ABSTRACT
INTRODUCTION: Assessing cochlear implantation's impact on cell loss and preventing post-implant cochlear damage are key areas of focus for hearing preservation research. The preservation of auditory neuronal and sensory neural hearing cells has a positive impact on auditory perception after implantation. This study aimed to provide details on a semi-automated spiral ganglion neuronal cell counting method, developed using whole implanted gerbil cochlea acquisitions with light-sheet microscopy. METHODS: Mongolian gerbils underwent right cochlear implantation with an electrode array whose silicone was loaded with dexamethasone or not and were euthanized 10 weeks after implantation. The cochleae were prepared according to a 29-day protocol, with the electrode array in place. Light-sheet microscopy was used for acquisition, and Imaris software was employed for three-dimensional analysis of the cochleas and semi-automatic quantification of spiral ganglion cells. The imaJ software was used for the manual quantification of these cells. RESULTS: Six cochleae were acquired by light-sheet microscopy, allowing good identification of cells. There was no significant difference between the mean number of spiral ganglion cells obtained by manual and semi-automatic counting (p = 0.25). CONCLUSION: Light-sheet microscopy provided complete visualization of the spiral ganglion and cell identification. The semi-automated counting method developed using Imaris software tools proved reliable and efficient and could be applied to a larger sample to assess post-cochlear implant cell damage and the efficacy of protective drugs delivered to the inner ear.
ABSTRACT
The aim of this study was to evaluate the potential of a cross-linked pregelatinized potato starch (PREGEFLO® PI10) as matrix former for controlled release tablets. Different types of tablets loaded with diprophylline, diltiazem HCl or theophylline were prepared by direct compression of binary drug/polymer blends. The drug content was varied from 20 to 50%. Two hydroxypropyl methylcellulose grades (HPMC K100LV and K100M) were studied as alternative matrix formers. Drug release was measured in a variety of release media using different types of experimental set-ups. This includes 0.1 N HCl, phosphate buffer pH 6.8 and water, optionally containing different amounts of NaCl, sucrose, ethanol or pancreatin, fasted state simulated gastric fluid, fed state simulated gastric fluid, fasted state simulated intestinal fluid, fed state simulated intestinal fluid as well as media simulating the conditions in the colon of healthy subjects and patients suffering from Crohn's disease. The USP apparatuses I/II/III were used under a range of operating conditions and optionally coupled with the simulation of additional mechanical stress. Importantly, the drug release kinetics was not substantially affected by the investigated environmental conditions from tablets based on the cross-linked pregelatinized potato starch, similar to HPMC tablets. However, in contrast to the latter, the starch-based tablets roughly kept their shape upon exposure to the release media (they "only" increased in size) during the observation period, and the water penetration into the systems was much less pronounced. Thus, the investigated cross-linked pregelatinized potato starch offers an interesting potential as matrix former in controlled release tablets.
Subject(s)
Delayed-Action Preparations/chemistry , Solanum tuberosum/chemistry , Starch/chemistry , Diltiazem/chemistry , Drug Liberation , Gelatin/chemistry , Humans , Hypromellose Derivatives/chemistry , Tablets/chemistry , Theophylline/chemistryABSTRACT
HPMC-, PVPVA- and PVP-based microparticles loaded with 30% ketoprofen were prepared by spray drying suspensions or solutions in various water:ethanol blends. The inlet temperature, drying gas and feed flow rates were varied. The resulting differences in the ketoprofen release rates in 0.1 M HCl could be explained based on X-ray diffraction, mDSC, SEM and particle size analysis. Importantly, long term stable drug release could be provided, being much faster than: (i) drug release from a commercial reference product, (ii) the respective physical drug:polymer mixtures, as well as (iii) the dissolution of ketoprofen powder as received. In addition, highly supersaturated release media were obtained, which did not show any sign for re-crystallization during the observation period. Surprisingly, spraying suspensions resulted in larger microparticles exhibiting faster drug release compared to spraying solutions, which resulted in smaller particles exhibiting slower drug release. These effects could be explained based on the physico-chemical characteristics of the systems.
Subject(s)
Excipients/chemistry , Ketoprofen/administration & dosage , Polymers/chemistry , Calorimetry, Differential Scanning , Chemistry, Pharmaceutical/methods , Crystallization , Drug Liberation , Hypromellose Derivatives/chemistry , Ketoprofen/chemistry , Microscopy, Electron, Scanning , Particle Size , Phase Transition , Povidone/analogs & derivatives , Povidone/chemistry , Solubility , Temperature , X-Ray DiffractionABSTRACT
Colonic drug delivery offers numerous pharmaceutical opportunities, including direct access to local therapeutic targets and drug bioavailability benefits arising from the colonic epithelium's reduced abundance of cytochrome P450 enzymes and particular efflux transporters. Current workflows for developing colonic drug delivery systems involve time-consuming, low throughput in vitro and in vivo screening methods, which hinder the identification of suitable enabling materials. Polysaccharides are useful materials for colonic targeting, as they can be utilised as dosage form coatings that are selectively digested by the colonic microbiota. However, polysaccharides are a heterogeneous family of molecules with varying suitability for this purpose. To address the need for high-throughput material selection tools for colonic drug delivery, we leveraged machine learning (ML) and publicly accessible experimental data to predict the release of the drug 5-aminosalicylic acid from polysaccharide-based coatings in simulated human, rat, and dog colonic environments. For the first time, Raman spectra alone were used to characterise polysaccharides for input as ML features. Models were validated on 8 unseen drug release profiles from new polysaccharide coatings, demonstrating the generalisability and reliability of the method. Further, model analysis facilitated an understanding of the chemical features that influence a polysaccharide's suitability for colonic drug delivery. This work represents a major step in employing spectral data for forecasting drug release from pharmaceutical formulations and marks a significant advancement in the field of colonic drug delivery. It offers a powerful tool for the efficient, sustainable, and successful development and pre-ranking of colon-targeted formulation coatings, paving the way for future more effective and targeted drug delivery strategies.
Subject(s)
Colon , Drug Delivery Systems , Drug Liberation , Machine Learning , Mesalamine , Polysaccharides , Spectrum Analysis, Raman , Colon/metabolism , Animals , Humans , Spectrum Analysis, Raman/methods , Polysaccharides/chemistry , Mesalamine/administration & dosage , Mesalamine/pharmacokinetics , Mesalamine/chemistry , Dogs , RatsABSTRACT
The production of short chain fatty acids (SCFAs) by the colonic microbiome has numerous benefits for human health, including maintenance of epithelial barrier function, suppression of colitis, and protection against carcinogenesis. Despite the therapeutic potential, there is currently no optimal approach for elevating the colonic microbiome's synthesis of SCFAs. In this study, poly(D,l-lactide-co-glycolide) (PLGA) was investigated for this application, as it was hypothesised that the colonic microbiota would metabolise PLGA to its lactate monomers, which would promote the resident microbiota's synthesis of SCFAs. Two grades of spray dried PLGA, alongside a lactate bolus control, were screened in an advanced model of the human colon, known as the M-SHIME® system. Whilst the high molecular weight (Mw) grade of PLGA was stable in the presence of the microbiota sourced from three healthy humans, the low Mw PLGA (PLGA 2) was found to be metabolised. This microbial degradation led to sustained release of lactate over 48 h and increased concentrations of the SCFAs propionate and butyrate. Further, microbial synthesis of harmful ammonium was significantly reduced compared to untreated controls. Interestingly, both types of PLGA were found to influence the composition of the luminal and mucosal microbiota in a donor-specific manner. An in vitro model of an inflamed colonic epithelium also showed the polymer to affect the expression of pro- and anti-inflammatory markers, such as interleukins 8 and 10. The findings of this study reveal PLGA's sensitivity to enzymatic metabolism in the gut, which could be harnessed for therapeutic elevation of colonic SCFAs.
Subject(s)
Fatty Acids, Volatile , Gastrointestinal Microbiome , Polylactic Acid-Polyglycolic Acid Copolymer , Humans , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Gastrointestinal Microbiome/drug effects , Fatty Acids, Volatile/metabolism , Colon/metabolism , Colon/microbiology , Lactic Acid/metabolism , Male , Adult , FemaleABSTRACT
Dexamethasone-loaded silicone matrices offer an interesting potential as innovative drug delivery systems, e.g. for the treatment of inner ear diseases or for pacemakers. Generally, very long drug release periods are targeted: several years/decades. This renders the development and optimization of novel drug products cumbersome: experimental feedback on the impact of the device design is obtained very slowly. A better understanding of the underlying mass transport mechanisms can help facilitating research in this field. A variety of silicone films were prepared in this study, loaded with amorphous or crystalline dexamethasone. Different polymorphic drug forms were investigated, the film thickness was altered and the drug optionally partially/completely exchanged by much more water-soluble dexamethasone 'phosphate'. Drug release studies in artificial perilymph, scanning electron microscopy, optical microscopy, differential scanning calorimetry, X-ray diffraction and Raman imaging were used to elucidate the physical states of the drugs and polymer, and of the systems' structure as well as dynamic changes thereof upon exposure to the release medium. Dexamethasone particles were initially homogeneously distributed throughout the systems. The hydrophobicity of the matrix former very much limits the amounts of water penetrating into the system, resulting in only partial drug dissolution. The mobile drug molecules diffuse out into the surrounding environment, due to concentration gradients. Interestingly, Raman imaging revealed that even very thin silicone layers (<20 µm) can effectively trap the drug for prolonged periods of time. The physical state of the drug (amorphous, crystalline) did not affect the resulting drug release kinetics to a noteworthy extent.
ABSTRACT
In the present study, a novel in situ forming thermosensitive hydrogel system was investigated as a versatile drug delivery system for ocular therapy. For this purpose, two thermosensitive ABA triblock copolymers bearing either furan or maleimide moieties were synthesized, named respectively poly(NIPAM-co-HEA/Furan)-PEG6K-P(NIPAM-co-HEA/Furan) (PNF) and poly(NIPAM-co-HEA/Maleimide)-PEG6K-P(NIPAM-co-HEA/-Maleimide) (PNM). Hydrogels were obtained upon mixing aqueous PNF and PNM solutions followed by incubation at 37 °C. The hydrogel undergoes an immediate (<1 min) sol-gel transition at 37 °C. In situ hydrogel formation at 37 °C was also observed after intravitreal injection of the formulation into an ex vivo rabbit eye. The hydrogel network formation was due to physical self-assembly of the PNIPAM blocks and a catalyst-free furan-maleimide Diels-Alder (DA) chemical crosslinking in the hydrophobic domains of the polymer network. Rheological studies demonstrated sol-gel transition at 23 °C, and DA crosslinks were formed in time within 60 min by increasing the temperature from 4 to 37 °C. When incubated at 37 °C, these hydrogels were stable for at least one year in phosphate buffer of pH 7.4. However, the gels degraded at basic pH 10 and 11 after 13 and 3 days, respectively, due to hydrolysis of ester bonds in the crosslinks of the hydrogel network. The hydrogel was loaded with an anti-VEGF antibody fragment (FAB; 48.4 kDa) or with corticosteroid dexamethasone (dex) by dissolving (FAB) or dispersing (DEX) in the hydrogel precursor solution. The FAB fragment in unmodified form was quantitatively released over 13 days after an initial burst release of 46, 45 and 28 % of the loading for the 5, 10 and 20 wt% hydrogel, respectively, due to gel dehydration during formation. The low molecular weight drug dexamethasone was almost quantitively released in 35 days. The slower release of dexamethasone compared to the FAB fragment can likely be explained by the solubilization of this hydrophobic drug in the hydrophobic domains of the gel. The thermosensitive gels showed good cytocompatibility when brought in contact with macrophage-like mural cells (RAW 264.7) and human retinal pigment epithelium-derived (ARPE-19) cells. This study demonstrates that PNF-PNM thermogel may be a suitable formulation for sustained release of bioactive agents into the eye for treating posterior segment eye diseases.
Subject(s)
Dexamethasone , Hydrogels , Polyethylene Glycols , Animals , Humans , Rabbits , Adrenal Cortex Hormones , Dexamethasone/administration & dosage , Drug Delivery Systems , Furans , Hydrogels/chemistry , Maleimides , Polyethylene Glycols/chemistry , Retinal Pigment Epithelium , Temperature , Administration, OphthalmicABSTRACT
Targeted drug delivery to the colon offers a myriad of benefits, including treatment of local diseases, direct access to unique therapeutic targets and the potential for increasing systemic drug bioavailability and efficacy. Although a range of traditional colonic delivery technologies are available, these systems exhibit inconsistent drug release due to physiological variability between and within individuals, which may be further exacerbated by underlying disease states. In recent years, significant translational and commercial advances have been made with the introduction of new technologies that incorporate independent multi-stimuli release mechanisms (pH and/or microbiota-dependent release). Harnessing these advanced technologies offers new possibilities for drug delivery via the colon, including the delivery of biopharmaceuticals, vaccines, nutrients, and microbiome therapeutics for the treatment of both local and systemic diseases. This review details the latest advances in colonic drug delivery, with an emphasis on emerging therapeutic opportunities and clinical technology translation.
Subject(s)
Colon/drug effects , Colon/physiology , Drug Delivery Systems/methods , Biological Products/administration & dosage , Delayed-Action Preparations , Gastrointestinal Microbiome/physiology , Gastrointestinal Transit/physiology , Humans , Hydrogen-Ion Concentration , Irritable Bowel Syndrome/drug therapy , Prebiotics/administration & dosage , Printing, Three-Dimensional , Probiotics/administration & dosage , Time Factors , Vaccines/administration & dosageABSTRACT
There is increasing evidence that extracellular vesicles (EVs) mediate the paracrine effects of stem cells. Although EVs have several attractive characteristics, they also raise issues related to delivery. For patients with cardiac disease that require a surgical procedure, direct intramyocardial (IM) administration of EVs is straightforward but its efficacy may be limited by fast wash-out, hence the interest of incorporating EVs into a controlled release polymer to optimize their residence time. For patients without surgical indication, the intravenous (IV) route is attractive because of its lack of invasiveness; however, whole-body distribution limits the fraction of EVs that reach the heart, hence the likely benefits of EV engineering to increase EV homing to the target tissue.
Subject(s)
Biocompatible Materials , Cardiovascular Abnormalities/therapy , Drug Delivery Systems/methods , Extracellular Vesicles , Bioengineering , Humans , Mesenchymal Stem Cells/metabolism , Stem Cells/metabolismABSTRACT
A variety of polymer:polymer blends was used to prepare hot melt extrudates and empty capsules (bodies and caps) by injection-molding using a benchtop extruder (Babyplast). KollidonSR:inulin and Carbothane:inulin blends were investigated. The impact of the blend ratio on the water uptake and dry mass loss kinetics upon exposure to 0.1 MHCl, phosphate buffer pH6.8 and culture medium optionally inoculated with fecal samples from Inflammatory Bowel Disease (IBD) patients were studied. Hot melt extrudates were loaded with up to 60% theophylline, capsules were filled with drug powder. Increasing the inulin content led to increased water uptake and dry mass loss rates, resulting in accelerated drug release from the dosage forms, irrespective of the type of polymer blend. This can be attributed to the higher hydrophilicity/water-solubility of this polymer compared to KollidonSR and Carbothane. Interestingly, the presence of fecal samples in culture medium increased the water uptake and dry mass loss of hot melt extrudates to a certain extent, suggesting partial system degradation by bacterial enzymes. However, these phenomena did not translate into any noteworthy impact of the presence of colonic bacteria on theophylline release from the investigated extrudates or capsules. Hence, drug release can be expected to be independent of the location "small intestine vs. colon" from these dosage forms, which can be advantageous for long term release throughout the entire gastro intestinal tract.
Subject(s)
Drug Delivery Systems , Polymers/chemistry , Technology, Pharmaceutical/methods , Theophylline/administration & dosage , Chemistry, Pharmaceutical/methods , Delayed-Action Preparations , Drug Liberation , Hydrophobic and Hydrophilic Interactions , Inulin/chemistry , Polyurethanes/chemistry , Povidone/chemistry , Solubility , Theophylline/chemistryABSTRACT
Cochlear implant is the method of choice for the rehabilitation of severe to profound sensorineural hearing loss. The study of the tissue response to cochlear implantation and the prevention of post-cochlear-implant damages are areas of interest in hearing protection research. The objective was to assess the efficacy of dexamethasone-eluting electrode array on endo canal fibrosis formation by three-dimensional immunofluorescence analysis in implanted Mongolian gerbil cochlea. Two trials were conducted after surgery using Mongolian gerbil implanted with dexamethasone-eluting or non-eluting intracochlear electrode arrays. The animals were then euthanised 10 weeks after implantation. The cochleae were prepared (electrode array in place) according to a 29-day protocol with immunofluorescent labelling and tissue clearing. The acquisition was carried out using light-sheet microscopy. Imaris software was then used for three-dimensional analysis of the cochleae and quantification of the fibrotic volume. The analysis of 12 cochleae showed a significantly different mean volume of fibrosis (2.16 × 108 µm3 ± 0.15 in the dexamethasone eluting group versus 3.17 × 108 µm3 ± 0.54 in the non-eluting group) (p = 0.004). The cochlear implant used as a corticosteroid delivery system appears to be an encouraging device for the protection of the inner ear against fibrosis induced by implantation. Three-dimensional analysis of the cochlea by light-sheet microscopy was suitable for studying post-implantation tissue damage.
ABSTRACT
The aim of this study was to gain deeper insight into the mass transport mechanisms controlling drug release from polymer-coated pellets using non-invasive analytical tools. Pellet starter cores loaded with verapamil HCl (10% loading, 45% lactose, 45% microcrystalline cellulose) were prepared by extrusion/spheronization and coated with 5% Kollicoat SR:IR 95:5 or 10% Kollicoat SR:IR 90:10. Drug release was measured from ensembles of pellets as well as from single pellets upon exposure to acetate buffer pH = 3.5 and phosphate buffer pH = 7.4. The swelling of single pellets was observed by optical microscopy, while dynamic changes in the pH in the pellet cores were monitored by fluorescence spectroscopy. Also, mathematical modeling using a mechanistically realistic theory as well as SEM and Raman imaging were applied to elucidate whether drug release mainly occurs by diffusion through the intact film coatings or whether crack formation in the film coatings plays a role. Interestingly, fluorescence spectroscopy revealed that the pH within the pellet cores substantially differed upon exposure to acetate buffer pH = 3.5 and phosphate buffer pH = 7.4, resulting in significant differences in drug solubility (verapamil being a weak base) and faster drug release at lower pH: from ensembles of pellets and single pellets. The monitoring of drug release from and the swelling of single pellets indicated that crack formation in the film coatings likely plays a major role, irrespective of the Kollicoat SR:IR ratio/coating level. This was confirmed by mathematical modeling, SEM and Raman imaging. Importantly, the latter technique allowed also for non-invasive measurements, reducing the risk of artifact creation associated with sample cutting with a scalpel.
ABSTRACT
Neurons that produce gonadotropin-releasing hormone (GnRH), which control fertility, complete their nose-to-brain migration by birth. However, their function depends on integration within a complex neuroglial network during postnatal development. Here, we show that rodent GnRH neurons use a prostaglandin D2 receptor DP1 signaling mechanism during infancy to recruit newborn astrocytes that 'escort' them into adulthood, and that the impairment of postnatal hypothalamic gliogenesis markedly alters sexual maturation by preventing this recruitment, a process mimicked by the endocrine disruptor bisphenol A. Inhibition of DP1 signaling in the infantile preoptic region, where GnRH cell bodies reside, disrupts the correct wiring and firing of GnRH neurons, alters minipuberty or the first activation of the hypothalamic-pituitary-gonadal axis during infancy, and delays the timely acquisition of reproductive capacity. These findings uncover a previously unknown neuron-to-neural-progenitor communication pathway and demonstrate that postnatal astrogenesis is a basic component of a complex set of mechanisms used by the neuroendocrine brain to control sexual maturation.
Subject(s)
Gonadotropin-Releasing Hormone , Sexual Maturation , Astrocytes/metabolism , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/physiology , Neurons/physiology , Sexual Maturation/physiologyABSTRACT
The effect of urea and guanidine hydrochloride (GuHCl) on lysozyme stability has been investigated using activity measurements, microcalorimetry and Raman spectroscopy in the low-frequency and amide I regions. Raman investigations on lysozyme dissolved in H(2)O and D(2)O in the presence of up to 10 M denaturants have revealed direct binding between the protein and both denaturants. The analysis of isotopic exchanges in the amide I region allows the identification of binding sites as hydrophilic and hydrophobic groups, respectively, for urea and GuHCl. The weak loss of activity of lysozyme in the presence of urea (â¼15% maximum) is mainly assigned to a transformation of the tertiary structure corresponding to a molten globule state without unfolding of α-helix structures, in contrast to GuHCl which clearly induces conformational changes, associated with a larger loss of activity (40% maximum). The denaturing power of urea and guanidine hydrochloride on lysozyme has been related to the solvent and protein dynamics, reflecting direct interaction between denaturants and protein. It clearly appears that solvent dynamics control protein dynamics, and the significant hardening of the dynamics of GuHCl aqueous solutions is considered responsible for its important denaturing power. The comparison between the low-frequency spectra of solvents and lysozyme aqueous solutions in the absence and presence of different types of additives (urea, GuHCl, trehalose) reveals the Raman signature of the hydration water dynamics. This comparison points out the exclusion of trehalose around the protein surface.
Subject(s)
Guanidine/chemistry , Muramidase/chemistry , Urea/chemistry , Calorimetry, Differential Scanning , Muramidase/metabolism , Protein Conformation , Protein Denaturation , Protein Stability , Spectrum Analysis, Raman , TemperatureABSTRACT
BACKGROUND: Food effects might substantially alter drug release from oral controlled release dosage forms in vivo. METHODS: The robustness of a novel type of controlled release film coating was investigated using various types of release media and two types of release apparatii. RESULTS: Importantly, none of the investigated conditions had a noteworthy impact on the release of freely water-soluble diltiazem HCl or slightly water-soluble theophylline from pellets coated with ethylcellulose containing small amounts of PVA-PEG graft copolymer. In particular, the presence of significant amounts of fats, carbohydrates, surfactants, bile salts, and calcium ions in the release medium did not alter drug release. Furthermore, changes in the pH and differences in the mechanical stress the dosage forms were exposed to did not affect drug release from the pellets. CONCLUSION: The investigated film coatings allowing for oral controlled drug delivery are highly robust in vitro and likely to be poorly sensitive to classical food effects in vivo.
Subject(s)
Cellulose/analogs & derivatives , Food , Polyvinyls/chemistry , Tablets, Enteric-Coated/chemistry , Cellulose/chemistry , Chemistry, Pharmaceutical , Diltiazem/chemistry , Drug Carriers/chemistry , Theophylline/chemistryABSTRACT
Polymeric film coatings based on quaternary polymethacrylates (QPMs, e.g. Eudragits®) are frequently used for controlled release applications. However, their considerable sticking tendency is a major drawback in practice. In this study, different amounts of magnesium aluminum silicate (MAS) were added to the film coatings in order to overcome this hurdle. MAS is negatively charged and can electrostatically interact with the positively charged QPM. Different types of tablet cores were coated with aqueous Eudragit® RL 30D dispersions, optionally containing varying amounts of MAS. Dynamic changes in the wet mass of the systems as well as drug release upon exposure to 0.1 M HCl and phosphate buffer pH 6.8 were monitored. Propranolol HCl, acetaminophen, and diclofenac sodium were used as cationic, nonionic and anionic model drugs. The tablets were optionally cured for 12 h at 45 or 60 °C. Importantly, the addition of MAS to aqueous Eudragit® RL 30D dispersion substantially reduced the films' stickiness and led to stable inner coating structures, even without curing. Desired drug release rates can be adjusted by varying the QPM:MAS ratio and coating level.
Subject(s)
Aluminum Compounds/chemistry , Excipients/chemistry , Magnesium Compounds/chemistry , Polymers/chemistry , Silicates/chemistry , Acetaminophen/chemistry , Chemistry, Pharmaceutical , Delayed-Action Preparations , Diclofenac/chemistry , Drug Liberation , Propranolol/chemistry , Tablets , TemperatureABSTRACT
BACKGROUND: The site-specific delivery of drugs to the colon can be highly advantageous for various applications, including the local treatment of inflammatory bowel diseases. The aim of this study was to provide efficient tools that can be used to easily adjust the key properties of novel polymeric film coatings allowing for colon targeting. METHODS: Free films based on blends of ethylcellulose and different types of starch derivatives (partially being pregelatinized, acetylated, and/or hydroxypropylated) were prepared and characterized. RESULTS: The key properties of the polymeric systems can effectively be adjusted by varying the polymer blend ratio and type of starch derivative. This includes the water uptake and dry mass loss kinetics as well as the mechanical properties of the films before and upon exposure to aqueous media simulating the contents of the upper GIT. CONCLUSION: Broad ranges of film coating properties can easily be provided, being adapted to the needs of the respective drug treatment.
Subject(s)
Cellulose/analogs & derivatives , Drug Carriers/chemistry , Drug Delivery Systems , Starch/chemistry , Cellulose/chemistry , Chemistry, Pharmaceutical , Colon/metabolism , Delayed-Action Preparations , Excipients/chemistry , Humans , Inflammatory Bowel Diseases/drug therapy , Water/metabolismABSTRACT
Control of infection and inflammation is crucial for the success of periodontal treatment. In this study, in-situ forming implants (ISFI) loaded with chlorhexidine dihydrochloride (CHX) and ibuprofen (IBU) were developed and tested to optimize periodontal treatment outcomes. Release profiles were promising. Exposure to 1.5% and 5.3% CHX-IBU loaded ISFI's release media decreased significantly the P. gingivalis growth up to 20-fold and 35-fold, respectively, after 48â¯h (pâ¯<â¯0.05). The metabolic activity assay of gingival epithelial cells (EC) demonstrated 1.5% CHX-IBU-loaded ISFI to be non-toxic, therefore, it was selected for further experimentation. Furthermore, significant down-regulation of TNF-α release (34% at 6â¯h and 43% at 24â¯h, pâ¯<â¯0.05) in P. gingivalis lipopolysaccharide (Pg-LPS) stimulated EC exposed to 1.5% CHX-IBU ISFI release medium was demonstrated by ELISA. In vivo, 1.5% CHX-IBU ISFI was injected into the periodontal pocket in an experimental periodontitis mouse model and the reduction in inflammation and improvement in periodontal wound healing was evaluated through inflammatory cell scoring and histomorphometry at 7- and 15-days post-treatment. The results indicate that CHX-IBU loaded ISFI could be efficient as adjuvant to periodontal therapy for the control of infection and inflammation. Moreover, other (e.g., pro-regenerative) drugs could be incorporated into ISFI to further improve periodontal treatment outcomes.
Subject(s)
Anti-Infective Agents, Local/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Chlorhexidine/administration & dosage , Ibuprofen/administration & dosage , Periodontitis/drug therapy , Animals , Anti-Infective Agents, Local/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cell Line , Chlorhexidine/chemistry , Drug Implants , Drug Liberation , Epithelial Cells/drug effects , Gingiva/cytology , Humans , Ibuprofen/chemistry , Lipopolysaccharides , Male , Mice, Inbred C57BL , Proof of Concept Study , Wound Healing/drug effectsABSTRACT
In pharmaceutical technology, lipids and polymers are considered pillar excipients for the fabrication of most dosage forms, irrespective of the administration route. They play various roles ranging from support vehicles to release rate modifiers, stabilizers, solubilizers, permeation enhancers and transfection agents. Focusing on selected applications, which were discussed at the Annual Scientific Meeting of the Gattefossé Foundation 2018, this manuscript recapitulates the fundamental roles of these two important classes of excipients, either employed alone or in combination, and provides insight on their functional properties in various types of drug formulations. Emphasis is placed on oral formulations for the administration of active pharmaceutical ingredients with low aqueous solubilities or poor permeation properties. Additionally, this review article covers the use of lipids and polymers in the design of colloidal injectable delivery systems, and as substrates in additive manufacturing technologies for the production of tailor-made dosage forms.
Subject(s)
Lipids/chemistry , Polymers/chemistry , Administration, Oral , Animals , Dosage Forms , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Excipients/chemistry , Humans , Lipids/administration & dosage , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Polymers/administration & dosage , Printing, Three-Dimensional , Technology, PharmaceuticalABSTRACT
The parenteral controlled delivery of acid-labile drugs (e.g., proteins) is difficult, because the standard polymer poly(lactic-co-glycolic acid) used to control drug release upon parenteral administration degrades into shorter chain acids, creating acidic microclimates. Lipid implants do not show this disadvantage. The objective of this article is to give an overview on the present state of the art and to highlight the advantages and drawbacks of the different types of systems reported in the literature. The major preparation techniques for lipid implants, underlying mass transport mechanisms, biocompatibility and in vivo performance of the most interesting systems are described. Lipid implants offer a great potential as parenteral controlled drug delivery systems, especially for protein-based drugs. A broad spectra of release patterns can be provided and acidic microclimates avoided.