ABSTRACT
Bismuth and rare earth elements have been identified as effective substituent elements in the iron garnet structure, allowing an enhancement in magneto-optical response by several orders of magnitude in the visible and near-infrared region. Various mechanisms have been proposed to account for such enhancement, but testing of these ideas is hampered by a lack of suitable experimental data, where information is required not only regarding the lattice sites where substituent atoms are located but also how these atoms affect various order parameters. Here, we show for a Bi-substituted lutetium iron garnet how a suite of advanced electron microscopy techniques, combined with theoretical calculations, can be used to determine the interactions between a range of quantum-order parameters, including lattice, charge, spin, orbital, and crystal field splitting energy. In particular, we determine how the Bi distribution results in lattice distortions that are coupled with changes in electronic structure at certain lattice sites. These results reveal that these lattice distortions result in a decrease in the crystal-field splitting energies at Fe sites and in a lifted orbital degeneracy at octahedral sites, while the antiferromagnetic spin order remains preserved, thereby contributing to enhanced magneto-optical response in bismuth-substituted iron garnet. The combination of subangstrom imaging techniques and atomic-scale spectroscopy opens up possibilities for revealing insights into hidden coupling effects between multiple quantum-order parameters, thereby further guiding research and development for a wide range of complex functional materials.
ABSTRACT
Electrostatic dielectric capacitors are essential components in advanced electronic and electrical power systems due to their ultrafast charging/discharging speed and high power density. A major challenge, however, is how to improve their energy densities to effectuate the next-generation applications that demand miniaturization and integration. Here, we report a high-entropy stabilized Bi2Ti2O7-based dielectric film that exhibits an energy density as high as 182 J cm-3 with an efficiency of 78% at an electric field of 6.35 MV cm-1. Our results reveal that regulating the atomic configurational entropy introduces favourable and stable microstructural features, including lattice distorted nano-crystalline grains and a disordered amorphous-like phase, which enhances the breakdown strength and reduces the polarization switching hysteresis, thus synergistically contributing to the energy storage performance. This high-entropy approach is expected to be widely applicable for the development of high-performance dielectrics.
ABSTRACT
Strain engineering plays an important role in tuning the microstructure and properties of heterostructures. The key to implement the strain modulation to heterostructures is controlling the strain relaxation, which is generally realized by varying the thickness of thin films or changing substrates. Here, we show that interface polarity can tailor the behavior of strain relaxation in a hexagonal manganite film, whose strain state can be tuned to different extents. Using scanning transmission electron microscopy, a reconstructed atomic layer with elongated interlayer spacing and minor in-plane rotation is observed at the interface, suggesting that the bond hierarchy at interface transits from three-dimension to two-dimension, which accounts for the strain-free heteroepitaxy. Utilizing interface polarity to control the strain relaxation highlights a conceptually opt route to optimize the strain engineering and the realization of strain-free heteroepitaxy in such highly lattice-mismatched heterostructure also provides possibility to transform more bulklike functional oxides to low dimensionality.
ABSTRACT
Engineering lattice defects have emerged as a promising approach to effectively modulate the functionality of devices. Particularly, antiphase boundaries (APBs) as planar defects have been considered major obstacles to optimizing the ionic conductivity of mixed ionic-electronic conductors (MIECs) in solid oxide fuel applications. Here our study identifies topotactically transformable APBs (tt-APBs) at the atomic level and demonstrates that they exhibit higher ionic conductivity at elevated temperatures as compared to perfect domains. In-situ observation at the atomic scale tracks dynamic oxygen migration across these tt-APBs, where the abundant interstitial sites between tetrahedrons facilitate the ionic migration. Furthermore, annealing in an oxidized atmosphere can lead to the formation of interstitial oxygen at these APBs. These pieces of evidence clearly clarify that the tt-APBs can contribute to oxygen conductivity as anion diffusion channels, while the topotactically non-transformable APBs cannot. The topotactic transformability opens the way of defect engineering strategies for improving ionic transportation in MIECs.
ABSTRACT
Interfacial reconstruction, emanating from the symmetry breaking at the interface, plays a key role in modulating the microstructures and properties of heterostructures. The appeal of revealing such a reconstruction resides in the underlying mechanism connected to the function of heterostructures and new insights into designing a new interface device. Here, we demonstrate an interfacial reconstruction in a large lattice-mismatch system, h-LuFeO3/α-Al2O3 heterostructure. Combining the atomic-resolution imaging and spectroscopy of scanning transmission electron microscopy, the periodic variation of FeO immediate coordination and charge ordering of iron are revealed, indicating a strong lattice-charge coupling in the reconstruction. Such a reconstruction reported here suggests that polyhedral and electronic flexibility is important for the reconstruction formation and presents possibilities for further construction of more functional heterostructures.