Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
New Phytol ; 243(3): 966-980, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38840557

ABSTRACT

Throughout their lifecycle, plants are subjected to DNA damage from various sources, both environmental and endogenous. Investigating the mechanisms of the DNA damage response (DDR) is essential to unravel how plants adapt to the changing environment, which can induce varying amounts of DNA damage. Using a combination of whole-mount single-molecule RNA fluorescence in situ hybridization (WM-smFISH) and plant cell cycle reporter lines, we investigated the transcriptional activation of a key homologous recombination (HR) gene, RAD51, in response to increasing amounts of DNA damage in Arabidopsis thaliana roots. The results uncover consistent variations in RAD51 transcriptional response and cell cycle arrest among distinct cell types and developmental zones. Furthermore, we demonstrate that DNA damage induced by genotoxic stress results in RAD51 transcription throughout the whole cell cycle, dissociating its traditional link with S/G2 phases. This work advances the current comprehension of DNA damage response in plants by demonstrating quantitative differences in DDR activation. In addition, it reveals new associations with the cell cycle and cell types, providing crucial insights for further studies of the broader response mechanisms in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Cycle , DNA Damage , Gene Expression Regulation, Plant , Plant Roots , Rad51 Recombinase , Transcription, Genetic , Arabidopsis/genetics , Plant Roots/genetics , Plant Roots/cytology , Cell Cycle/genetics , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
2.
EMBO Rep ; 23(12): e54736, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36278395

ABSTRACT

Homologous recombination (HR) is a conservative DNA repair pathway in which intact homologous sequences are used as a template for repair. How the homology search happens in the crowded space of the cell nucleus is, however, still poorly understood. Here, we measure chromosome and double-strand break (DSB) site mobility in Arabidopsis thaliana, using lacO/LacI lines and two GFP-tagged HR reporters. We observe an increase in chromatin mobility upon the induction of DNA damage, specifically at the S/G2 phases of the cell cycle. This increase in mobility is lost in the sog1-1 mutant, a central transcription factor of the DNA damage response in plants. Also, DSB sites show particularly high mobility levels and their enhanced mobility requires the HR factor RAD54. Our data suggest that repair mechanisms promote chromatin mobility upon DNA damage, implying a role of this process in the early steps of the DNA damage response.


Subject(s)
Chromatin , DNA Damage , Chromatin/genetics
3.
New Phytol ; 237(1): 339-353, 2023 01.
Article in English | MEDLINE | ID: mdl-36254103

ABSTRACT

Polyploidization, the process leading to the increase in chromosome sets, is a major evolutionary transition in plants. Whole-genome duplication (WGD) within the same species gives rise to autopolyploids, whereas allopolyploids result from a compound process with two distinct components: WGD and interspecific hybridization. To dissect the instant effects of WGD and hybridization on gene expression and phenotype, we created a series of synthetic hybrid and polyploid Capsella plants, including diploid hybrids, autotetraploids of both parental species, and two kinds of resynthesized allotetraploids with different orders of WGD and hybridization. Hybridization played a major role in shaping the relative expression pattern of the neo-allopolyploids, whereas WGD had almost no immediate effect on relative gene expression pattern but, nonetheless, still affected phenotypes. No transposable element-mediated genomic shock scenario was observed in either neo-hybrids or neo-polyploids. Finally, WGD and hybridization interacted and the distorting effects of WGD were less strong in hybrids. Whole-genome duplication may even improve hybrid fertility. In summary, while the initial relative gene expression pattern in neo-allotetraploids was almost entirely determined by hybridization, WGD only had trivial effects on relative expression patterns, both processes interacted and had a strong impact on physical attributes and meiotic behaviors.


Subject(s)
Capsella , Capsella/genetics , Gene Duplication , Polyploidy , Hybridization, Genetic , Diploidy , Plants/genetics , Genome, Plant
4.
Plant Cell ; 32(4): 935-949, 2020 04.
Article in English | MEDLINE | ID: mdl-31964802

ABSTRACT

Whether, and to what extent, phenotypic evolution follows predictable genetic paths remains an important question in evolutionary biology. Convergent evolution of similar characters provides a unique opportunity to address this question. The transition to selfing and the associated changes in flower morphology are among the most prominent examples of repeated evolution in plants. In this study, we take advantage of the independent transitions to self-fertilization in the genus Capsella to compare the similarities between parallel modifications of floral traits and test for genetic and developmental constraints imposed on flower evolution in the context of the selfing syndrome. Capsella rubella and Capsella orientalis emerged independently but evolved almost identical flower characters. Not only is the evolutionary outcome identical but the same developmental strategies underlie the convergent reduction of flower size. This has been associated with convergent evolution of gene expression changes. The transcriptomic changes common to both selfing lineages are enriched in genes with low network connectivity and with organ-specific expression patterns. Comparative genetic mapping also suggests that, at least in the case of petal size evolution, these similarities have a similar genetic basis. Based on these results, we hypothesize that the limited availability of low-pleiotropy paths predetermines closely related species to similar evolutionary outcomes.


Subject(s)
Biological Evolution , Capsella/genetics , Self-Fertilization/genetics , Flowers/anatomy & histology , Gene Expression Regulation, Plant , Gene Regulatory Networks , Genetic Pleiotropy , Organ Size/genetics
5.
Am J Bot ; 110(10): e16237, 2023 10.
Article in English | MEDLINE | ID: mdl-37661924

ABSTRACT

PREMISE: Floral scent, usually consisting of multiple compounds, is a complex trait, and its role in pollinator attraction has received increasing attention. However, disentangling the effect of individual floral scent compounds is difficult due to the complexity of isolating the effect of single compounds by traditional methods. METHODS: Using available quasi-isogenic lines (qILs) that were generated as part of the original mapping of the floral scent volatile-related loci CNL1 (benzaldehyde) and TPS2 (ß-ocimene) in Capsella, we generated four genotypes that should only differ in these two compounds. Plants of the four genotypes were introduced into a common garden outside the natural range of C. rubella or C. grandiflora, with individuals of a self-compatible C. grandiflora line as pollen donors, whose different genetic background facilitates the detection of outcrossing events. Visitors to flowers of all five genotypes were compared, and the seeds set during the common-garden period were collected for high-throughput amplicon-based sequencing to estimate their outcrossing rates. RESULTS: Benzaldehyde and ß-ocimene emissions were detected in the floral scent of corresponding genotypes. While some pollinator groups showed specific visitation preferences depending on scent compounds, the outcrossing rates in seeds did not vary among the four scent-manipulated genotypes. CONCLUSIONS: The scent-manipulated Capsella materials constructed using qILs provide a powerful system to study the ecological effects of individual floral scent compounds under largely natural environments. In Capsella, individual benzaldehyde and ß-ocimene emission may act as attractants for different types of pollinators.


Subject(s)
Capsella , Odorants , Humans , Benzaldehydes , Capsella/genetics , Pollination , Flowers
6.
Development ; 145(8)2018 04 24.
Article in English | MEDLINE | ID: mdl-29691226

ABSTRACT

Gene duplication is a major driver for the increase of biological complexity. The divergence of newly duplicated paralogs may allow novel functions to evolve, while maintaining the ancestral one. Alternatively, partitioning the ancestral function among paralogs may allow parts of that role to follow independent evolutionary trajectories. We studied the REDUCED COMPLEXITY (RCO) locus, which contains three paralogs that have evolved through two independent events of gene duplication, and which underlies repeated events of leaf shape evolution within the Brassicaceae. In particular, we took advantage of the presence of three potentially functional paralogs in Capsella to investigate the extent of functional divergence among them. We demonstrate that the RCO copies control growth in different areas of the leaf. Consequently, the copies that are retained active in the different Brassicaceae lineages contribute to define the leaf dissection pattern. Our results further illustrate how successive gene duplication events and subsequent functional divergence can increase trait evolvability by providing independent evolutionary trajectories to specialized functions that have an additive effect on a given trait.


Subject(s)
Brassicaceae/anatomy & histology , Brassicaceae/genetics , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Arabidopsis/anatomy & histology , Arabidopsis/genetics , Brassicaceae/classification , Capsella/anatomy & histology , Capsella/genetics , Evolution, Molecular , Gene Duplication , Genes, Plant , Genetic Variation , Mutation , Phylogeny , Plant Leaves/growth & development , Plants, Genetically Modified
7.
J Exp Bot ; 72(4): 971-989, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33537708

ABSTRACT

The success of species depends on their ability to exploit ecological resources in order to optimize their reproduction. However, species are not usually found within single-species ecosystems but in complex communities. Because of their genetic relatedness, closely related lineages tend to cluster within the same ecosystem, rely on the same resources, and be phenotypically similar. In sympatry, they will therefore compete for the same resources and, in the case of flowering plants, exchange their genes through heterospecific pollen transfer. These interactions, nevertheless, pose significant challenges to species co-existence because they can lead to resource limitation and reproductive interference. In such cases, divergent selective pressures on floral traits will favour genotypes that isolate or desynchronize the reproduction of sympatric lineages. The resulting displacement of reproductive characters will, in turn, lead to pre-mating isolation and promote intraspecific divergence, thus initiating or reinforcing the speciation process. In this review, we discuss the current theoretical and empirical knowledge on the influence of heterospecific pollen transfer on flower evolution, highlighting its potential to uncover the ecological and genomic constraints shaping the speciation process.


Subject(s)
Ecosystem , Gene Flow , Biological Evolution , Flowers/genetics , Genetic Speciation , Phenotype , Sympatry
8.
Plant Cell ; 30(1): 83-100, 2018 01.
Article in English | MEDLINE | ID: mdl-29298836

ABSTRACT

In angiosperms, the gynoecium is the last structure to develop within the flower due to the determinate fate of floral meristem (FM) stem cells. The maintenance of stem cell activity before its arrest at the stage called FM termination affects the number of carpels that develop. The necessary inhibition at this stage of WUSCHEL (WUS), which is responsible for stem cell maintenance, involves a two-step mechanism. Direct repression mediated by the MADS domain transcription factor AGAMOUS (AG), followed by indirect repression requiring the C2H2 zinc-finger protein KNUCKLES (KNU), allow for the complete termination of floral stem cell activity. Here, we show that Arabidopsis thaliana MINI ZINC FINGER2 (AtMIF2) and its homolog in tomato (Solanum lycopersicum), INHIBITOR OF MERISTEM ACTIVITY (SlIMA), participate in the FM termination process by functioning as adaptor proteins. AtMIF2 and SlIMA recruit AtKNU and SlKNU, respectively, to form a transcriptional repressor complex together with TOPLESS and HISTONE DEACETYLASE19. AtMIF2 and SlIMA bind to the WUS and SlWUS loci in the respective plants, leading to their repression. These results provide important insights into the molecular mechanisms governing (FM) termination and highlight the essential role of AtMIF2/SlIMA during this developmental step, which determines carpel number and therefore fruit size.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Carrier Proteins/metabolism , Flowers/metabolism , Meristem/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/metabolism , Acetylation , Arabidopsis/genetics , Base Sequence , DNA-Binding Proteins , Flowers/genetics , Fruit , Gene Expression Regulation, Plant , Genetic Loci , Meristem/genetics , Organ Specificity/genetics , Phenotype , Protein Binding , Sequence Homology, Amino Acid
9.
Semin Cell Dev Biol ; 79: 3-15, 2018 07.
Article in English | MEDLINE | ID: mdl-28941876

ABSTRACT

Flowers represent a key innovation during plant evolution. Driven by reproductive optimization, evolution of flower morphology has been central in boosting species diversification. In most cases, this has happened through specialized interactions with animal pollinators and subsequent reduction of gene flow between specialized morphs. While radiation has led to an enormous variability in flower forms and sizes, recurrent evolutionary patterns can be observed. Here, we discuss the targets of selection involved in major trends of pollinator-driven flower evolution. We review recent findings on their adaptive values, developmental grounds and genetic bases, in an attempt to better understand the repeated nature of pollinator-driven flower evolution. This analysis highlights how structural innovation can provide flexibility in phenotypic evolution, adaptation and speciation.


Subject(s)
Adaptation, Physiological/physiology , Flowers/physiology , Magnoliopsida/physiology , Pigmentation/physiology , Adaptation, Physiological/genetics , Animals , Color , Evolution, Molecular , Flowers/anatomy & histology , Flowers/genetics , Gene Expression Regulation, Plant , Insecta/physiology , Magnoliopsida/genetics , Magnoliopsida/parasitology , Pigmentation/genetics , Pollination/genetics , Pollination/physiology
10.
Development ; 143(18): 3394-406, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27624834

ABSTRACT

Fruits exhibit a vast array of different 3D shapes, from simple spheres and cylinders to more complex curved forms; however, the mechanism by which growth is oriented and coordinated to generate this diversity of forms is unclear. Here, we compare the growth patterns and orientations for two very different fruit shapes in the Brassicaceae: the heart-shaped Capsella rubella silicle and the near-cylindrical Arabidopsis thaliana silique. We show, through a combination of clonal and morphological analyses, that the different shapes involve different patterns of anisotropic growth during three phases. These experimental data can be accounted for by a tissue-level model in which specified growth rates vary in space and time and are oriented by a proximodistal polarity field. The resulting tissue conflicts lead to deformation of the tissue as it grows. The model allows us to identify tissue-specific and temporally specific activities required to obtain the individual shapes. One such activity may be provided by the valve-identity gene FRUITFULL, which we show through comparative mutant analysis to modulate fruit shape during post-fertilisation growth of both species. Simple modulations of the model presented here can also broadly account for the variety of shapes in other Brassicaceae species, thus providing a simplified framework for fruit development and shape diversity.


Subject(s)
Brassicaceae/anatomy & histology , Brassicaceae/metabolism , Fruit/anatomy & histology , Fruit/metabolism , Anisotropy , Arabidopsis/anatomy & histology , Arabidopsis/metabolism , Capsella/anatomy & histology , Capsella/metabolism , Gene Expression Regulation, Plant
11.
New Phytol ; 224(3): 1349-1360, 2019 11.
Article in English | MEDLINE | ID: mdl-31400223

ABSTRACT

The transition from pollinator-mediated outbreeding to selfing has occurred many times in angiosperms. This is generally accompanied by a reduction in traits attracting pollinators, including reduced emission of floral scent. In Capsella, emission of benzaldehyde as a main component of floral scent has been lost in selfing C. rubella by mutation of cinnamate-CoA ligase CNL1. However, the biochemical basis and evolutionary history of this loss remain unknown, as does the reason for the absence of benzaldehyde emission in the independently derived selfer Capsella orientalis. We used plant transformation, in vitro enzyme assays, population genetics and quantitative genetics to address these questions. CNL1 has been inactivated twice independently by point mutations in C. rubella, causing a loss of enzymatic activity. Both inactive haplotypes are found within and outside of Greece, the centre of origin of C. rubella, indicating that they arose before its geographical spread. By contrast, the loss of benzaldehyde emission in C. orientalis is not due to an inactivating mutation in CNL1. CNL1 represents a hotspot for mutations that eliminate benzaldehyde emission, potentially reflecting the limited pleiotropy and large effect of its inactivation. Nevertheless, even closely related species have followed different evolutionary routes in reducing floral scent.


Subject(s)
Benzaldehydes/metabolism , Biological Evolution , Capsella/genetics , Alleles , Amino Acids/genetics , Ecotype , Geography , Haplotypes/genetics , Kinetics , Mediterranean Region , Mutation/genetics , Odorants , Plant Proteins/genetics , Plant Proteins/metabolism
12.
Proc Natl Acad Sci U S A ; 113(48): 13911-13916, 2016 11 29.
Article in English | MEDLINE | ID: mdl-27849572

ABSTRACT

Mating system shifts recurrently drive specific changes in organ dimensions. The shift in mating system from out-breeding to selfing is one of the most frequent evolutionary transitions in flowering plants and is often associated with an organ-specific reduction in flower size. However, the evolutionary paths along which polygenic traits, such as size, evolve are poorly understood. In particular, it is unclear how natural selection can specifically modulate the size of one organ despite the pleiotropic action of most known growth regulators. Here, we demonstrate that allelic variation in the intron of a general growth regulator contributed to the specific reduction of petal size after the transition to selfing in the genus Capsella Variation within this intron affects an organ-specific enhancer that regulates the level of STERILE APETALA (SAP) protein in the developing petals. The resulting decrease in SAP activity leads to a shortening of the cell proliferation period and reduced number of petal cells. The absence of private polymorphisms at the causal region in the selfing species suggests that the small-petal allele was captured from standing genetic variation in the ancestral out-crossing population. Petal-size variation in the current out-crossing population indicates that several small-effect mutations have contributed to reduce petal-size. These data demonstrate how tissue-specific regulatory elements in pleiotropic genes contribute to organ-specific evolution. In addition, they provide a plausible evolutionary explanation for the rapid evolution of flower size after the out-breeding-to-selfing transition based on additive effects of segregating alleles.


Subject(s)
Capsella/genetics , Magnoliopsida/genetics , Quantitative Trait Loci/genetics , Reproduction/genetics , Selection, Genetic/genetics , Biological Evolution , Capsella/growth & development , Enhancer Elements, Genetic/genetics , Flowers/genetics , Flowers/growth & development , Magnoliopsida/growth & development , Organ Specificity , Phenotype , Pollination/genetics , Self-Fertilization/genetics
13.
New Phytol ; 225(1): 13-15, 2020 01.
Article in English | MEDLINE | ID: mdl-31576555

Subject(s)
Gold , Photosynthesis , Color
14.
Plant Cell ; 23(9): 3156-71, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21954462

ABSTRACT

The change from outbreeding to selfing is one of the most frequent evolutionary transitions in flowering plants. It is often accompanied by characteristic morphological and functional changes to the flowers (the selfing syndrome), including reduced flower size and opening. Little is known about the developmental and genetic basis of the selfing syndrome, as well as its adaptive significance. Here, we address these issues using the two closely related species Capsella grandiflora (the ancestral outbreeder) and red shepherd's purse (Capsella rubella, the derived selfer). In C. rubella, petal size has been decreased by shortening the period of proliferative growth. Using interspecific recombinant inbred lines, we show that differences in petal size and flower opening between the two species each have a complex genetic basis involving allelic differences at multiple loci. An intraspecific cross within C. rubella suggests that flower size and opening have been decreased in the C. rubella lineage before its extensive geographical spread. Lastly, by generating plants that likely resemble the earliest ancestors of the C. rubella lineage, we provide evidence that evolution of the selfing syndrome was at least partly driven by selection for efficient self-pollination. Thus, our studies pave the way for a molecular dissection of selfing-syndrome evolution.


Subject(s)
Adaptation, Biological/genetics , Biological Evolution , Capsella/genetics , Pollination/genetics , Alleles , Capsella/growth & development , Chimera/genetics , Chromosome Mapping , DNA, Plant/genetics , Flowers/anatomy & histology , Flowers/genetics , Flowers/growth & development , Geography , Quantitative Trait Loci , Sequence Analysis, DNA
15.
Elife ; 122024 Jan 08.
Article in English | MEDLINE | ID: mdl-38189348

ABSTRACT

Allopolyploidization is a frequent evolutionary transition in plants that combines whole-genome duplication (WGD) and interspecific hybridization. The genome of an allopolyploid species results from initial interactions between parental genomes and long-term evolution. Distinguishing the contributions of these two phases is essential to understanding the evolutionary trajectory of allopolyploid species. Here, we compared phenotypic and transcriptomic changes in natural and resynthesized Capsella allotetraploids with their diploid parental species. We focused on phenotypic traits associated with the selfing syndrome and on transcription-level phenomena such as expression-level dominance (ELD), transgressive expression (TRE), and homoeolog expression bias (HEB). We found that selfing syndrome, high pollen, and seed quality in natural allotetraploids likely resulted from long-term evolution. Similarly, TRE and most down-regulated ELD were only found in natural allopolyploids. Natural allotetraploids also had more ELD toward the self-fertilizing parental species than resynthesized allotetraploids, mirroring the establishment of the selfing syndrome. However, short-term changes mattered, and 40% of the cases of ELD in natural allotetraploids were already observed in resynthesized allotetraploids. Resynthesized allotetraploids showed striking variation of HEB among chromosomes and individuals. Homoeologous synapsis was its primary source and may still be a source of genetic variation in natural allotetraploids. In conclusion, both short- and long-term mechanisms contributed to transcriptomic and phenotypic changes in natural allotetraploids. However, the initial gene expression changes were largely reshaped during long-term evolution leading to further morphological changes.


Subject(s)
Capsella , Humans , Capsella/genetics , Chromosome Pairing , Diploidy , Gene Expression Profiling , Syndrome , Basic Helix-Loop-Helix Transcription Factors
16.
Curr Biol ; 34(12): 2702-2711.e6, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38776901

ABSTRACT

Studying the independent evolution of similar traits provides valuable insights into the ecological and genetic factors driving phenotypic evolution.1 The transition from outcrossing to self-fertilization is common in plant evolution2 and is often associated with a reduction in floral attractive features such as display size, chemical signals, and pollinator rewards.3 These changes are believed to result from the reallocation of the resources used for building attractive flowers, as the need to attract pollinators decreases.2,3 We investigated the similarities in the evolution of flower fragrance following independent transitions to self-fertilization in Capsella.4,5,6,7,8,9 We identified several compounds that exhibited similar changes in different selfer lineages, such that the flower scent composition reflects mating systems rather than evolutionary history within this genus. We further demonstrate that the repeated loss of ß-ocimene emission, one of the compounds most strongly affected by these transitions, was caused by mutations in different genes. In one of the Capsella selfing lineages, the loss of its emission was associated with a mutation altering subcellular localization of the ortholog of TERPENE SYNTHASE 2. This mutation appears to have been fixed early after the transition to selfing through the capture of variants segregating in the ancestral outcrossing population. The large extent of convergence in the independent evolution of flower scent, together with the evolutionary history and molecular consequences of a causal mutation, suggests that the emission of specific volatiles evolved as a response to changes in ecological pressures rather than resource limitation.


Subject(s)
Evolution, Molecular , Flowers , Odorants , Self-Fertilization , Flowers/genetics , Self-Fertilization/genetics , Odorants/analysis , Pollination , Alkenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Acyclic Monoterpenes
17.
Plant Cell ; 22(2): 335-48, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20139162

ABSTRACT

The regular arrangement of leaves and flowers around a plant's stem is a fascinating expression of biological pattern formation. Based on current models, the spacing of lateral shoot organs is determined by transient local auxin maxima generated by polar auxin transport, with existing primordia draining auxin from their vicinity to restrict organ formation close by. It is unclear whether this mechanism encodes not only spatial information but also temporal information about the plastochron (i.e., the interval between the formation of successive primordia). Here, we identify the Arabidopsis thaliana F-box protein SLOW MOTION (SLOMO) as being required for a normal plastochron. SLOMO interacts genetically with components of polar auxin transport, and mutant shoot apices contain less free auxin. However, this reduced auxin level at the shoot apex is not due to increased polar auxin transport down the stem, suggesting that it results from reduced synthesis. Independently reducing the free auxin level in plants causes a similar lengthening of the plastochron as seen in slomo mutants, suggesting that the reduced auxin level in slomo mutant shoot apices delays the establishment of the next auxin maximum. SLOMO acts independently of other plastochron regulators, such as ALTERED MERISTEM PROGRAM1 or KLUH/CYP78A5. We propose that SLOMO contributes to auxin homeostasis in the shoot meristem, thus ensuring a normal rate of the formation of auxin maxima and organ initiation.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/physiology , Homeostasis , Indoleacetic Acids/metabolism , Meristem/physiology , Arabidopsis Proteins/genetics , Mutation
18.
Nat Plants ; 9(7): 1094-1102, 2023 07.
Article in English | MEDLINE | ID: mdl-37322128

ABSTRACT

Multicellular organisms result from complex developmental processes largely orchestrated through the quantitative spatiotemporal regulation of gene expression. Yet, obtaining absolute counts of messenger RNAs at a three-dimensional resolution remains challenging, especially in plants, owing to high levels of tissue autofluorescence that prevent the detection of diffraction-limited fluorescent spots. In situ hybridization methods based on amplification cycles have recently emerged, but they are laborious and often lead to quantification biases. In this article, we present a simple method based on single-molecule RNA fluorescence in situ hybridization to visualize and count the number of mRNA molecules in several intact plant tissues. In addition, with the use of fluorescent protein reporters, our method also enables simultaneous detection of mRNA and protein quantity, as well as subcellular distribution, in single cells. With this method, research in plants can now fully explore the benefits of the quantitative analysis of transcription and protein levels at cellular and subcellular resolution in plant tissues.


Subject(s)
RNA , In Situ Hybridization, Fluorescence/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism
19.
Plant J ; 62(5): 727-41, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20230486

ABSTRACT

Tomato fruit growth is characterized by the occurrence of numerous rounds of DNA endo-reduplication in connection with cell expansion and final fruit size determination. Endo-reduplication is an impairment of mitosis that originates from the selective degradation of M phase-specific cyclins via the ubiquitin-mediated proteolytic pathway, requiring the E3 ubiquitin ligase anaphase promoting complex/cyclosome (APC/C). Two types of APC/C activators, namely CCS52 and CDC20 proteins, exist in plants. We report here the molecular characterization of such APC/C activators during fruit development, and provide an in planta functional analysis of SlCCS52A, a gene that is specifically associated with endo-reduplication in tomato. Altering SlCCS52A expression in either a negative or positive manner had an impact on the extent of endo-reduplication in fruit, and fruit size was reduced in both cases. In SlCCS52A over-expressing fruits, endo-reduplication was initially delayed, accounting for the altered final fruit size, but resumed and was even enhanced at 15 days post anthesis (dpa), leading to fruit growth recovery. This induction of growth mediated by endo-reduplication had a considerable impact on nitrogen metabolism in developing fruits. Our data contribute to unravelling of the physiological role of endo-reduplication in growth induction during tomato fruit development.


Subject(s)
Cell Cycle Proteins/metabolism , Fruit/growth & development , Plant Proteins/metabolism , Solanum lycopersicum/genetics , Ubiquitin-Protein Ligase Complexes/metabolism , Anaphase-Promoting Complex-Cyclosome , Cell Cycle , Cell Cycle Proteins/genetics , DNA, Plant/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Solanum lycopersicum/metabolism , Plant Proteins/genetics , Protein Interaction Mapping , Transformation, Genetic , Ubiquitin-Protein Ligase Complexes/genetics
20.
Ann Bot ; 107(9): 1433-43, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21303786

ABSTRACT

BACKGROUND: In angiosperm evolution, autogamously selfing lineages have been derived from outbreeding ancestors multiple times, and this transition is regarded as one of the most common evolutionary tendencies in flowering plants. In most cases, it is accompanied by a characteristic set of morphological and functional changes to the flowers, together termed the selfing syndrome. Two major areas that have changed during evolution of the selfing syndrome are sex allocation to male vs. female function and flower morphology, in particular flower (mainly petal) size and the distance between anthers and stigma. SCOPE: A rich body of theoretical, taxonomic, ecological and genetic studies have addressed the evolutionary modification of these two trait complexes during or after the transition to selfing. Here, we review our current knowledge about the genetics and evolution of the selfing syndrome. CONCLUSIONS: We argue that because of its frequent parallel evolution, the selfing syndrome represents an ideal model for addressing basic questions about morphological evolution and adaptation in flowering plants, but that realizing this potential will require the molecular identification of more of the causal genes underlying relevant trait variation.


Subject(s)
Adaptation, Physiological/physiology , Biological Evolution , Flowers/physiology , Magnoliopsida/physiology , Reproduction/physiology , Flowers/genetics , Flowers/growth & development , Magnoliopsida/genetics , Magnoliopsida/growth & development , Models, Biological , Phenotype , Quantitative Trait Loci , Reproduction/genetics , Self-Fertilization
SELECTION OF CITATIONS
SEARCH DETAIL