Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
FASEB J ; 32(7): 3730-3741, 2018 07.
Article in English | MEDLINE | ID: mdl-29475373

ABSTRACT

A prolonged increase in proinflammatory cytokines is associated with osteoporotic and autoimmune bone loss and, conversely, anti-inflammatory pathways are associated with protection against bone loss. Milk fat globule-epidermal growth factor (MFG-E)-8 is a glycoprotein that is proresolving, regulates apoptotic cell clearance, and has been linked to autoimmune disease and skeletal homeostasis. The role of MFG-E8 in the young vs. adult skeleton was determined in mice deficient in MFG-E8 (KO). In vivo, trabecular bone was similar in MFG-E8KO and wild-type (WT) mice at 6 and 16 wk, whereas 22 wk adult MFG-E8KO mice displayed significantly reduced trabecular BV/TV. The number of osteoclasts per bone surface was increased in 22-wk MFG-E8 KO vs. WT mice, and recombinant murine MFG-E8 decreased the number and size of osteoclasts in vitro. Adult MFG-E8KO spleen weight:body weight was increased compared with WT, and flow cytometric analysis showed significantly increased myeloid-derived suppressor cells (CD11bhiGR-1+) and neutrophils (CD11bhiLy6G+) in MFG-E8KO bone marrow, suggesting an inflammatory phenotype. PTH-treated MFG-E8KO mice showed a greater anabolic response (+124% BV/TV) than observed in PTH-treated WT mice (+64% BV/TV). These data give insight into the role of MFG-E8 in the adult skeleton and suggest that anabolic PTH may be a valuable therapeutic approach for autoimmune-associated skeletal disease.-Michalski, M. N., Seydel, A. L., Siismets, E. M., Zweifler, L. E., Koh, A. J., Sinder, B. P., Aguirre, J. I., Atabai, K., Roca, H., McCauley, L. K. Inflammatory bone loss associated with MFG-E8 deficiency is rescued by teriparatide.


Subject(s)
Antigens, Surface/genetics , Bone Density Conservation Agents/therapeutic use , Milk Proteins/genetics , Osteoporosis/drug therapy , Teriparatide/therapeutic use , Animals , Bone Density Conservation Agents/pharmacology , Cells, Cultured , Female , Male , Mice , Mice, Inbred C57BL , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoporosis/genetics , Teriparatide/pharmacology
2.
Front Physiol ; 14: 704406, 2023.
Article in English | MEDLINE | ID: mdl-37250135

ABSTRACT

The secondary palate forms from two lateral primordia called the palatal shelves which form a contact in the midline, become adherent at the fusing interface (medial edge epithelia, MEE) and subsequently fuse. The gene encoding transforming growth factor-ß3 (Tgfb3) is strongly and specifically expressed in MEE cells. Our previous study suggested that Tgfb3 expression is controlled via upstream cis-regulatory elements in and around the neighboring Ift43 gene. Another study suggested that the canonical Wnt signaling via ß-Catenin is responsible for the MEE-specific Tgfb3 gene expression, since deletion of the Ctnnb1 gene by a commonly used Keratin 14-Cre (K14Cre) mouse line almost completely abolished Tgfb3 expression in the MEE resulting in cleft palate. Here, we wanted to analyze whether Tcf/Lef consensus binding sites located in the previously identified regions of the Ift43 gene are responsible for the spatiotemporal control of Tgfb3 expression during palatogenesis. We show that contrary to the previous report, deletion of the Ctnnb1 gene in basal MEE cells by the K14Cre driver (the same K14Cre mouse line was used as in the previous study referenced above) does not affect the MEE-specific Tgfb3 expression or TGFß3-dependent palatal epithelial fusion. All mutant embryos showed a lack of palatal rugae accompanied by other craniofacial defects, e.g., a narrow snout and a small upper lip, while only a small subset (<5%) of Ctnnb1 mutants displayed a cleft palate. Moreover, the K14Cre:Ctnnb1 embryos showed reduced levels and altered patterns of Shh expression. Our present data imply that epithelial ß-catenin may not be required for MEE-specific Tgfb3 expression or palatal epithelial fusion.

3.
J Dev Biol ; 8(3)2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32916911

ABSTRACT

Craniofacial anomalies are among the most common of birth defects. The pathogenesis of craniofacial anomalies frequently involves defects in the migration, proliferation, and fate of neural crest cells destined for the craniofacial skeleton. Genetic mutations causing deficient cranial neural crest migration and proliferation can result in Treacher Collins syndrome, Pierre Robin sequence, and cleft palate. Defects in post-migratory neural crest cells can result in pre- or post-ossification defects in the developing craniofacial skeleton and craniosynostosis (premature fusion of cranial bones/cranial sutures). The coronal suture is the most frequently fused suture in craniosynostosis syndromes. It exists as a biological boundary between the neural crest-derived frontal bone and paraxial mesoderm-derived parietal bone. The objective of this review is to frame our current understanding of neural crest cells in craniofacial development, craniofacial anomalies, and the pathogenesis of coronal craniosynostosis. We will also discuss novel approaches for advancing our knowledge and developing prevention and/or treatment strategies for craniofacial tissue regeneration and craniosynostosis.

4.
Bone ; 120: 125-136, 2019 03.
Article in English | MEDLINE | ID: mdl-30342227

ABSTRACT

Bone growth is dependent upon the presence of self-renewing progenitor cell populations. While the contribution of Tissue Nonspecific Alkaline Phosphatase (TNAP) enzyme activity in promoting bone mineralization when expressed in differentiated bone forming cells is well understood, little is known regarding the role of TNAP in bone progenitor cells. We previously found diminished proliferation in the calvarial MC3T3E1 cell line upon suppression of TNAP by shRNA, and in calvarial cells and tissues of TNAP-/- mice. These findings indicate that TNAP promotes cell proliferation. Here we investigate how TNAP mediates this effect. Results show that TNAP is essential for calvarial progenitor cell cycle progression and cytokinesis, and that these effects are mediated by inorganic phosphate and Erk1/2. Levels of active Erk1/2 are significantly diminished in TNAP deficient cranial cells and tissues even in the presence of inorganic phosphate. Moreover, in the absence of TNAP, FGFR2 expression levels are high and FGF2 rescues phospho-Erk1/2 levels and cell cycle abnormalities to a significantly greater extent than inorganic phosphate. Based upon the data we propose a model in which TNAP stimulates Erk1/2 activity via both phosphate dependent and independent mechanisms to promote cell cycle progression and cytokinesis in calvarial bone progenitor cells. Concomitantly, TNAP feeds back to inhibit FGFR2 expression. These results identify a novel mechanism by which TNAP promotes calvarial progenitor cell renewal and indicate that converging pathways exist downstream of FGF signaling and TNAP activity to control craniofacial skeletal development.


Subject(s)
Alkaline Phosphatase/metabolism , Cytokinesis , Extracellular Signal-Regulated MAP Kinases/metabolism , Skull/cytology , Stem Cells/cytology , Alkaline Phosphatase/deficiency , Animals , Cell Cycle Checkpoints/drug effects , Cell Line , Cell Proliferation , Fibroblast Growth Factor 2/pharmacology , Mice, Inbred C57BL , Phosphates/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL