Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cells ; 13(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38891095

ABSTRACT

Basal cell carcinomas (BCCs) and squamous cell carcinomas (SCCs) are high-incidence, non-melanoma skin cancers (NMSCs). The success of immune-targeted therapies in advanced NMSCs led us to anticipate that NMSCs harbored significant populations of tumor-infiltrating lymphocytes with potential anti-tumor activity. The main aim of this study was to characterize T cells infiltrating NMSCs. Flow cytometry and immunohistochemistry were used to assess, respectively, the proportions and densities of T cell subpopulations in BCCs (n = 118), SCCs (n = 33), and normal skin (NS, n = 30). CD8+ T cells, CD4+ T cell subsets, namely, Th1, Th2, Th17, Th9, and regulatory T cells (Tregs), CD8+ and CD4+ memory T cells, and γδ T cells were compared between NMSCs and NS samples. Remarkably, both BCCs and SCCs featured a significantly higher Th1/Th2 ratio (~four-fold) and an enrichment for Th17 cells. NMSCs also showed a significant enrichment for IFN-γ-producing CD8+T cells, and a depletion of γδ T cells. Using immunohistochemistry, NMSCs featured denser T cell infiltrates (CD4+, CD8+, and Tregs) than NS. Overall, these data favor a Th1-predominant response in BCCs and SCCs, providing support for immune-based treatments in NMSCs. Th17-mediated inflammation may play a role in the progression of NMSCs and thus become a potential therapeutic target in NMSCs.


Subject(s)
Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Lymphocytes, Tumor-Infiltrating , Skin Neoplasms , Th1 Cells , Th17 Cells , Humans , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Th17 Cells/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Th1 Cells/immunology , Carcinoma, Basal Cell/immunology , Carcinoma, Basal Cell/pathology , Female , Male , Aged , Cross-Sectional Studies , Middle Aged , CD8-Positive T-Lymphocytes/immunology , Aged, 80 and over , Adult
3.
Front Mol Biosci ; 10: 1082915, 2023.
Article in English | MEDLINE | ID: mdl-36825198

ABSTRACT

Background: Around 40% of ER+/HER2-breast carcinomas (BC) present mutations in the PIK3CA gene. Assessment of PIK3CA mutational status is required to identify patients eligible for treatment with PI3Kα inhibitors, with alpelisib currently the only approved tyrosine kinase inhibitor in this setting. U-PIK project aimed to conduct a ring trial to validate and implement the PIK3CA mutation testing in several Portuguese centers, decentralizing it and optimizing its quality at national level. Methods: Eight Tester centers selected two samples of patients with advanced ER+/HER2- BC and generated eight replicates of each (n = 16). PIK3CA mutational status was assessed in two rounds. Six centers used the cobas® PIK3CA mutation test, and two used PCR and Sanger sequencing. In parallel, two reference centers (IPATIMUP and the Portuguese Institute of Oncology [IPO]-Porto) performed PIK3CA mutation testing by NGS in the two rounds. The quality of molecular reports describing the results was also assessed. Testing results and molecular reports were received and analyzed by U-PIK coordinators: IPATIMUP, IPO-Porto, and IPO-Lisboa. Results: Overall, five centers achieved a concordance rate with NGS results (allele frequency [AF] ≥5%) of 100%, one of 94%, one of 93%, and one of 87.5%, considering the overall performance in the two testing rounds. NGS reassessment of discrepancies in the results of the methods used by the Tester centers and the reference centers identified one probable false positive and two mutations with low AF (1-3%, at the analytical sensitivity threshold), interpreted as subclonal variants with heterogeneous representation in the tissue sections processed by the respective centers. The analysis of molecular reports revealed the need to implement the use of appropriate sequence variant nomenclature with the identification of reference sequences (HGVS-nomenclature) and to state the tumor cell content in each sample. Conclusion: The concordance rates between the method used by each tester center and NGS validate the use of the PIK3CA mutational status test performed at these centers in clinical practice in patients with advanced ER+/HER2- BC.

4.
Neuromuscul Disord ; 24(5): 419-24, 2014 May.
Article in English | MEDLINE | ID: mdl-24534542

ABSTRACT

Congenital muscular dystrophy type 1A is caused by mutations in the LAMA2 gene, which encodes the α2-chain of laminin. We report two patients with partial laminin-α2 deficiency and atypical phenotypes, one with almost exclusive central nervous system involvement (cognitive impairment and refractory epilepsy) and the second with marked cardiac dysfunction, rigid spine syndrome and limb-girdle weakness. Patients underwent clinical, histopathological, imaging and genetic studies. Both cases have two heterozygous LAMA2 variants sharing a potentially pathogenic missense mutation c.2461A>C (p.Thr821Pro) located in exon 18. Brain MRI was instrumental for the diagnosis, since muscular examination and motor achievements were normal in the first patient and there was a severe cardiac involvement in the second. The clinical phenotype of the patients is markedly different which could in part be explained by the different combination of mutations types (two missense versus a missense and a truncating mutation).


Subject(s)
Laminin/deficiency , Laminin/genetics , Mutation, Missense , Brain/pathology , Brain/physiopathology , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Cognition Disorders/genetics , Cognition Disorders/pathology , Cognition Disorders/physiopathology , Electroencephalography , Epilepsy/genetics , Epilepsy/pathology , Epilepsy/physiopathology , Humans , Magnetic Resonance Imaging , Male , Mallory Bodies/genetics , Mallory Bodies/pathology , Middle Aged , Muscular Dystrophies/genetics , Muscular Dystrophies/pathology , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/pathology , Phenotype , Scoliosis/genetics , Scoliosis/pathology , Young Adult
5.
PLoS One ; 7(2): e31738, 2012.
Article in English | MEDLINE | ID: mdl-22359625

ABSTRACT

INTRODUCTION: Nonalcoholic fatty liver disease (NAFLD) can be seen as a manifestation of overnutrition. The muscle is a central player in the adaptation to energy overload, and there is an association between fatty-muscle and -liver. We aimed to correlate muscle morphology, mitochondrial function and insulin signaling with NAFLD severity in morbid obese patients. METHODS: Liver and deltoid muscle biopsies were collected during bariatric surgery in NAFLD patients. NAFLD Activity Score and Younossi's classification for nonalcoholic steatohepatitis (NASH) were applied to liver histology. Muscle evaluation included morphology studies, respiratory chain complex I to IV enzyme assays, and analysis of the insulin signaling cascade. A healthy lean control group was included for muscle morphology and mitochondrial function analyses. RESULTS: Fifty one NAFLD patients were included of whom 43% had NASH. Intramyocellular lipids (IMCL) were associated with the presence of NASH (OR 12.5, p<0.001), progressive hepatic inflammation (p = 0.029) and fibrosis severity (p = 0.010). There was a trend to an association between IMCL and decreased Akt phosphorylation (p = 0.059), despite no association with insulin resistance. In turn, hepatic steatosis (p = 0.015) and inflammation (p = 0.013) were associated with decreased Akt phosphoryation. Citrate synthase activity was lower in obese patients (p = 0.047) whereas complex I (p = 0.040) and III (p = 0.036) activities were higher, compared with controls. Finally, in obese patients, complex I activity increased with progressive steatosis (p = 0.049) and with a trend with fibrosis severity (p = 0.056). CONCLUSIONS: In morbid obese patients, presence of IMCL associates with NASH and advanced fibrosis. Muscle mitochondrial dysfunction does not appear to be a major driving force contributing to muscle fat accumulation, insulin resistance or liver disease. Importantly, insulin resistance in muscle might occur at a late point in the insulin signaling cascade and be associated with IMCL and NAFLD severity.


Subject(s)
Fatty Liver/pathology , Insulin Resistance , Muscles/pathology , Obesity, Morbid/pathology , Adult , Biopsy , Case-Control Studies , Cross-Sectional Studies , Female , Humans , Insulin/metabolism , Male , Middle Aged , Mitochondria/physiology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL