Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Breast Cancer Res Treat ; 171(3): 637-648, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29938395

ABSTRACT

PURPOSE: HER2 + breast cancer (BC) is an aggressive subtype with high rates of brain metastases (BCBM). Two-thirds of HER2 + BCBM demonstrate activation of the PI3K/mTOR pathway driving resistance to anti-HER2 therapy. This phase II study evaluated everolimus (E), a brain-permeable mTOR inhibitor, trastuzumab (T), and vinorelbine (V) in patients with HER2 + BCBM. PATIENTS AND METHODS: Eligible patients had progressive HER2 + BCBM. The primary endpoint was intracranial response rate (RR); secondary objectives were CNS clinical benefit rate (CBR), extracranial RR, time to progression (TTP), overall survival (OS), and targeted sequencing of tumors from enrolled patients. A two-stage design distinguished intracranial RR of 5% versus 20%. RESULTS: 32 patients were evaluable for toxicity, 26 for efficacy. Intracranial RR was 4% (1 PR). CNS CBR at 6 mos was 27%; at 3 mos 65%. Median intracranial TTP was 3.9 mos (95% CI 2.2-5). OS was 12.2 mos (95% CI 0.6-20.2). Grade 3-4 toxicities included neutropenia (41%), anemia (16%), and stomatitis (16%). Mutations in TP53 and PIK3CA were common in BCBM. Mutations in the PI3K/mTOR pathway were not associated with response. ERBB2 amplification was higher in BCBM compared to primary BC; ERBB2 amplification in the primary BC trended toward worse OS. CONCLUSION: While intracranial RR to ETV was low in HER2 + BCBM patients, one-third achieved CNS CBR; TTP/OS was similar to historical control. No new toxicity signals were observed. Further analysis of the genomic underpinnings of BCBM to identify tractable prognostic and/or predictive biomarkers is warranted. CLINICAL TRIAL: (NCT01305941).


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/secondary , Breast Neoplasms/pathology , Adult , Aged , Biomarkers, Tumor , Brain Neoplasms/diagnosis , Brain Neoplasms/mortality , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , DNA Copy Number Variations , Disease Progression , Everolimus/administration & dosage , Female , Humans , Magnetic Resonance Imaging , Middle Aged , Molecular Targeted Therapy , Mutation , Neoplasm Metastasis , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Survival Analysis , Trastuzumab/administration & dosage , Treatment Outcome , Vinorelbine/administration & dosage
3.
PLoS Med ; 13(12): e1002174, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27923045

ABSTRACT

BACKGROUND: Metastasis is the main cause of cancer patient deaths and remains a poorly characterized process. It is still unclear when in tumor progression the ability to metastasize arises and whether this ability is inherent to the primary tumor or is acquired well after primary tumor formation. Next-generation sequencing and analytical methods to define clonal heterogeneity provide a means for identifying genetic events and the temporal relationships between these events in the primary and metastatic tumors within an individual. METHODS AND FINDINGS: We performed DNA whole genome and mRNA sequencing on two primary tumors, each with either four or five distinct tissue site-specific metastases, from two individuals with triple-negative/basal-like breast cancers. As evidenced by their case histories, each patient had an aggressive disease course with abbreviated survival. In each patient, the overall gene expression signatures, DNA copy number patterns, and somatic mutation patterns were highly similar across each primary tumor and its associated metastases. Almost every mutation found in the primary was found in a metastasis (for the two patients, 52/54 and 75/75). Many of these mutations were found in every tumor (11/54 and 65/75, respectively). In addition, each metastasis had fewer metastatic-specific events and shared at least 50% of its somatic mutation repertoire with the primary tumor, and all samples from each patient grouped together by gene expression clustering analysis. TP53 was the only mutated gene in common between both patients and was present in every tumor in this study. Strikingly, each metastasis resulted from multiclonal seeding instead of from a single cell of origin, and few of the new mutations, present only in the metastases, were expressed in mRNAs. Because of the clinical differences between these two patients and the small sample size of our study, the generalizability of these findings will need to be further examined in larger cohorts of patients. CONCLUSIONS: Our findings suggest that multiclonal seeding may be common amongst basal-like breast cancers. In these two patients, mutations and DNA copy number changes in the primary tumors appear to have had a biologic impact on metastatic potential, whereas mutations arising in the metastases were much more likely to be passengers.


Subject(s)
Breast Neoplasms/genetics , Disease Progression , Neoplasms, Basal Cell/genetics , Aged , Breast Neoplasms/secondary , Female , Genomics , Humans , Middle Aged , Mutation , Neoplasms, Basal Cell/secondary , Retrospective Studies
4.
Breast Cancer Res ; 16(3): 304, 2014 May 06.
Article in English | MEDLINE | ID: mdl-25679873

ABSTRACT

Brain metastases remain a significant challenge in the treatment of breast cancer patients due to the unique environment posed by the central nervous system. A better understanding of the biology of breast cancer cells that have metastasized to the brain is required to develop improved therapies. A recent Proceedings of the National Academy of Sciences article demonstrates that breast cancer cells in the brain microenvironment express γ-aminobutyric acid (GABA)-related genes, enabling them to utilize GABA as an oncometabolite, thus gaining a proliferative advantage. In this viewpoint, we highlight these findings and their potential impact on the treatment of breast cancer brain metastases.


Subject(s)
Brain Neoplasms/metabolism , Breast Neoplasms/metabolism , Neurons/metabolism , 4-Aminobutyrate Transaminase/metabolism , Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/secondary , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , GABA Plasma Membrane Transport Proteins/metabolism , Glutamate Decarboxylase/metabolism , Humans , Neurons/drug effects , Receptors, GABA-A/metabolism , Tumor Microenvironment/drug effects , gamma-Aminobutyric Acid/metabolism
6.
Sci Rep ; 8(1): 1180, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29352201

ABSTRACT

Glioma is a unique neoplastic disease that develops exclusively in the central nervous system (CNS) and rarely metastasizes to other tissues. This feature strongly implicates the tumor-host CNS microenvironment in gliomagenesis and tumor progression. We investigated the differences and similarities in glioma biology as conveyed by transcriptomic patterns across four mammalian hosts: rats, mice, dogs, and humans. Given the inherent intra-tumoral molecular heterogeneity of human glioma, we focused this study on tumors with upregulation of the platelet-derived growth factor signaling axis, a common and early alteration in human gliomagenesis. The results reveal core neoplastic alterations in mammalian glioma, as well as unique contributions of the tumor host to neoplastic processes. Notable differences were observed in gene expression patterns as well as related biological pathways and cell populations known to mediate key elements of glioma biology, including angiogenesis, immune evasion, and brain invasion. These data provide new insights regarding mammalian models of human glioma, and how these insights and models relate to our current understanding of the human disease.


Subject(s)
Brain Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , Gene Expression Profiling , Glioma/genetics , Transcriptome , Animals , Brain Neoplasms/pathology , Computational Biology/methods , Dogs , Gene Expression Regulation, Neoplastic , Glioma/pathology , Mice , Rats , Reproducibility of Results , Species Specificity
7.
J Clin Invest ; 128(4): 1371-1383, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29480819

ABSTRACT

Breast cancer metastasis remains a clinical challenge, even within a single patient across multiple sites of the disease. Genome-wide comparisons of both the DNA and gene expression of primary tumors and metastases in multiple patients could help elucidate the underlying mechanisms that cause breast cancer metastasis. To address this issue, we performed DNA exome and RNA sequencing of matched primary tumors and multiple metastases from 16 patients, totaling 83 distinct specimens. We identified tumor-specific drivers by integrating known protein-protein network information with RNA expression and somatic DNA alterations and found that genetic drivers were predominantly established in the primary tumor and maintained through metastatic spreading. In addition, our analyses revealed that most genetic drivers were DNA copy number changes, the TP53 mutation was a recurrent founding mutation regardless of subtype, and that multiclonal seeding of metastases was frequent and occurred in multiple subtypes. Genetic drivers unique to metastasis were identified as somatic mutations in the estrogen and androgen receptor genes. These results highlight the complexity of metastatic spreading, be it monoclonal or multiclonal, and suggest that most metastatic drivers are established in the primary tumor, despite the substantial heterogeneity seen in the metastases.


Subject(s)
Breast Neoplasms , DNA Copy Number Variations , DNA, Neoplasm , Gene Expression Regulation, Neoplastic , RNA, Neoplasm , Sequence Analysis, DNA , Sequence Analysis, RNA , Adult , Aged , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , DNA, Neoplasm/genetics , DNA, Neoplasm/metabolism , Humans , Male , Middle Aged , Mutation , Neoplasm Metastasis , RNA, Neoplasm/biosynthesis , RNA, Neoplasm/genetics , Tumor Suppressor Protein p53/biosynthesis , Tumor Suppressor Protein p53/genetics
8.
Genome Biol ; 18(1): 66, 2017 04 08.
Article in English | MEDLINE | ID: mdl-28390427

ABSTRACT

Changes in the quantity of genetic material, known as somatic copy number alterations (CNAs), can drive tumorigenesis. Many methods exist for assessing CNAs using microarrays, but considerable technical issues limit current CNA calling based upon DNA sequencing. We present SynthEx, a novel tool for detecting CNAs from whole exome and genome sequencing. SynthEx utilizes a "synthetic-normal" strategy to overcome technical and financial issues. In terms of accuracy and precision, SynthEx is highly comparable to array-based methods and outperforms sequencing-based CNA detection tools. SynthEx robustly identifies CNAs using sequencing data without the additional costs associated with matched normal specimens.


Subject(s)
Computational Biology/methods , DNA Copy Number Variations , Genetic Heterogeneity , Neoplasms/genetics , Sequence Analysis, DNA , Software , Cluster Analysis , Exome , Exons , Gene Dosage , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing , Humans , Reproducibility of Results , Sequence Analysis, DNA/methods
9.
Neuro Oncol ; 19(9): 1237-1247, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28398584

ABSTRACT

BACKGROUND: Gliomas are diverse neoplasms with multiple molecular subtypes. How tumor-initiating mutations relate to molecular subtypes as these tumors evolve during malignant progression remains unclear. METHODS: We used genetically engineered mouse models, histopathology, genetic lineage tracing, expression profiling, and copy number analyses to examine how genomic tumor diversity evolves during the course of malignant progression from low- to high-grade disease. RESULTS: Knockout of all 3 retinoblastoma (Rb) family proteins was required to initiate low-grade tumors in adult mouse astrocytes. Mutations activating mitogen-activated protein kinase signaling, specifically KrasG12D, potentiated Rb-mediated tumorigenesis. Low-grade tumors showed mutant Kras-specific transcriptome profiles but lacked copy number mutations. These tumors stochastically progressed to high-grade, in part through acquisition of copy number mutations. High-grade tumor transcriptomes were heterogeneous and consisted of 3 subtypes that mimicked human mesenchymal, proneural, and neural glioblastomas. Subtypes were confirmed in validation sets of high-grade mouse tumors initiated by different driver mutations as well as human patient-derived xenograft models and glioblastoma tumors. CONCLUSION: These results suggest that oncogenic driver mutations influence the genomic profiles of low-grade tumors and that these, as well as progression-acquired mutations, contribute strongly to the genomic heterogeneity across high-grade tumors.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioblastoma/genetics , Glioblastoma/pathology , Glioma/genetics , Glioma/pathology , Animals , Cell Transformation, Neoplastic/genetics , Disease Progression , Genomics/methods , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mutation
10.
J Clin Invest ; 127(2): 593-607, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28094771

ABSTRACT

Orphan GPCRs provide an opportunity to identify potential pharmacological targets, yet their expression patterns and physiological functions remain challenging to elucidate. Here, we have used a genetically engineered knockin reporter mouse to map the expression pattern of the Gpr182 during development and adulthood. We observed that Gpr182 is expressed at the crypt base throughout the small intestine, where it is enriched in crypt base columnar stem cells, one of the most active stem cell populations in the body. Gpr182 knockdown had no effect on homeostatic intestinal proliferation in vivo, but led to marked increases in proliferation during intestinal regeneration following irradiation-induced injury. In the ApcMin mouse model, which forms spontaneous intestinal adenomas, reductions in Gpr182 led to more adenomas and decreased survival. Loss of Gpr182 enhanced organoid growth efficiency ex vivo in an EGF-dependent manner. Gpr182 reduction led to increased activation of ERK1/2 in basal and challenge models, demonstrating a potential role for this orphan GPCR in regulating the proliferative capacity of the intestine. Importantly, GPR182 expression was profoundly reduced in numerous human carcinomas, including colon adenocarcinoma. Together, these results implicate Gpr182 as a negative regulator of intestinal MAPK signaling-induced proliferation, particularly during regeneration and adenoma formation.


Subject(s)
Adenomatous Polyposis Coli/metabolism , Cell Proliferation , Intestine, Small/metabolism , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 3/metabolism , Neoplasms, Experimental/metabolism , Receptors, G-Protein-Coupled/metabolism , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli/pathology , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/metabolism , Animals , Gene Knockdown Techniques , Intestine, Small/pathology , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 3/genetics , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Receptors, G-Protein-Coupled/genetics
SELECTION OF CITATIONS
SEARCH DETAIL