Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters

Publication year range
1.
J Sci Food Agric ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39031650

ABSTRACT

BACKGROUND: Green tomato extracts, an agro-food industry waste, are rich in the glycoalkaloid tomatine, which presents activity against several diseases. High-performance liquid chromatography (HPLC) with ultraviolet (UV) detection is one of the most used techniques for quantification of bioactive compounds. The aim of this study was to optimize and validate a selective HPLC method with diode array detector (DAD) for the quantitative analysis of tomatine extracted from green tomatoes by subcritical water. RESULTS: Chromatographic runs were performed on a InertSustain Phenyl (250 mm × 4.6 mm, 5 µm) analytical column, at a wavelength of 205 nm. A concentration range of 50-580 µg mL-1 was used. The validation process was performed considering the linearity, precision, trueness, limit of detection (LOD) and limit of quantitation (LOQ) of the method. The selected mobile phase composed of acetonitrile and a solution of 20 mmol L-1 potassium dihydrogen phosphate (KH2PO4) pH 3, resulted in suitable retention times and a standard calibration curve with adequate linearity (R2 = 0.9999). The method trueness was evaluated by the recovery assay, obtaining a mean recovery of 105% and the precisions were 1.4% and 0.9% (percentage relative standard deviation, RSD%) for the tomatine standard and extract samples, respectively. The inter-day variability was 2.7-9.0% (RSD%) for the standards and 6.9% (RSD%) for extract. The LOD and the LOQ of the method were determined at 8.0 and 24.1 µg mL-1, respectively. CONCLUSION: The herein described method was successfully used for the quantification of tomatine in a tomato-derived extract. Furthermore, the method constitutes a simple and rapid analytical approach able to be used as a routine protocol. © 2024 Society of Chemical Industry.

2.
Cytogenet Genome Res ; 162(1-2): 28-33, 2022.
Article in English | MEDLINE | ID: mdl-35477180

ABSTRACT

A palette of copy number changes in long-term epilepsy-associated tumors (LEATs) have been reported, but the data are heterogeneous. To better understand the molecular basis underlying the development of LEATs, we performed array-comparative genomic hybridization analysis to investigate chromosomal imbalances across the entire genome in 8 cases of LEATs. A high number of aberrations were found in 4 patients, among which deletions predominated. Both whole-chromosome and regional abnormalities were observed, including monosomy 19, deletion of 1p, deletions of 4p, 12p, and 22q, and gain of 20p. The common altered regions are located mainly on chromosomes 19 and 4p, identifying genes potentially involved in biological processes and cellular mechanisms related to tumorigenesis. Our study highlights new genomic alterations and reinforces others previously reported, offering new molecular insights that may help in diagnosis and therapeutic decision-making.


Subject(s)
Epilepsy , Neoplasms , Chromosome Aberrations , Comparative Genomic Hybridization , Epilepsy/genetics , Genomics , Humans , Monosomy , Nucleic Acid Hybridization
3.
Molecules ; 27(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35268802

ABSTRACT

Tomato producing and processing industries present undoubted potential for industrial discarded products valorization whether due to the overproduction of fresh tomatoes or to the loss during processing. Although tomato by-products are not yet considered a raw material, several studies have suggested innovative and profitable applications. It is often referred to as "tomato pomace" and is quite rich in a variety of bioactive compounds. Lycopene, vitamin C, ß-carotene, phenolic compounds, and tocopherol are some of the bioactives herein discussed. Tomato by-products are also rich in minerals. Many of these compounds are powerful antioxidants with anti-inflammatory properties besides modulating the immune system. Several researchers have focused on the possible application of natural ingredients, especially those extracted from foods, and their physiological and pharmacological effects. Herein, the effects of processing and further applications of the bioactive compounds present in tomato by-products were carefully reviewed, especially regarding the anti-inflammatory and anti-cancer effects. The aim of this review was thus to highlight the existing opportunities to create profitable and innovative applications for tomato by-products in health context.


Subject(s)
Solanum lycopersicum
4.
AAPS PharmSciTech ; 23(4): 107, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35381882

ABSTRACT

Palatability and swallowability in the pediatric population are perceived as true challenges in the oral administration of medication. Pediatric patients have high sensitivity to taste and reduced ability to take solid dosage forms, which can often lead to a poor therapeutic compliance. It is crucial to find new strategies to simplify the oral administration of drugs to children. The present paper reports the development of a new hydrogel vehicle adapted to the pediatric population. Several polymers with similar properties were selected and adjustments were made to obtain the desired characteristics of the final product. The developed formulations were studied for organoleptic properties, rheology, mucoadhesion properties, preservative efficacy, and stability. Physical and chemical compatibilities between the vehicle and several drugs/medicines, at the time of administration, were also studied. Six final formulations with different polymers, odor, and color were chosen, and no known interactions with medications were observed. The proposed new oral vehicles are the first sugar-free vehicle hydrogels designed to make the intake of oral solid forms a more pleasant and safer experience for pediatric patients.


Subject(s)
Hydrogels , Pediatrics , Administration, Oral , Child , Excipients , Humans , Patient Compliance
5.
Drug Dev Ind Pharm ; 47(7): 1121-1126, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34545750

ABSTRACT

BACKGROUND: The brief-access taste aversion (BATA) model has been used as an alternative taste assessment tool to human taste panels and became an important element of pharmaceutical drug development, especially regarding pediatric patient's compliance. This model has been validated, demonstrating a concentration-dependent sensitivity to drug aversiveness, as well as the capacity to evaluate the taste-masking effects of cyclodextrins. In the BATA model, samples are presented randomly to rodents in numerous sipper tubes and a lickometer is used for the electronic record of licks in a sophisticated approach. OBJECTIVES: The aim of this study was to test possible drug taste-masking strategies. Additionally, we have used an alternative approach to measure the animal lick number in the presence of different compounds, non-simultaneously. RESULTS: In the present work we show for the first time the licking profile of different compounds during the time course of the experiment, with each animal being exposed to only one bottle of testing product. To validate the experiments, quinine hydrochloride dihydrate (QHD) was used as a bitter reference compound. CONCLUSION: The results obtained using this simple approach showed that aversiveness is dependent on the assay duration, and that it is possible to predict the aversiveness just by measuring the mass of the tested substance consumption. Moreover, some taste-masking strategies, such as those used in pediatric formulations and corresponding to the addition of sweeteners or flavors, cannot be predicted from rodents BATA model.


Subject(s)
Sweetening Agents , Taste , Animals , Child , Drug Compounding , Flavoring Agents , Humans , Quinine , Rats
6.
Int J Mol Sci ; 22(8)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33920964

ABSTRACT

Insulin is a peptide hormone with many physiological functions, besides its use in diabetes treatment. An important role of insulin is related to the wound healing process-however, insulin itself is too sensitive to the external environment requiring the protective of a nanocarrier. Polymer-based nanoparticles can protect, deliver, and retain the protein in the target area. This study aims to produce and characterize a topical treatment for wound healing consisting of insulin-loaded poly-DL-lactide/glycolide (PLGA) nanoparticles. Insulin-loaded nanoparticles present a mean size of approximately 500 nm and neutral surface charge. Spherical shaped nanoparticles are observed by scanning electron microscopy and confirmed by atomic force microscopy. SDS-PAGE and circular dichroism analysis demonstrated that insulin preserved its integrity and secondary structure after the encapsulation process. In vitro release studies suggested a controlled release profile. Safety of the formulation was confirmed using cell lines, and cell viability was concentration and time-dependent. Preliminary safety in vivo assays also revealed promising results.


Subject(s)
Burns/physiopathology , Drug Compounding , Insulin/administration & dosage , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Regeneration , Skin/physiopathology , Administration, Topical , Animals , Cell Survival , Circular Dichroism , Drug Liberation , Female , HaCaT Cells , Humans , Mice , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Particle Size , Protein Stability , Static Electricity , Time Factors
7.
Molecules ; 26(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34500737

ABSTRACT

When the first cases of HIV infection appeared in the 1980s, AIDS was a deadly disease without any therapeutic alternatives. Currently, there is still no cure for most cases mainly due to the multiple tissues that act as a reservoir for this virus besides the high viral mutagenesis that leads to an antiretroviral drug resistance. Throughout the years, multiple drugs with specific mechanisms of action on distinct targets have been approved. In this review, the most recent phase III clinical studies and other research therapies as advanced antiretroviral nanodelivery systems will be here discussed. Although the combined antiretroviral therapy is effective in reducing viral loading to undetectable levels, it also presents some disadvantages, such as usual side effects, high frequency of administration, and the possibility of drug resistance. Therefore, several new drugs, delivery systems, and vaccines have been tested in pre-clinical and clinical trials. Regarding drug delivery, an attempt to change the route of administration of some conventional antiretrovirals has proven to be successful and surpassed some issues related to patient compliance. Nanotechnology has brought a new approach to overcoming certain obstacles of formulation design including drug solubility and biodistribution. Overall, the encapsulation of antiretroviral drugs into nanosystems has shown improved drug release and pharmacokinetic profile.


Subject(s)
Anti-Retroviral Agents/therapeutic use , Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , Humans
8.
Cytotherapy ; 19(3): 360-370, 2017 03.
Article in English | MEDLINE | ID: mdl-28040463

ABSTRACT

BACKGROUND AIMS: The effect of cryopreservation on mesenchymal stromal cell (MSC) therapeutic properties has become highly controversial. However, data thus far have indiscriminately involved the assessment of different types of MSCs with distinct production processes. This study assumed that MSC-based products are affected differently depending on the tissue source and manufacturing process and analyzed the effect of cryopreservation on a specific population of umbilical cord tissue-derived MSCs (UC-MSCs), UCX®. METHODS: Cell phenotype was assessed by flow cytometry through the evaluation of the expression of relevant surface markers such as CD14, CD19, CD31, CD34, CD44, CD45, CD90, CD105, CD146, CD200, CD273, CD274 and HLA-DR. Immunomodulatory activity was analyzed in vitro through the ability to inhibit activated T cells and in vivo by the ability to reverse the signs of inflammation in an adjuvant-induced arthritis (AIA) model. Angiogenic potential was evaluated in vitro using a human umbilical vein endothelial cell-based angiogenesis assay, and in vivo using a mouse model for hindlimb ischemia. RESULTS: Phenotype and immunomodulatory and angiogenic potencies of this specific UC-MSC population were not impaired by cryopreservation and subsequent thawing, both in vitro and in vivo. DISCUSSION: This study suggests that potency impairment related to cryopreservation in a given tissue source can be avoided by the production process. The results have positive implications for the development of advanced-therapy medicinal products.


Subject(s)
Cryopreservation , Immunomodulation , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Neovascularization, Physiologic , Umbilical Cord/cytology , Animals , Cell Differentiation , Cells, Cultured , Female , Flow Cytometry , Freezing/adverse effects , Humans , Immunophenotyping , Male , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/immunology , Mice , Mice, Inbred C57BL , Rats , Rats, Wistar
9.
Pharm Dev Technol ; 20(6): 710-5, 2015.
Article in English | MEDLINE | ID: mdl-24798887

ABSTRACT

Non-steroid anti-inflammatory drugs (NSAIDs), such as etofenamate, are among the most prescribed drugs used for their analgesic, anti-rheumatic, antipyretic and anti-inflammatory properties. Topical formulations have the main advantage of targeted delivery. However, drugs must overcome the skin due to its role as a physical and chemical barrier against the penetration of chemicals and microorganisms. This barrier must be altered to allow the permeation of drugs at a suitable rate to the desired site of activity. Permeation modulators can intercalate the skin outer layers causing structure disruption, opening an energetically favourable route for the drug to diffuse through. The aim of this work was the development of hydroalcoholic gels containing 5.0% (w/w) of etofenamate for topical administration with anti-inflammatory activity and enhanced drug delivery. The physical and chemical characterization, in vitro release and permeation studies and in vivo anti-inflammatory activity were assessed. The gel with 30% ethanol showed in vivo anti-inflammatory activity with suitable physical chemical and microbiologic characteristics. In vitro release and permeation studies revealed that the different amounts of ethanol used influenced the release profiles of etofenamate. Moreover, it was demonstrated that this formulation is an adequate vehicle for the etofenamate skin permeation.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Flufenamic Acid/analogs & derivatives , Gels/chemistry , Skin Absorption , Administration, Topical , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Edema/drug therapy , Edema/metabolism , Edema/pathology , Ethanol/chemistry , Flufenamic Acid/administration & dosage , Flufenamic Acid/pharmacokinetics , Flufenamic Acid/therapeutic use , Humans , Male , Permeability , Pharmaceutical Vehicles/chemistry , Rats, Wistar , Skin/drug effects , Skin/metabolism , Skin/pathology , Viscosity
10.
Exp Dermatol ; 23(12): 874-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25040310

ABSTRACT

This review focuses on the photoprotection conferred by lycopene, one of the most potent anti-oxidants. Lycopene has been recently proposed to play a critical role on anticarcinogenic action at different levels. The photoprotective properties of lycopene remain contradictory. Some studies point out a positive and others a negative effect in both in vitro and in vivo models. Currently, researchers recognise that crucial gaps exist in understanding the role of carotenoids as effective modulators of apoptosis, cell cycle dynamics and/or of their in vivo behaviour as cellular anti-oxidants. The development of novel therapeutic strategies for skin disorders depends on our understanding of the molecular mechanism of UV damage on skin cells. The use of several effective phytocompounds, including lycopene, working through preventive and/or corrective pathways in the cell, may be an approach for reducing UV-B-generated damage.


Subject(s)
Anticarcinogenic Agents/pharmacology , Carotenoids/pharmacology , Chemoprevention/methods , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Carcinogenesis/drug effects , Cell Communication/drug effects , Cell Proliferation/drug effects , Gap Junctions/drug effects , Humans , Lycopene , Neoplasms, Radiation-Induced/prevention & control , Skin/drug effects , Skin/radiation effects , Skin Neoplasms/prevention & control , Ultraviolet Rays/adverse effects
11.
Pharm Dev Technol ; 19(5): 618-22, 2014 Aug.
Article in English | MEDLINE | ID: mdl-23869426

ABSTRACT

Dermatological inflammatory diseases often affect the scalp and the eyebrows. Common dosage forms available on the market for those situations are lotions; however, the presence of hair limits their use. Gels, for their consistency and adhesiveness, are a suitable alternative to the lotions in these situations. The aim of this study was to develop a new stable gel containing mometasone furoate (MF), with anti-inflammatory activity and a controlled delivery, to improve topical treatment of scalp dermatitis. Pharmaceutical development, physical and chemical characterization, stability, in vitro release and permeation studies and in vivo anti-inflammatory activity were performed. The gel presented an acidic pH and an apparent viscosity of 35 Pa.s. The microbiological analysis showed that the results were within the established specification limits. The release and the permeation profiles suggest that the drug is mainly retained in the upper skin layers. MF gel was tested in an animal model of cutaneous inflammation and presented similar anti-inflammatory activity compared to a commercially available MF dosage form. The gel was chemically, physically and microbiologically stable. The results suggest that the developed hydrogel formulation containing MF can be of actual value for improving the clinical effectiveness in the treatment of scalp dermatitis.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Delayed-Action Preparations/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Methylcellulose/analogs & derivatives , Pregnadienediols/administration & dosage , Adhesiveness , Administration, Cutaneous , Animals , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/therapeutic use , Dermatitis/drug therapy , Female , Humans , Hypromellose Derivatives , Methylcellulose/chemistry , Mice , Middle Aged , Mometasone Furoate , Pregnadienediols/pharmacokinetics , Pregnadienediols/therapeutic use , Scalp/metabolism , Skin/metabolism , Skin Absorption
12.
Nat Prod Res ; : 1-12, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684022

ABSTRACT

Milk thistle (Silybum marianum) is well-known for its antioxidant activity due to the presence of silymarin. Albeit some studies show a potential for skin inflammation, its activity against dermal MMP-9 and MMP-2 remains to be studied. Silymarin isolated from an S. marianum herbal extract was tested for gelatinase inhibition in the presence of isolated MMP-9 and in dermal adenocarcinome HaCaT cells. Silymarin was then further tested in vivo, using a cutaneous inflammation mice model mediated by reactive oxygen species. Silymarin was able to significantly inhibit gelatinolytic activity in vitro without impairing cell growth and viability. Furthermore, inhibition was more pronounced in cells than with the isolated gelatinase, suggesting an additional effect upon metabolic pathways. In vivo, silymarin was able to reduce ear edema up to 74% and attenuated histological lesions. Results highlight silymarin potential for application in skin inflammatory disorders via gelatinase inhibition.

13.
Insects ; 15(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38921134

ABSTRACT

Implementation of marker-assisted selection (MAS) in modern beekeeping would improve sustainability, especially in breeding programs aiming for resilience against the parasitic mite Varroa destructor. Selecting honey bee colonies for natural resistance traits, such as brood-intrinsic suppression of varroa mite reproduction, reduces the use of chemical acaricides while respecting local adaptation. In 2019, eight genomic variants associated with varroa non-reproduction in drone brood were discovered in a single colony from the Amsterdam Water Dune population in the Netherlands. Recently, a new study tested the applicability of these eight genetic variants for the same phenotype on a population-wide scale in Flanders, Belgium. As the properties of some variants varied between the two studies, one hypothesized that the difference in genetic ancestry of the sampled colonies may underly these contribution shifts. In order to frame this, we determined the allele frequencies of the eight genetic variants in more than 360 Apis mellifera colonies across the European continent and found that variant type allele frequencies of these variants are primarily related to the A. mellifera subspecies or phylogenetic honey bee lineage. Our results confirm that population-specific genetic markers should always be evaluated in a new population prior to using them in MAS programs.

14.
Insects ; 15(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276825

ABSTRACT

Honey bee colonies have great societal and economic importance. The main challenge that beekeepers face is keeping bee colonies healthy under ever-changing environmental conditions. In the past two decades, beekeepers that manage colonies of Western honey bees (Apis mellifera) have become increasingly concerned by the presence of parasites and pathogens affecting the bees, the reduction in pollen and nectar availability, and the colonies' exposure to pesticides, among others. Hence, beekeepers need to know the health condition of their colonies and how to keep them alive and thriving, which creates a need for a new holistic data collection method to harmonize the flow of information from various sources that can be linked at the colony level for different health determinants, such as bee colony, environmental, socioeconomic, and genetic statuses. For this purpose, we have developed and implemented the B-GOOD (Giving Beekeeping Guidance by computational-assisted Decision Making) project as a case study to categorize the colony's health condition and find a Health Status Index (HSI). Using a 3-tier setup guided by work plans and standardized protocols, we have collected data from inside the colonies (amount of brood, disease load, honey harvest, etc.) and from their environment (floral resource availability). Most of the project's data was automatically collected by the BEEP Base Sensor System. This continuous stream of data served as the basis to determine and validate an algorithm to calculate the HSI using machine learning. In this article, we share our insights on this holistic methodology and also highlight the importance of using a standardized data language to increase the compatibility between different current and future studies. We argue that the combined management of big data will be an essential building block in the development of targeted guidance for beekeepers and for the future of sustainable beekeeping.

15.
J Transl Med ; 11: 18, 2013 Jan 17.
Article in English | MEDLINE | ID: mdl-23324136

ABSTRACT

BACKGROUND: ECBio has developed proprietary technology to consistently isolate, expand and cryopreserve a well-characterized population of stromal cells from human umbilical cord tissue (UCX® cells). The technology has recently been optimized in order to become compliant with Advanced Medicine Therapeutic Products. In this work we report the immunosuppressive capacity of UCX® cells for treating induced autoimmune inflammatory arthritis. METHODS: UCX® cells were isolated using a proprietary method (PCT/IB2008/054067) that yields a well-defined number of cells using a precise proportion between tissue digestion enzyme activity units, tissue mass, digestion solution volume and void volume. The procedure includes three recovery steps to avoid non-conformities related to cell recovery. UCX® surface markers were characterized by flow cytometry and UCX® capacity to expand in vitro and to differentiate into adipocyte, chondrocyte and osteoblast-like cells was evaluated. Mixed Lymphocyte Reaction (MLR) assays were performed to evaluate the effect of UCX® cells on T-cell activation and Treg conversion assays were also performed in vitro. Furthermore, UCX® cells were administered in vivo in both a rat acute carrageenan-induced arthritis model and rat chronic adjuvant induced arthritis model for arthritic inflammation. UCX® anti-inflammatory activity was then monitored over time. RESULTS: UCX® cells stained positive for CD44, CD73, CD90 and CD105; and negative for CD14, CD19 CD31, CD34, CD45 and HLA-DR; and were capable to differentiate into adipocyte, chondrocyte and osteoblast-like cells. UCX® cells were shown to repress T-cell activation and promote the expansion of Tregs better than bone marrow mesenchymal stem cells (BM-MSCs). Accordingly, xenogeneic UCX® administration in an acute carrageenan-induced arthritis model showed that human UCX® cells can reduce paw edema in vivo more efficiently than BM-MSCs. Finally, in a chronic adjuvant induced arthritis model, animals treated with intra-articular (i.a.) and intra-peritoneal (i.p.) infusions of UCX® cells showed faster remission of local and systemic arthritic manifestations. CONCLUSION: The results suggest that UCX® cells may be an effective and promising new approach for treating both local and systemic manifestations of inflammatory arthritis.


Subject(s)
Arthritis, Experimental/therapy , Arthritis/therapy , Mesenchymal Stem Cells/cytology , Umbilical Cord/cytology , Animals , Antigens, CD/immunology , Arthritis, Experimental/immunology , Cell Differentiation , Cell Proliferation , Flow Cytometry , Lymphocyte Culture Test, Mixed , Male , Mesenchymal Stem Cells/immunology , Rats , Rats, Wistar , Umbilical Cord/immunology
16.
J Liposome Res ; 23(3): 211-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23631723

ABSTRACT

PURPOSE: The aims of this experimental work were the incorporation and full characterization of the system Tretinoin-in-dimethyl-beta-cyclodextrin-in-ultradeformable vesicles (Tretinoin-CyD-UDV) and Tretinoin-in-ultradeformable vesicles (Tretinoin-UDV). METHODS: The Tretinoin-CyD complex was prepared by kneading and the UDV by adding soybean phosphatidylcholine (SPC) to Tween® 80 followed by an appropriate volume of sodium phosphate buffer solution to make a 10%-20% lipid suspension. The resulting suspension was brought to the final mean vesicles size, of approximately 150 nm, by sequential filtration. The physicochemical characterization was based on: the evaluation of mean particle size and polydispersity index (PI) measured by photon correlation spectroscopy (PCS) and atomic force microscopy (AFM) topographic imaging; zeta potential (ζ-potential) and the SPC concentration determined by Laser-Doppler anemometry and an enzymatic-colorimetric test, respectively. The quantification of the incorporated Tretinoin and its chemical stability (during preparation and storage) was assayed by a HPLC at 342 nm. RESULTS: It was possible to obtain the system Tretinoin-CyD-UDV. The mean vesicle size was the most stable parameter during experiments time course. AFM showed that Tretinoin-CyD-UDV samples were very heterogeneous in size, having three distinct subpopulations, while Tretinoin-UDV samples had only one homogeneous size population. The results of the ζ-potential measurements have shown that vesicle surface charge was low, as expected, presenting negative values. The incorporation efficiency was high, and no significant differences between Tretinoin-CyD-UDV and Tretinoin-UDV were observed. However, only Tretinoin-UDV with 20% lipid concentration formulation remained chemically stable during the evaluation period. CONCLUSION: According to our results, Tretinoin-UDV with 20% lipid concentration seems to be a better approach than Tretinoin-CyD-UDV, attending to the higher chemical stability.


Subject(s)
Liposomes/metabolism , Tretinoin/administration & dosage , beta-Cyclodextrins/administration & dosage , Administration, Cutaneous , Drug Carriers/metabolism , Drug Stability , Microscopy, Atomic Force , Particle Size
17.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38139781

ABSTRACT

Dermal and transdermal drug delivery represents an important strategy to target drugs towards the site of action or to noninvasively enhance treatment activity, circumventing the hepatic first passage and reducing toxicity [...].

18.
Cureus ; 15(2): e35588, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37007418

ABSTRACT

A gallstone ileus is a rare cause of mechanical bowel obstruction, accounting for 1% to 4% of all cases. Twenty-five percent of the patients are 65 years of age or older and often present previous significant medical conditions. The authors report the case of an 87-year-old male patient, admitted with the diagnosis of community-acquired pneumonia, who later developed frequent episodes of biliary vomiting, intermittent constipation, and abdominal distension. Abdominal imaging (ultrasound and computed tomography (CT)) showed evidence of a localized inflammatory process in a small bowel loop but excluded vesicular lithiasis. After a failure in the medical approach with antibiotics, an exploratory laparotomy was performed, identifying the intestinal occlusion area, followed by an enterolithotomy at the specific area, and extraction of a 4 cm stone of acellular material. Posteriorly, the patient was treated for three weeks with a carbapenem and physical rehabilitation was promptly initiated with full recovery of his previous status. Gallstone ileus is a very challenging diagnosis and surgery is the treatment of choice. In elderly patients, it is important to promote prompt physical rehabilitation to prevent prolonged bed rest.

19.
Burns Trauma ; 11: tkad014, 2023.
Article in English | MEDLINE | ID: mdl-37520659

ABSTRACT

Skin is widely used as a drug delivery route due to its easy access and the possibility of using relatively painless methods for the administration of bioactive molecules. However, the barrier properties of the skin, along with its multilayer structure, impose severe restrictions on drug transport and bioavailability. Thus, bioengineered models aimed at emulating the skin have been developed not only for optimizing the transdermal transport of different drugs and testing the safety and toxicity of substances but also for understanding the biological processes behind skin wounds. Even though in vivo research is often preferred to study biological processes involving the skin, in vitro and ex vivo strategies have been gaining increasing relevance in recent years. Indeed, there is a noticeably increasing adoption of in vitro and ex vivo methods by internationally accepted guidelines. Furthermore, microfluidic organ-on-a-chip devices are nowadays emerging as valuable tools for functional and behavioural skin emulation. Challenges in miniaturization, automation and reliability still need to be addressed in order to create skin models that can predict skin behaviour in a robust, high-throughput manner, while being compliant with regulatory issues, standards and guidelines. In this review, skin models for transdermal transport, wound repair and cutaneous toxicity will be discussed with a focus on high-throughput strategies. Novel microfluidic strategies driven by advancements in microfabrication technologies will also be revised as a way to improve the efficiency of existing models, both in terms of complexity and throughput.

20.
Appl Immunohistochem Mol Morphol ; 31(5): 318-323, 2023.
Article in English | MEDLINE | ID: mdl-37093706

ABSTRACT

Breast cancer is a major health burden, and up to one-third of patients with breast cancer develop brain metastases, which are linked to a very poor prognosis. Few biomarkers are available to predict the prognosis of patients with metastases. Assessment by immunohistochemistry may be used as a tool to predict the behavior of these tumors. A retrospective transversal study including 114 patients (diagnosed between 2000 and 2016) with breast cancer brain metastases was carried out using archival biological material from 114 patients with breast cancer brain metastases. Expression of CD44, HER2, ER, PR, CA9, PDL-1, CD133, ALDH1, PTEN, AKT, PI3K, and AR markers was assessed by immunohistochemistry. The overexpression of CD44 and AKT was associated with worse overall survival ( P =0.047 and P =0,034, respectively), on univariate analysis, in the cohort of parenchymal and bone metastases; the impact of AKT expression was also evident in the parenchymal cohort on uni ( P =0.021) and multivariate analysis ( P =0.027). The remaining markers did not exhibit a statistical correlation. Immunohistochemistry markers such as CD44 and AKT may have a prognostic impact on survival in patients with breast cancer brain metastases. The conjugation with other markers may help with the stratification of patients and therapy.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Proto-Oncogene Proteins c-akt , Retrospective Studies , Biomarkers, Tumor/metabolism , Hyaluronan Receptors
SELECTION OF CITATIONS
SEARCH DETAIL