at the desired target sites. Here, we first applied the CRISPR/Cas9 system, a versatile tool for editing the genes of different organisms, to target monkey genomes. By coinjection of Cas9 mRNA and sgRNAs into one-cell-stage embryos, we successfully achieve precise gene targeting in cynomolgus monkeys. We also show that this system enables simultaneous disruption of two target genes (Ppar-γ and Rag1) in one step, and no off-target mutagenesis was detected by comprehensive analysis. Thus, coinjection of one-cell-stage embryos with Cas9 mRNA and sgRNAs is an efficient and reliable approach for gene-modified cynomolgus monkey generation.


Subject(s)
Gene Targeting/methods , Macaca fascicularis/genetics , Animals , Base Sequence , Cell Line , Embryo, Mammalian/metabolism , Female , Humans , Molecular Sequence Data , Mosaicism , Sequence Alignment
5.
Mol Cell ; 73(3): 547-561.e6, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30735655

ABSTRACT

Chromatin organization undergoes drastic reconfiguration during gametogenesis. However, the molecular reprogramming of three-dimensional chromatin structure in this process remains poorly understood for mammals, including primates. Here, we examined three-dimensional chromatin architecture during spermatogenesis in rhesus monkey using low-input Hi-C. Interestingly, we found that topologically associating domains (TADs) undergo dissolution and reestablishment in spermatogenesis. Strikingly, pachytene spermatocytes, where synapsis occurs, are strongly depleted for TADs despite their active transcription state but uniquely show highly refined local compartments that alternate between transcribing and non-transcribing regions (refined-A/B). Importantly, such chromatin organization is conserved in mouse, where it remains largely intact upon transcription inhibition. Instead, it is attenuated in mutant spermatocytes, where the synaptonemal complex failed to be established. Intriguingly, this is accompanied by the restoration of TADs, suggesting that the synaptonemal complex may restrict TADs and promote local compartments. Thus, these data revealed extensive reprogramming of higher-order meiotic chromatin architecture during mammalian gametogenesis.


Subject(s)
Cellular Reprogramming , Chromatin Assembly and Disassembly , Chromatin/metabolism , Meiosis , Spermatogenesis , Spermatozoa/metabolism , Animals , Chromatin/chemistry , Chromatin/genetics , Gene Expression Regulation, Developmental , HCT116 Cells , Humans , Macaca mulatta , Male , Mice, Inbred C57BL , Mice, Knockout , Nucleic Acid Conformation , Pachytene Stage , Protein Conformation , Structure-Activity Relationship , Time Factors , Transcription, Genetic , X Chromosome Inactivation
6.
Am J Hum Genet ; 110(3): 516-530, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36796361

ABSTRACT

Primate-specific genes (PSGs) tend to be expressed in the brain and testis. This phenomenon is consistent with brain evolution in primates but is seemingly contradictory to the similarity of spermatogenesis among mammals. Here, using whole-exome sequencing, we identified deleterious variants of X-linked SSX1 in six unrelated men with asthenoteratozoospermia. SSX1 is a PSG expressed predominantly in the testis, and the SSX family evolutionarily expanded independently in rodents and primates. As the mouse model could not be used for studying SSX1, we used a non-human primate model and tree shrews, which are phylogenetically similar to primates, to knock down (KD) Ssx1 expression in the testes. Consistent with the phenotype observed in humans, both Ssx1-KD models exhibited a reduced sperm motility and abnormal sperm morphology. Further, RNA sequencing indicated that Ssx1 deficiency influenced multiple biological processes during spermatogenesis. Collectively, our experimental observations in humans and cynomolgus monkey and tree shrew models highlight the crucial role of SSX1 in spermatogenesis. Notably, three of the five couples who underwent intra-cytoplasmic sperm injection treatment achieved a successful pregnancy. This study provides important guidance for genetic counseling and clinical diagnosis and, significantly, describes the approaches for elucidating the functions of testis-enriched PSGs in spermatogenesis.


Subject(s)
Asthenozoospermia , Tupaia , Animals , Male , Macaca fascicularis , Primates , Semen , Sperm Motility , Tupaiidae
7.
Plant J ; 118(6): 1864-1871, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38470090

ABSTRACT

The production of compact vectors for gene stacking is hindered by a lack of effective linkers. Here, we report that a 26-nt nucleic acid linker, NAL1, from the fungus Glarea lozoyensis and its truncated derivatives could connect two genes as a bicistron, enabling independent translation in a maize protoplast transient expression system and human 293 T cells. The optimized 9-nt NAL10 linker was then used to connect four genes driven by a bidirectional promoter; this combination was successfully used to reconstruct the astaxanthin biosynthesis pathway in transgenic maize. The short and efficient nucleic acid linker NAL10 can be widely used in multi-gene expression and synthetic biology in animals and plants.


Subject(s)
Plants, Genetically Modified , Synthetic Biology , Zea mays , Synthetic Biology/methods , Zea mays/genetics , Zea mays/metabolism , Humans , Plants, Genetically Modified/genetics , Promoter Regions, Genetic/genetics , HEK293 Cells , Xanthophylls/metabolism , Hypocreales/genetics , Hypocreales/metabolism , Animals , Nucleic Acids/genetics , Gene Expression , Genetic Vectors/genetics , Protoplasts/metabolism
8.
Blood ; 141(16): 1990-2002, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36652668

ABSTRACT

Human hematopoietic stem cells (HSCs), like their counterparts in mice, comprise a functionally and molecularly heterogeneous population of cells throughout life that collectively maintain required outputs of mature blood cells under homeostatic conditions. In both species, an early developmental change in the HSC population involves a postnatal switch from a state in which most of these cells exist in a rapidly cycling state and maintain a high self-renewal potential to a state in which the majority of cells are in a quiescent state with an overall reduced self-renewal potential. However, despite the well-established growth factor dependence of HSC proliferation, whether and how this mechanism of HSC regulation might be affected by aging has remained poorly understood. To address this knowledge gap, we isolated highly HSC-enriched CD34+CD38-CD45RA-CD90+CD49f+ (CD49f+) cells from cord blood, adult bone marrow, and mobilized peripheral blood samples obtained from normal humans spanning 7 decades of age and then measured their functional and molecular responses to growth factor stimulation in vitro and their regenerative activity in vivo in mice that had undergone transplantation. Initial experiments revealed that advancing donor age was accompanied by a significant and progressively delayed proliferative response but not the altered mature cell outputs seen in normal older individuals. Importantly, subsequent dose-response analyses revealed an age-associated reduction in the growth factor-stimulated proliferation of CD49f+ cells mediated by reduced activation of AKT and altered cell cycle entry and progression. These findings identify a new intrinsic, pervasive, and progressive aging-related alteration in the biological and signaling mechanisms required to drive the proliferation of very primitive, normal human hematopoietic cells.


Subject(s)
Hematopoietic Stem Cells , Mitogens , Adult , Humans , Animals , Mice , Integrin alpha6/metabolism , Mitogens/metabolism , Hematopoietic Stem Cells/metabolism , Antigens, CD34/metabolism , Cell Proliferation , Cell Cycle Checkpoints , Cell Cycle , Intercellular Signaling Peptides and Proteins/metabolism
9.
Proc Natl Acad Sci U S A ; 119(39): e2202563119, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36122234

ABSTRACT

Hundreds of members have been synthesized and versatile applications have been promised for endofullerenes (EFs) in the past 30 y. However, the formation mechanism of EFs is still a long-standing puzzle to chemists, especially the mechanism of embedding clusters into charged carbon cages. Here, based on synthesis and structures of two representative vanadium-scandium-carbido/carbide EFs, VSc2C@Ih (7)-C80 and VSc2C2@Ih (7)-C80, a reasonable mechanism-C1 implantation (a carbon atom is implanted into carbon cage)-is proposed to interpret the evolution from VSc2C carbido to VSc2C2 carbide cluster. Supported by theoretical calculations together with crystallographic characterization, the single electron on vanadium (V) in VSc2C@Ih (7)-C80 is proved to facilitate the C1 implantation. While the V=C double bond is identified for VSc2C@Ih (7)-C80, after C1 implantation the distance between V and C atoms in VSc2C2@Ih (7)-C80 falls into the range of single bond lengths as previously shown in typical V-based organometallic complexes. This work exemplifies in situ self-driven implantation of an outer carbon atom into a charged carbon cage, which is different from previous heterogeneous implantation of nonmetal atoms (Group-V or -VIII atoms) driven by high-energy ion bombardment or high-pressure offline, and the proposed C1 implantation mechanism represents a heretofore unknown metal-carbon cluster encapsulation mechanism and can be the fundamental basis for EF family genesis.

10.
J Am Chem Soc ; 146(15): 10767-10775, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38591723

ABSTRACT

Atomically precise superatomic copper nanoclusters (Cu NCs) have been the subject of immense interest for their intriguing structures and diverse properties; nonetheless, the variable oxidation state of copper ions and complex solvation effects in wet synthesis systems pose significant challenges for comprehending their synthesis and crystallization mechanism. Herein, we present a solvent-mediated approach for the synthesis of two Cu NCs, namely, superatomic Cu26 and pure-Cu(I) Cu16. They initially formed as a hetero-phase and then separated as a homo-phase via modulating binary solvent composition. In situ UV/vis absorption and electrospray ionization mass spectra revealed that the solvent-mediated assembly was determined to be the underlying mechanism of hetero/homo-phase crystallization. Cu26 is a 2-electron superatom with a kernel-shell structure that includes a [Cu20Se12]4- shell and [Cu6]4+ kernel, containing two 1S jellium electrons. Conversely, Cu16 is a pure-Cu(I) Cu/Se nanocluster that features a [Cu16Se6]4+ core protected by extra dimercaptomaleonitrile ligands. Remarkably, Cu26 exhibits unique near-infrared phosphorescence (NIR PH) at 933 nm due to the presence of a superatomic kernel-related charge transfer state (3MM(Cu)CT). Overall, this work not only showcases the hetero/homo-phase crystallization of Cu NCs driven by a solvent-mediated assembly mechanism but also enables the rare occurrence of NIR PH within the 2-electron copper superatom family.

11.
Biochem Biophys Res Commun ; 717: 150061, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38718570

ABSTRACT

Epithelial mesenchymal transition (EMT) is a critical process implicated in the pathogenesis of retinal fibrosis and the exacerbation of diabetic retinopathy (DR) within retinal pigment epithelium (RPE) cells. Apigenin (AP), a potential dietary supplement for managing diabetes and its associated complications, has demonstrated inhibitory effects on EMT in various diseases. However, the specific impact and underlying mechanisms of AP on EMT in RPE cells remain poorly understood. In this study, we have successfully validated the inhibitory effects of AP on high glucose-induced EMT in ARPE-19 cells and diabetic db/db mice. Notably, our findings have identified CBP/p300 as a potential therapeutic target for EMT in RPE cells and have further substantiated that AP effectively downregulates the expression of EMT-related genes by attenuating the activity of CBP/p300, consequently reducing histone acetylation alterations within the promoter region of these genes. Taken together, our results provide novel evidence supporting the inhibitory effect of AP on EMT in RPE cells, and highlight the potential of specifically targeting CBP/p300 as a strategy for inhibiting retinal fibrosis in the context of DR.


Subject(s)
Apigenin , Epithelial-Mesenchymal Transition , Glucose , Histones , Retinal Pigment Epithelium , Epithelial-Mesenchymal Transition/drug effects , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Animals , Apigenin/pharmacology , Acetylation/drug effects , Humans , Glucose/metabolism , Glucose/toxicity , Histones/metabolism , Cell Line , Mice , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/antagonists & inhibitors , Mice, Inbred C57BL , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Diabetic Retinopathy/drug therapy , E1A-Associated p300 Protein/metabolism , Male , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , CREB-Binding Protein/metabolism , CREB-Binding Protein/genetics
12.
Cancer Cell Int ; 24(1): 131, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594722

ABSTRACT

Extensive exploration of the molecular subtypes of triple-negative breast cancer (TNBC) is critical for advancing precision medicine. Notably, the luminal androgen receptor (LAR) subtype has attracted attention for targeted treatment combining androgen receptor antagonists and CDK4/6 inhibitors. Unfortunately, this strategy has proven to be of limited efficacy, highlighting the need for further optimization. Using our center's comprehensive multiomics dataset (n = 465), we identified novel therapeutic targets and evaluated their efficacy through multiple models, including in vitro LAR cell lines, in vivo cell-derived allograft models and ex vivo patient-derived organoids. Moreover, we conducted flow cytometry and RNA-seq analysis to unveil potential mechanisms underlying the regulation of tumor progression by these therapeutic strategies. LAR breast cancer cells exhibited sensitivity to chidamide and enzalutamide individually, with a drug combination assay revealing their synergistic effect. Crucially, this synergistic effect was verified through in vivo allograft models and patient-derived organoids. Furthermore, transcriptomic analysis demonstrated that the combination therapeutic strategy could inhibit tumor progression by regulating metabolism and autophagy. This study confirmed that the combination of histone deacetylase (HDAC) inhibitors and androgen receptor (AR) antagonists possessed greater therapeutic efficacy than monotherapy in LAR TNBC. This finding significantly bolsters the theoretical basis for the clinical translation of this combination therapy and provides an innovative strategy for the targeted treatment of LAR TNBC.

13.
Chemphyschem ; : e202400281, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38686913

ABSTRACT

The correct characterization and identification of different kinds of proteins is crucial for the survival and development of living organisms, and proteomics research promotes the analysis and understanding of future genome functions. Nanopore technique has been proved to accurately identify individual nucleotides. However, accurate and rapid protein sequencing is difficult due to the variability of protein structures that contains more than 20 amino acids, and it remains very challenging especially for uncharged peptides as they can not be electrophoretically driven through the nanopore. Graphene nanopores have the advantages of high accuracy, sensitivity and low cost in identifying protein phosphorylation modifications. Here, by using all-atom molecular dynamics simulations, charged graphene nanopores are employed to electroosmotically capture and sense uncharged peptides. By further mimicking AFM manipulation of single molecules, it is also found that the uncharged peptides and their phosphorylated states could also be differentiated by both the ionic current and pulling force signals during their pulling processes through the nanopore with a slow and constant velocity. The results shows ability of using nanopores to detect and discriminate single amino acid and its phosphorylation, which is essential for the future low-cost and high-throughput sequencing of protein residues and their post-translational modifications.

14.
Chemphyschem ; 25(7): e202300866, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38267372

ABSTRACT

Protein sequencing is crucial for understanding the complex mechanisms driving biological functions and is of utmost importance in molecular diagnostics and medication development. Nanopores have become an effective tool for single molecule sensing, however, the weak charge and non-uniform charge distribution of protein make capturing and sensing very challenging, which poses a significant obstacle to the development of nanopore-based protein sequencing. In this study, to facilitate capturing of the unfolded protein, highly charged peptide was employed in our simulations, we found that the velocity of unfolded peptide translocating through a hybrid nanopore composed of silicon nitride membrane and carbon nanotube is much slower compared to bare silicon nitride nanopore, it is due to the significant interaction between amino acids and the surface of carbon nanotube. Moreover, by introducing variations in the charge states at the boundaries of carbon nanotube nanopores, the competition and combination of the electrophoretic and electroosmotic flows through the nanopores could be controlled, we then successfully regulated the translocation velocity of unfolded proteins through the hybrid nanopores. The proposed hybrid nanopore effectively retards the translocation velocity of protein through it, facilitates the acquisition of ample information for accurate amino acid identification.


Subject(s)
Nanopores , Nanotubes, Carbon , Silicon Compounds , Deceleration , Proteins , Amino Acids , Peptides
15.
Langmuir ; 40(13): 7242-7248, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38501957

ABSTRACT

The metal-thiol interface is ubiquitous in nanotechnology and surface chemistry. It is not only used to construct nanocomposites but also plays a decisive role in the properties of these materials. When organothiol molecules bind to the gold surface, there is still controversy over whether sulfhydryl groups can form disulfide bonds and whether these disulfide bonds can remain stable on the gold surface. Here, we investigate the intrinsic properties of sulfhydryl groups on the gold surface at the single-molecule level using a scanning tunneling microscope break junction technique. Our findings indicate that sulfhydryl groups can react with each other to form disulfide bonds on the gold surface, and the electric field can promote the sulfhydryl coupling reaction. In addition to these findings, ultraviolet irradiation is used to effectively regulate the coupling between sulfhydryl groups, leading to the formation and cleavage of disulfide bonds. These results unveil the intrinsic properties of sulfhydryl groups on the gold surface, therefore facilitating the accurate construction of broad nanocomposites with the desired functionalities.

16.
Nanotechnology ; 35(13)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38118165

ABSTRACT

Protein sequencing is crucial for understanding the complex mechanisms driving biological functions. However, proteins are usually folded in their native state and the mechanism of fast protein conformation transitions still remains unclear, which make protein sequencing challenging. Molecular dynamics simulations with accurate force field are now able to observe the entire folding/unfolding process, providing valuable insights into protein folding mechanisms. Given that proteins can be unfolded, nanopore technology shows great potential for protein sequencing. In this study, we proposed to use MoS2/SnS2heterostructures to firstly unfold proteins and then detect them by a nanopore in the heterostructural membrane. All-atom molecular dynamics simulations performed in this work provided rich atomic-level information for a comprehensive understanding of protein unfolding process and mechanism on the MoS2/SnS2heterostructure, it was found that the strong binding of protein to SnS2nanostripe and hydrogen bond breaking were the main reasons for unfolding the protein on the heterostructure. After the protein was fully unfolded, it was restrained on the nanostripe because of the affinity of protein to the SnS2nanostripe. Thus by integrating the proposed unfolding technique with nanopore technology, detection of linear unfolded peptide was realized in this work, allowing for the identification of protein components, which is essential for sequencing proteins in the near future.


Subject(s)
Molybdenum , Nanopores , Protein Folding , Protein Unfolding , Proteins/chemistry
17.
Environ Res ; 246: 118533, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38417660

ABSTRACT

Real-time flood forecasting is one of the most pivotal measures for flood management, and real-time error correction is a critical step to guarantee the reliability of forecasting results. However, it is still challenging to develop a robust error correction technique due to the limited cognitions of catchment mechanisms and multi-source errors across hydrological modeling. In this study, we proposed a hydrologic similarity-based correction (HSBC) framework, which hybridizes hydrological modeling and multiple machine learning algorithms to advance the error correction of real-time flood forecasting. This framework can quickly and accurately retrieve similar historical simulation errors for different types of real-time floods by integrating clustering, supervised classification, and similarity retrieval methods. The simulation errors "carried" by similar historical floods are extracted to update the real-time forecasting results. Here, combining the Xin'anjiang model-based forecasting platform with k-means, K-nearest neighbor (KNN), and embedding based subsequences matching (EBSM) method, we constructed the HSBC framework and applied it to China's Dufengkeng Basin. Three schemes, including "non-corrected" (scheme 1), "auto-regressive (AR) corrected" (scheme 2), and "HSBC corrected" (scheme 3), were built for comparison purpose. The results indicated the following: 1) the proposed framework can successfully retrieval similar simulation errors with a considerable retrieval accuracy (2.79) and time consumption (228.18 s). 2) four evaluation metrics indicated that the HSBC-based scheme 3 performed much better than the AR-based scheme 2 in terms of both the whole flood process and the peak discharge; 3) the proposed framework overcame the shortcoming of the AR model that have poor correction for the flood peaks and can provide more significant correction for the floods with bad forecasting performance. Overall, the HSBC framework demonstrates the advancement of benefiting the real-time error correction from hydrologic similarity theory and provides a novel methodological alternative for flood control and water management in wider areas.


Subject(s)
Floods , Machine Learning , Reproducibility of Results , Computer Simulation , Forecasting
18.
Cardiol Young ; : 1-10, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38433549

ABSTRACT

OBJECTIVES: Hypertrophic cardiomyopathy is the leading cause of sudden cardiac death among the paediatric population. The aim of this study is to investigate the prevalence and clinical significance of late gadolinium enhancement, as assessed by cardiac MRI, in paediatric hypertrophic cardiomyopathy. METHODS: A systematic literature search was conducted in PubMed, SCOPUS, and Ovid SP to identify relevant studies. Pooled estimates with a 95% confidence interval were calculated using the random-effects generic inverse variance model. Statistical analysis was performed using Review Manager v5.4 and R programming. RESULTS: Seventeen studies were included in this meta-analysis, encompassing a total of 778 patients. Late gadolinium enhancement was highly prevalent in paediatric hypertrophic cardiomyopathy, with a pooled prevalence of 51% (95% confidence interval, 40-62%). The estimated extent of focal fibrosis expressed as a percentage of left ventricular mass was 4.70% (95% confidence interval, 2.11-7.30%). The presence of late gadolinium enhancement was associated with an increased risk of adverse cardiac events (pooled odds ratio 3.49, 95% confidence interval 1.10-11.09). The left ventricular mass index of late gadolinium enhancement-positive group was higher than the negative group, with a standardised mean difference of 0.91 (95% confidence interval, 0.42-1.41). CONCLUSION: This meta-analysis demonstrates that prevalence of late gadolinium enhancement in paediatric hypertrophic cardiomyopathy is similar to that in the adult population. The presence and extent of late gadolinium enhancement are independent predictors of adverse cardiac events, underscoring their prognostic significance among the paediatric population.

19.
J Environ Manage ; 354: 120474, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422568

ABSTRACT

Sustainable agricultural development requires comprehending the fundamental factors influencing farmers' adoption of safe production behavior. This study investigates intrinsic and extrinsic determinants, encompassing the influence of individual self-regulation and external monitoring, regarding the endorsement of safe labor practices among farmers in Kuan-Chung Plain, China. The findings underscore the pivotal role of personal self-regulation in stimulating farmers' implementation of safe production behavior. Additionally, governmental and public monitoring can act as catalysts, motivating farmers to shift from conventional agricultural production methods to safer alternatives. Moreover, the results revealed that a synergistic effect arises from the collaboration between public and governmental monitoring, combined with individual self-regulation. This collaborative approach significantly enhances farmers' propensity to embrace safe production behavior. Hence, policymakers should prioritize educating farmers on ethical restraint, optimizing policy strategies, and strengthening supervision practices to establish an effective platform for public monitoring. These measures will augment farmers' comprehension of the significance of safe production behavior and empower them to proactively implement these behaviors.


Subject(s)
Farmers , Self-Control , Humans , Agriculture , China , Policy
20.
Geriatr Nurs ; 58: 111-118, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38788558

ABSTRACT

The objective of this study was to investigate the chain mediating effects of depressive symptoms and social participation between functional teeth and cognitive function based on the biopsychosocial model. Data from the 2018 China Health and Retirement Longitudinal Study were analyzed. The findings revealed a favorable connection between the lack of edentulism and cognitive function, persisting even when accounting for the mediating factors of denture usage, depressive symptoms, and social participation. Furthermore, the study identified six indirect pathways in this relationship. The present study has substantiated the correlation between edentulism and cognitive function, thereby proposing that interventions aimed at denture usage, depressive symptoms, and social participation could potentially serve as preventive measures against cognitive decline in elderly individuals afflicted with edentulism. This underscores the significance of addressing these factors to alleviate cognitive decline.

SELECTION OF CITATIONS
SEARCH DETAIL