Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Cell ; 170(1): 17-33, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28666118

ABSTRACT

RAS proteins are binary switches, cycling between ON and OFF states during signal transduction. These switches are normally tightly controlled, but in RAS-related diseases, such as cancer, RASopathies, and many psychiatric disorders, mutations in the RAS genes or their regulators render RAS proteins persistently active. The structural basis of the switch and many of the pathways that RAS controls are well known, but the precise mechanisms by which RAS proteins function are less clear. All RAS biology occurs in membranes: a precise understanding of RAS' interaction with membranes is essential to understand RAS action and to intervene in RAS-driven diseases.


Subject(s)
ras Proteins/metabolism , Animals , Cell Membrane/metabolism , Congenital Abnormalities/metabolism , Humans , Mental Disorders/metabolism , Mutation , Neoplasms/metabolism , Phylogeny , Signal Transduction , Yeasts , ras Proteins/chemistry , ras Proteins/genetics
2.
Mol Cell ; 83(8): 1210-1215, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36990093

ABSTRACT

One of the open questions in RAS biology is the existence of RAS dimers and their role in RAF dimerization and activation. The idea of RAS dimers arose from the discovery that RAF kinases function as obligate dimers, which generated the hypothesis that RAF dimer formation might be nucleated by G-domain-mediated RAS dimerization. Here, we review the evidence for RAS dimerization and describe a recent discussion among RAS researchers that led to a consensus that the clustering of two or more RAS proteins is not due to the stable association of G-domains but, instead, is a consequence of RAS C-terminal membrane anchors and the membrane phospholipids with which they interact.


Subject(s)
raf Kinases , ras Proteins , Dimerization , Consensus , ras Proteins/genetics , ras Proteins/metabolism , raf Kinases/genetics , raf Kinases/metabolism , Lipids , Proto-Oncogene Proteins c-raf/metabolism
3.
Cell ; 159(6): 1365-76, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25480299

ABSTRACT

Uridylation occurs pervasively on mRNAs, yet its mechanism and significance remain unknown. By applying TAIL-seq, we identify TUT4 and TUT7 (TUT4/7), also known as ZCCHC11 and ZCCHC6, respectively, as mRNA uridylation enzymes. Uridylation readily occurs on deadenylated mRNAs in cells. Consistently, purified TUT4/7 selectively recognize and uridylate RNAs with short A-tails (less than ∼ 25 nt) in vitro. PABPC1 antagonizes uridylation of polyadenylated mRNAs, contributing to the specificity for short A-tails. In cells depleted of TUT4/7, the vast majority of mRNAs lose the oligo-U-tails, and their half-lives are extended. Suppression of mRNA decay factors leads to the accumulation of oligo-uridylated mRNAs. In line with this, microRNA induces uridylation of its targets, and TUT4/7 are required for enhanced decay of microRNA targets. Our study explains the mechanism underlying selective uridylation of deadenylated mRNAs and demonstrates a fundamental role of oligo-U-tail as a molecular mark for global mRNA decay.


Subject(s)
DNA-Binding Proteins/metabolism , RNA Nucleotidyltransferases/metabolism , RNA Stability , HeLa Cells , Humans , MicroRNAs/metabolism , Poly A/metabolism , Poly(A)-Binding Proteins/metabolism , RNA, Messenger/metabolism , Uridine Monophosphate/metabolism
4.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34983849

ABSTRACT

RAS is a signaling protein associated with the cell membrane that is mutated in up to 30% of human cancers. RAS signaling has been proposed to be regulated by dynamic heterogeneity of the cell membrane. Investigating such a mechanism requires near-atomistic detail at macroscopic temporal and spatial scales, which is not possible with conventional computational or experimental techniques. We demonstrate here a multiscale simulation infrastructure that uses machine learning to create a scale-bridging ensemble of over 100,000 simulations of active wild-type KRAS on a complex, asymmetric membrane. Initialized and validated with experimental data (including a new structure of active wild-type KRAS), these simulations represent a substantial advance in the ability to characterize RAS-membrane biology. We report distinctive patterns of local lipid composition that correlate with interfacially promiscuous RAS multimerization. These lipid fingerprints are coupled to RAS dynamics, predicted to influence effector binding, and therefore may be a mechanism for regulating cell signaling cascades.


Subject(s)
Cell Membrane/enzymology , Lipids/chemistry , Machine Learning , Molecular Dynamics Simulation , Protein Multimerization , Proto-Oncogene Proteins p21(ras)/chemistry , Signal Transduction , Humans
5.
J Biol Chem ; 299(6): 104789, 2023 06.
Article in English | MEDLINE | ID: mdl-37149146

ABSTRACT

Sprouty-related EVH-1 domain-containing (SPRED) proteins are a family of proteins that negatively regulate the RAS-Mitogen-Activated Protein Kinase (MAPK) pathway, which is involved in the regulation of the mitogenic response and cell proliferation. However, the mechanism by which these proteins affect RAS-MAPK signaling has not been elucidated. Patients with mutations in SPRED give rise to unique disease phenotypes; thus, we hypothesized that distinct interactions across SPRED proteins may account for alternative nodes of regulation. To characterize the SPRED interactome and evaluate how members of the SPRED family function through unique binding partners, we performed affinity purification mass spectrometry. We identified 90-kDa ribosomal S6 kinase 2 (RSK2) as a specific interactor of SPRED2 but not SPRED1 or SPRED3. We identified that the N-terminal kinase domain of RSK2 mediates the interaction between amino acids 123 to 201 of SPRED2. Using X-ray crystallography, we determined the structure of the SPRED2-RSK2 complex and identified the SPRED2 motif, F145A, as critical for interaction. We found that the formation of this interaction is regulated by MAPK signaling events. We also find that this interaction between SPRED2 and RSK2 has functional consequences, whereby the knockdown of SPRED2 resulted in increased phosphorylation of RSK substrates, YB1 and CREB. Furthermore, SPRED2 knockdown hindered phospho-RSK membrane and nuclear subcellular localization. We report that disruption of the SPRED2-RSK complex has effects on RAS-MAPK signaling dynamics. Our analysis reveals that members of the SPRED family have unique protein binding partners and describes the molecular and functional determinants of SPRED2-RSK2 complex dynamics.


Subject(s)
Mitogen-Activated Protein Kinases , Repressor Proteins , Ribosomal Protein S6 Kinases, 90-kDa , Signal Transduction , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Ribosomal Protein S6 Kinases, 90-kDa/chemistry , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Signal Transduction/genetics , Humans , Cell Line , Protein Domains , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Gene Knockdown Techniques , Protein Transport/genetics , Protein Binding , Protein Structure, Tertiary , Models, Molecular , Neurofibromin 1/metabolism
6.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34380736

ABSTRACT

RAS proteins are molecular switches that interact with effector proteins when bound to guanosine triphosphate, stimulating downstream signaling in response to multiple stimuli. Although several canonical downstream effectors have been extensively studied and tested as potential targets for RAS-driven cancers, many of these remain poorly characterized. In this study, we undertook a biochemical and structural approach to further study the role of Sin1 as a RAS effector. Sin1 interacted predominantly with KRAS isoform 4A in cells through an atypical RAS-binding domain that we have characterized by X-ray crystallography. Despite the essential role of Sin1 in the assembly and activity of mTORC2, we find that the interaction with RAS is not required for these functions. Cells and mice expressing a mutant of Sin1 that is unable to bind RAS are proficient for activation and assembly of mTORC2. Our results suggest that Sin1 is a bona fide RAS effector that regulates downstream signaling in an mTORC2-independent manner.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Adaptor Proteins, Signal Transducing/genetics , Gene Expression Regulation/physiology , HEK293 Cells , Humans , Mass Spectrometry , Mechanistic Target of Rapamycin Complex 2/genetics , Models, Molecular , Protein Conformation , Protein Isoforms , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction
7.
Proc Natl Acad Sci U S A ; 117(39): 24258-24268, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32913056

ABSTRACT

The small GTPase KRAS is localized at the plasma membrane where it functions as a molecular switch, coupling extracellular growth factor stimulation to intracellular signaling networks. In this process, KRAS recruits effectors, such as RAF kinase, to the plasma membrane where they are activated by a series of complex molecular steps. Defining the membrane-bound state of KRAS is fundamental to understanding the activation of RAF kinase and in evaluating novel therapeutic opportunities for the inhibition of oncogenic KRAS-mediated signaling. We combined multiple biophysical measurements and computational methodologies to generate a consensus model for authentically processed, membrane-anchored KRAS. In contrast to the two membrane-proximal conformations previously reported, we identify a third significantly populated state using a combination of neutron reflectivity, fast photochemical oxidation of proteins (FPOP), and NMR. In this highly populated state, which we refer to as "membrane-distal" and estimate to comprise ∼90% of the ensemble, the G-domain does not directly contact the membrane but is tethered via its C-terminal hypervariable region and carboxymethylated farnesyl moiety, as shown by FPOP. Subsequent interaction of the RAF1 RAS binding domain with KRAS does not significantly change G-domain configurations on the membrane but affects their relative populations. Overall, our results are consistent with a directional fly-casting mechanism for KRAS, in which the membrane-distal state of the G-domain can effectively recruit RAF kinase from the cytoplasm for activation at the membrane.


Subject(s)
Proto-Oncogene Proteins p21(ras)/metabolism , raf Kinases/metabolism , Cell Membrane/metabolism , Molecular Dynamics Simulation
8.
Biophys J ; 121(19): 3630-3650, 2022 10 04.
Article in English | MEDLINE | ID: mdl-35778842

ABSTRACT

During the activation of mitogen-activated protein kinase (MAPK) signaling, the RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF bind to active RAS at the plasma membrane. The orientation of RAS at the membrane may be critical for formation of the RAS-RBDCRD complex and subsequent signaling. To explore how RAS membrane orientation relates to the protein dynamics within the RAS-RBDCRD complex, we perform multiscale coarse-grained and all-atom molecular dynamics (MD) simulations of KRAS4b bound to the RBD and CRD domains of RAF-1, both in solution and anchored to a model plasma membrane. Solution MD simulations describe dynamic KRAS4b-CRD conformations, suggesting that the CRD has sufficient flexibility in this environment to substantially change its binding interface with KRAS4b. In contrast, when the ternary complex is anchored to the membrane, the mobility of the CRD relative to KRAS4b is restricted, resulting in fewer distinct KRAS4b-CRD conformations. These simulations implicate membrane orientations of the ternary complex that are consistent with NMR measurements. While a crystal structure-like conformation is observed in both solution and membrane simulations, a particular intermolecular rearrangement of the ternary complex is observed only when it is anchored to the membrane. This configuration emerges when the CRD hydrophobic loops are inserted into the membrane and helices α3-5 of KRAS4b are solvent exposed. This membrane-specific configuration is stabilized by KRAS4b-CRD contacts that are not observed in the crystal structure. These results suggest modulatory interplay between the CRD and plasma membrane that correlate with RAS/RAF complex structure and dynamics, and potentially influence subsequent steps in the activation of MAPK signaling.


Subject(s)
Cysteine , Proto-Oncogene Proteins c-raf , Binding Sites , Cell Membrane/metabolism , Cysteine/metabolism , Mitogen-Activated Protein Kinases/metabolism , Protein Binding , Proto-Oncogene Proteins c-raf/chemistry , Proto-Oncogene Proteins c-raf/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Solvents/metabolism
9.
J Am Chem Soc ; 144(9): 4196-4205, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35213144

ABSTRACT

KRAS is the most frequently mutated RAS protein in cancer patients, and it is estimated that about 20% of the cancer patients in the United States carried mutant RAS proteins. To accelerate therapeutic development, structures and dynamics of RAS proteins had been extensively studied by various biophysical techniques for decades. Although 31P NMR studies revealed population equilibrium of the two major states in the active GMPPNP-bound form, more complex conformational dynamics in RAS proteins and oncogenic mutants subtly modulate the interactions with their downstream effectors. We established a set of customized NMR relaxation dispersion techniques to efficiently and systematically examine the ms-µs conformational dynamics of RAS proteins. This method allowed us to observe varying synchronized motions that connect the effector and allosteric lobes in KRAS. We demonstrated the role of conformational dynamics of KRAS in controlling its interaction with the Ras-binding domain of the downstream effector RAF1, the first kinase in the MAPK pathway. This allows one to explain, as well as to predict, the altered binding affinities of various KRAS mutants, which was neither previously reported nor apparent from the structural perspective.


Subject(s)
Neoplasms , Proto-Oncogene Proteins p21(ras) , Cell Physiological Phenomena , Humans , Molecular Conformation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , ras Proteins/chemistry
10.
Mol Cell ; 53(4): 606-16, 2014 Feb 20.
Article in English | MEDLINE | ID: mdl-24486018

ABSTRACT

We have solved two families of crystal structures of the human Dicer "platform-PAZ-connector helix" cassette in complex with small interfering RNAs (siRNAs). The structures possess two adjacently positioned pockets: a 2 nt 3'-overhang-binding pocket within the PAZ domain (3' pocket) and a phosphate-binding pocket within the platform domain (phosphate pocket). One family of complexes contains a knob-like α-helical protrusion, designated "hDicer-specific helix," that separates the two pockets and orients the bound siRNA away from the surface of Dicer, which could be indicative of a product release/transfer state. In the second complex, the helical protrusion is melted/disordered and the bound siRNA is aligned toward the surface of Dicer, suggestive of a cleavage-competent state. These structures allow us to propose that the transition from the cleavage-competent to the postulated product release/transfer state may involve release of the 5'-phosphate from the phosphate pocket while retaining the 3' overhang in the 3' pocket.


Subject(s)
DEAD-box RNA Helicases/chemistry , Ribonuclease III/chemistry , Amino Acid Sequence , Animals , Base Sequence , Cells, Cultured , Crystallography, X-Ray , DEAD-box RNA Helicases/metabolism , Humans , Mice , Mice, Knockout , Molecular Sequence Data , Mutation , Phosphates/chemistry , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , RNA, Small Interfering/metabolism , Ribonuclease III/metabolism , Sequence Homology, Amino Acid , Surface Plasmon Resonance
11.
Proc Natl Acad Sci U S A ; 116(44): 22122-22131, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31611389

ABSTRACT

KRAS mutations occur in ∼35% of colorectal cancers and promote tumor growth by constitutively activating the mitogen-activated protein kinase (MAPK) pathway. KRAS mutations at codons 12, 13, or 61 are thought to prevent GAP protein-stimulated GTP hydrolysis and render KRAS-mutated colorectal cancers unresponsive to epidermal growth factor receptor (EGFR) inhibitors. We report here that KRAS G13-mutated cancer cells are frequently comutated with NF1 GAP but NF1 is rarely mutated in cancers with KRAS codon 12 or 61 mutations. Neurofibromin protein (encoded by the NF1 gene) hydrolyzes GTP directly in complex with KRAS G13D, and KRAS G13D-mutated cells can respond to EGFR inhibitors in a neurofibromin-dependent manner. Structures of the wild type and G13D mutant of KRAS in complex with neurofibromin (RasGAP domain) provide the structural basis for neurofibromin-mediated GTP hydrolysis. These results reveal that KRAS G13D is responsive to neurofibromin-stimulated hydrolysis and suggest that a subset of KRAS G13-mutated colorectal cancers that are neurofibromin-competent may respond to EGFR therapies.


Subject(s)
Colorectal Neoplasms/genetics , ErbB Receptors/antagonists & inhibitors , Guanosine Triphosphate/metabolism , Neurofibromin 1/chemistry , Proto-Oncogene Proteins p21(ras)/chemistry , Amino Acid Substitution , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Catalytic Domain , Cell Line , Colorectal Neoplasms/drug therapy , GTPase-Activating Proteins/metabolism , Guanosine Triphosphate/chemistry , Humans , Hydrolysis , Models, Molecular , Neurofibromin 1/metabolism , Neurofibromin 1/physiology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics
12.
J Biol Chem ; 295(28): 9335-9348, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32393580

ABSTRACT

The oncogene RAS is one of the most widely studied proteins in cancer biology, and mutant active RAS is a driver in many types of solid tumors and hematological malignancies. Yet the biological effects of different RAS mutations and the tissue-specific clinical implications are complex and nuanced. Here, we identified an internal tandem duplication (ITD) in the switch II domain of NRAS from a patient with extremely aggressive colorectal carcinoma. Results of whole-exome DNA sequencing of primary and metastatic tumors indicated that this mutation was present in all analyzed metastases and excluded the presence of any other clear oncogenic driver mutations. Biochemical analysis revealed increased interaction of the RAS ITD with Raf proto-oncogene Ser/Thr kinase (RAF), leading to increased phosphorylation of downstream MAPK/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK). The ITD prevented interaction with neurofibromin 1 (NF1)-GTPase-activating protein (GAP), providing a mechanism for sustained activity of the RAS ITD protein. We present the first crystal structures of NRAS and KRAS ITD at 1.65-1.75 Å resolution, respectively, providing insight into the physical interactions of this class of RAS variants with its regulatory and effector proteins. Our in-depth bedside-to-bench analysis uncovers the molecular mechanism underlying a case of highly aggressive colorectal cancer and illustrates the importance of robust biochemical and biophysical approaches in the implementation of individualized medicine.


Subject(s)
Colorectal Neoplasms , GTP Phosphohydrolases , MAP Kinase Signaling System , Membrane Proteins , Mutation , Proto-Oncogene Proteins p21(ras) , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Crystallography, X-Ray , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , HEK293 Cells , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Domains , Proto-Oncogene Mas , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Exome Sequencing , raf Kinases/genetics , raf Kinases/metabolism
13.
Mol Cancer ; 20(1): 141, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34727930

ABSTRACT

BACKGROUND: DLC1, a tumor suppressor gene that is downregulated in many cancer types by genetic and nongenetic mechanisms, encodes a protein whose RhoGAP and scaffolding activities contribute to its tumor suppressor functions. The role of the DLC1 START (StAR-related lipid transfer; DLC1-START) domain, other than its binding to Caveolin-1, is poorly understood. In other START domains, a key function is that they bind lipids, but the putative lipid ligand for DLC1-START is unknown. METHODS: Lipid overlay assays and Phosphatidylserine (PS)-pull down assays confirmed the binding of DLC1-START to PS. Co-immunoprecipitation studies demonstrated the interaction between DLC1-START and Phospholipase C delta 1 (PLCD1) or Caveolin-1, and the contribution of PS to those interactions. Rho-GTP, cell proliferation, cell migration, and/or anchorage-independent growth assays were used to investigate the contribution of PS and PLCD1, or the implications of TCGA cancer-associated DLC1-START mutants, to DLC1 functions. Co-immunoprecipitations and PS-pull down assays were used to investigate the molecular mechanisms underlying the impaired functions of DLC1-START mutants. A structural model of DLC1-START was also built to better understand the structural implications of the cancer-associated mutations in DLC1-START. RESULTS: We identified PS as the lipid ligand for DLC1-START and determined that DLC1-START also binds PLCD1 protein in addition to Caveolin-1. PS binding contributes to the interaction of DLC1 with Caveolin-1 and with PLCD1. The importance of these activities for tumorigenesis is supported by our analysis of 7 cancer-associated DLC1-START mutants, each of which has reduced tumor suppressor function but retains wildtype RhoGAP activity. Our structural model of DLC1-START indicates the mutants perturb different elements within the structure, which is correlated with our experimental findings that the mutants are heterogenous with regard to the deficiency of their binding properties. Some have reduced PS binding, others reduced PLCD1 and Caveolin-1 binding, and others are deficient for all of these properties. CONCLUSION: These observations highlight the importance of DLC1-START for the tumor suppressor function of DLC1 that is RhoGAP-independent. They also expand the versatility of START domains, as DLC1-START is the first found to bind PS, which promotes the binding to other proteins.


Subject(s)
Caveolin 1/metabolism , GTPase-Activating Proteins/metabolism , Phosphatidylserines/metabolism , Phospholipase C delta/metabolism , Protein Interaction Domains and Motifs , Tumor Suppressor Proteins/metabolism , Binding Sites , Carrier Proteins , Caveolin 1/chemistry , Cell Line, Tumor , Cell Movement , Cell Proliferation , GTPase-Activating Proteins/genetics , Humans , Models, Molecular , Mutation , Phospholipase C delta/chemistry , Protein Binding , Protein Conformation , Structure-Activity Relationship , Tumor Suppressor Proteins/genetics
14.
Mol Cell ; 52(3): 447-58, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24120662

ABSTRACT

MazF is an mRNA interferase, which, upon activation during stress conditions, cleaves mRNAs in a sequence-specific manner, resulting in cellular growth arrest. During normal growth conditions, the MazF toxin is inactivated through binding to its cognate antitoxin, MazE. How MazF specifically recognizes its mRNA target and carries out cleavage and how the formation of the MazE-MazF complex inactivates MazF remain unclear. We present crystal structures of MazF in complex with mRNA substrate and antitoxin MazE in Bacillus subtilis. The structure of MazF in complex with uncleavable UUdUACAUAA RNA substrate defines the molecular basis underlying the sequence-specific recognition of UACAU and the role of residues involved in the cleavage through site-specific mutational studies. The structure of the heterohexameric (MazF)2-(MazE)2-(MazF)2 complex in Bacillus subtilis, supplemented by mutational data, demonstrates that the positioning of the C-terminal helical segment of MazE within the RNA-binding channel of the MazF dimer prevents mRNA binding and cleavage by MazF.


Subject(s)
Bacillus subtilis/chemistry , Crystallography, X-Ray , DNA-Binding Proteins/chemistry , Endoribonucleases/chemistry , Escherichia coli Proteins/chemistry , RNA, Messenger/chemistry , Antitoxins/chemistry , Escherichia coli/chemistry , Mutation , Structure-Activity Relationship , Substrate Specificity
15.
J Biol Chem ; 293(43): 16709-16723, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30206120

ABSTRACT

The glycolipid transfer protein (GLTP) fold defines a superfamily of eukaryotic proteins that selectively transport sphingolipids (SLs) between membranes. However, the mechanisms determining the protein selectivity for specific glycosphingolipids (GSLs) are unclear. Here, we report the crystal structure of the GLTP homology (GLTPH) domain of human 4-phosphate adaptor protein 2 (FAPP2) bound with N-oleoyl-galactosylceramide. Using this domain, FAPP2 transports glucosylceramide from its cis-Golgi synthesis site to the trans-Golgi for conversion into complex GSLs. The FAPP2-GLTPH structure revealed an element, termed the ID loop, that controls specificity in the GLTP family. We found that, in accordance with FAPP2 preference for simple GSLs, the ID loop protrudes from behind the SL headgroup-recognition center to mitigate binding by complex GSLs. Mutational analyses including GLTP and FAPP2 chimeras with swapped ID loops supported the proposed restrictive role of the FAPP2 ID loop in GSL selectivity. Comparative analysis revealed distinctly designed ID loops in each GLTP family member. This analysis also disclosed a conserved H-bond triplet that "clasps" both ID-loop ends together to promote structural autonomy and rigidity. The findings indicated that various ID loops work in concert with conserved recognition centers to create different specificities among family members. We also observed four bulky, conserved hydrophobic residues involved in "sensor-like" interactions with lipid chains in protein hydrophobic pockets and FF motifs in GLTP and FAPP2, well-positioned to provide acyl chain-dependent SL selectivity for the hydrophobic pockets. In summary, our study provides mechanistic insights into sphingolipid recognition by the GLTP fold and uncovers the elements involved in this recognition.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Carrier Proteins/chemistry , Sphingolipids/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Carrier Proteins/genetics , Carrier Proteins/metabolism , Crystallography, X-Ray , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Humans , Molecular Sequence Data , Multigene Family , Protein Conformation , Sequence Alignment , Sphingolipids/metabolism
16.
EMBO J ; 34(13): 1801-15, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-25979828

ABSTRACT

Terminal uridylyl transferases (TUTs) function as integral regulators of microRNA (miRNA) biogenesis. Using biochemistry, single-molecule, and deep sequencing techniques, we here investigate the mechanism by which human TUT7 (also known as ZCCHC6) recognizes and uridylates precursor miRNAs (pre-miRNAs) in the absence of Lin28. We find that the overhang of a pre-miRNA is the key structural element that is recognized by TUT7 and its paralogues, TUT4 (ZCCHC11) and TUT2 (GLD2/PAPD4). For group II pre-miRNAs, which have a 1-nt 3' overhang, TUT7 restores the canonical end structure (2-nt 3' overhang) through mono-uridylation, thereby promoting miRNA biogenesis. For pre-miRNAs where the 3' end is further recessed into the stem (as in 3' trimmed pre-miRNAs), TUT7 generates an oligo-U tail that leads to degradation. In contrast to Lin28-stimulated oligo-uridylation, which is processive, a distributive mode is employed by TUT7 for both mono- and oligo-uridylation in the absence of Lin28. The overhang length dictates the frequency (but not duration) of the TUT7-RNA interaction, thus explaining how TUT7 differentiates pre-miRNA species with different overhangs. Our study reveals dual roles and mechanisms of uridylation in repair and removal of defective pre-miRNAs.


Subject(s)
MicroRNAs/metabolism , RNA Nucleotidyltransferases/physiology , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional , Uridine Monophosphate/metabolism , Adenine Nucleotides/metabolism , Base Sequence , HEK293 Cells , HeLa Cells , Humans , Molecular Sequence Data , Nucleic Acid Conformation , Oligoribonucleotides/metabolism , RNA Processing, Post-Transcriptional/genetics , RNA Stability/genetics , Uracil Nucleotides/metabolism
17.
Nature ; 500(7463): 463-7, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23863933

ABSTRACT

Phosphorylated sphingolipids ceramide-1-phosphate (C1P) and sphingosine-1-phosphate (S1P) have emerged as key regulators of cell growth, survival, migration and inflammation. C1P produced by ceramide kinase is an activator of group IVA cytosolic phospholipase A2α (cPLA2α), the rate-limiting releaser of arachidonic acid used for pro-inflammatory eicosanoid production, which contributes to disease pathogenesis in asthma or airway hyper-responsiveness, cancer, atherosclerosis and thrombosis. To modulate eicosanoid action and avoid the damaging effects of chronic inflammation, cells require efficient targeting, trafficking and presentation of C1P to specific cellular sites. Vesicular trafficking is likely but non-vesicular mechanisms for C1P sensing, transfer and presentation remain unexplored. Moreover, the molecular basis for selective recognition and binding among signalling lipids with phosphate headgroups, namely C1P, phosphatidic acid or their lyso-derivatives, remains unclear. Here, a ubiquitously expressed lipid transfer protein, human GLTPD1, named here CPTP, is shown to specifically transfer C1P between membranes. Crystal structures establish C1P binding through a novel surface-localized, phosphate headgroup recognition centre connected to an interior hydrophobic pocket that adaptively expands to ensheath differing-length lipid chains using a cleft-like gating mechanism. The two-layer, α-helically-dominated 'sandwich' topology identifies CPTP as the prototype for a new glycolipid transfer protein fold subfamily. CPTP resides in the cell cytosol but associates with the trans-Golgi network, nucleus and plasma membrane. RNA interference-induced CPTP depletion elevates C1P steady-state levels and alters Golgi cisternae stack morphology. The resulting C1P decrease in plasma membranes and increase in the Golgi complex stimulates cPLA2α release of arachidonic acid, triggering pro-inflammatory eicosanoid generation.


Subject(s)
Carrier Proteins/metabolism , Ceramides/metabolism , Eicosanoids/metabolism , Animals , Apoproteins/chemistry , Arachidonic Acid/metabolism , Biological Transport , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cell Membrane/metabolism , Cell Nucleus/metabolism , Ceramides/chemistry , Crystallography, X-Ray , Cytosol/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Mice , Models, Molecular , Phosphatidic Acids/chemistry , Phosphatidic Acids/metabolism , Phospholipid Transfer Proteins , Protein Conformation , Protein Folding , Substrate Specificity , trans-Golgi Network/metabolism
18.
Proc Natl Acad Sci U S A ; 113(44): E6766-E6775, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27791178

ABSTRACT

Farnesylation and carboxymethylation of KRAS4b (Kirsten rat sarcoma isoform 4b) are essential for its interaction with the plasma membrane where KRAS-mediated signaling events occur. Phosphodiesterase-δ (PDEδ) binds to KRAS4b and plays an important role in targeting it to cellular membranes. We solved structures of human farnesylated-methylated KRAS4b in complex with PDEδ in two different crystal forms. In these structures, the interaction is driven by the C-terminal amino acids together with the farnesylated and methylated C185 of KRAS4b that binds tightly in the central hydrophobic pocket present in PDEδ. In crystal form II, we see the full-length structure of farnesylated-methylated KRAS4b, including the hypervariable region. Crystal form I reveals structural details of farnesylated-methylated KRAS4b binding to PDEδ, and crystal form II suggests the potential binding mode of geranylgeranylated-methylated KRAS4b to PDEδ. We identified a 5-aa-long sequence motif (Lys-Ser-Lys-Thr-Lys) in KRAS4b that may enable PDEδ to bind both forms of prenylated KRAS4b. Structure and sequence analysis of various prenylated proteins that have been previously tested for binding to PDEδ provides a rationale for why some prenylated proteins, such as KRAS4a, RalA, RalB, and Rac1, do not bind to PDEδ. Comparison of all four available structures of PDEδ complexed with various prenylated proteins/peptides shows the presence of additional interactions due to a larger protein-protein interaction interface in KRAS4b-PDEδ complex. This interface might be exploited for designing an inhibitor with minimal off-target effects.


Subject(s)
3',5'-Cyclic-GMP Phosphodiesterases/chemistry , 3',5'-Cyclic-GMP Phosphodiesterases/metabolism , Protein Interaction Domains and Motifs , Protein Prenylation/physiology , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/metabolism , 3',5'-Cyclic-GMP Phosphodiesterases/genetics , Amino Acid Sequence , Binding Sites , Cell Membrane/metabolism , Crystallography, X-Ray , Genes, ras , Humans , Methylation , Models, Molecular , Molecular Conformation , Mutation , Protein Binding/physiology , Proto-Oncogene Proteins p21(ras)/genetics , Sequence Analysis , rac1 GTP-Binding Protein/metabolism , ral GTP-Binding Proteins/metabolism
19.
Genes Dev ; 25(2): 137-52, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21245167

ABSTRACT

Cytosine DNA methylation is evolutionarily ancient, and in eukaryotes this epigenetic modification is associated with gene silencing. Proteins with SRA (SET- or RING-associated) methyl-binding domains are required for the establishment and/or maintenance of DNA methylation in both plants and mammals. The 5-methyl-cytosine (5mC)-binding specificity of several SRA domains have been characterized, and each one has a preference for DNA methylation in different sequence contexts. Here we demonstrate through mobility shift assays and calorimetric measurements that the SU(VAR)3-9 HOMOLOG 5 (SUVH5) SRA domain differs from other SRA domains in that it can bind methylated DNA in all contexts to similar extents. Crystal structures of the SUVH5 SRA domain bound to 5mC-containing DNA in either the fully or hemimethylated CG context or the methylated CHH context revealed a dual flip-out mechanism where both the 5mC and a base (5mC, C, or G, respectively) from the partner strand are simultaneously extruded from the DNA duplex and positioned within binding pockets of individual SRA domains. Our structure-based in vivo studies suggest that a functional SUVH5 SRA domain is required for both DNA methylation and accumulation of the H3K9 dimethyl modification in vivo, suggesting a role for the SRA domain in recruitment of SUVH5 to genomic loci.


Subject(s)
5-Methylcytosine , Arabidopsis/metabolism , DNA Methylation , Histones/metabolism , Methyltransferases/chemistry , Methyltransferases/metabolism , Models, Molecular , 5-Methylcytosine/chemistry , 5-Methylcytosine/metabolism , Arabidopsis/genetics , Calorimetry , DNA/chemistry , DNA/metabolism , Electrophoretic Mobility Shift Assay , Methyltransferases/genetics , Mutation/genetics , Protein Binding , Protein Structure, Tertiary
20.
J Biol Chem ; 292(6): 2531-2541, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28011644

ABSTRACT

Genetic models for studying localized cell suicide that halt the spread of pathogen infection and immune response activation in plants include Arabidopsis accelerated-cell-death 11 mutant (acd11). In this mutant, sphingolipid homeostasis is disrupted via depletion of ACD11, a lipid transfer protein that is specific for ceramide 1-phosphate (C1P) and phyto-C1P. The C1P binding site in ACD11 and in human ceramide-1-phosphate transfer protein (CPTP) is surrounded by cationic residues. Here, we investigated the functional regulation of ACD11 and CPTP by anionic phosphoglycerides and found that 1-palmitoyl-2-oleoyl-phosphatidic acid or 1-palmitoyl-2-oleoyl-phosphatidylglycerol (≤15 mol %) in C1P source vesicles depressed C1P intermembrane transfer. By contrast, replacement with 1-palmitoyl-2-oleoyl-phosphatidylserine stimulated C1P transfer by ACD11 and CPTP. Notably, "soluble" phosphatidylserine (dihexanoyl-phosphatidylserine) failed to stimulate C1P transfer. Also, none of the anionic phosphoglycerides affected transfer action by human glycolipid lipid transfer protein (GLTP), which is glycolipid-specific and has few cationic residues near its glycolipid binding site. These findings provide the first evidence for a potential phosphoglyceride headgroup-specific regulatory interaction site(s) existing on the surface of any GLTP-fold and delineate new differences between GLTP superfamily members that are specific for C1P versus glycolipid.


Subject(s)
Carrier Proteins/metabolism , Ceramides/metabolism , Phosphatidylserines/physiology , Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Biological Transport , Carrier Proteins/chemistry , Cell Line , Crystallography, X-Ray , Humans , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Phospholipid Transfer Proteins , Protein Binding , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL