Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Clin Endocrinol (Oxf) ; 100(4): 317-327, 2024 04.
Article in English | MEDLINE | ID: mdl-38229583

ABSTRACT

OBJECTIVE: Endocrine systems are disrupted in acute illness, and symptoms reported following coronavirus disease 2019 (COVID-19) are similar to those found with clinical hormone deficiencies. We hypothesised that people with severe acute COVID-19 and with post-COVID symptoms have glucocorticoid and sex hormone deficiencies. DESIGN/PATIENTS: Samples were obtained for analysis from two UK multicentre cohorts during hospitalisation with COVID-19 (International Severe Acute Respiratory Infection Consortium/World Health Organisation [WHO] Clinical Characterization Protocol for Severe Emerging Infections in the UK study), and at follow-up 5 months after hospitalisation (Post-hospitalisation COVID-19 study). MEASUREMENTS: Plasma steroids were quantified by liquid chromatography-mass spectrometry. Steroid concentrations were compared against disease severity (WHO ordinal scale) and validated symptom scores. Data are presented as geometric mean (SD). RESULTS: In the acute cohort (n = 239, 66.5% male), plasma cortisol concentration increased with disease severity (cortisol 753.3 [1.6] vs. 429.2 [1.7] nmol/L in fatal vs. least severe, p < .001). In males, testosterone concentrations decreased with severity (testosterone 1.2 [2.2] vs. 6.9 [1.9] nmol/L in fatal vs. least severe, p < .001). In the follow-up cohort (n = 198, 62.1% male, 68.9% ongoing symptoms, 165 [121-192] days postdischarge), plasma cortisol concentrations (275.6 [1.5] nmol/L) did not differ with in-hospital severity, perception of recovery, or patient-reported symptoms. Male testosterone concentrations (12.6 [1.5] nmol/L) were not related to in-hospital severity, perception of recovery or symptom scores. CONCLUSIONS: Circulating glucocorticoids in patients hospitalised with COVID-19 reflect acute illness, with a marked rise in cortisol and fall in male testosterone. These findings are not observed 5 months from discharge. The lack of association between hormone concentrations and common post-COVID symptoms suggests steroid insufficiency does not play a causal role in this condition.


Subject(s)
COVID-19 , Humans , Male , Female , Hydrocortisone , Acute Disease , Aftercare , Patient Discharge , Glucocorticoids/therapeutic use , Steroids/therapeutic use , Patient Acuity , Testosterone
2.
Rapid Commun Mass Spectrom ; 33(12): 1049-1057, 2019 Jun 30.
Article in English | MEDLINE | ID: mdl-30908787

ABSTRACT

RATIONALE: Although mass spectrometry (MS) is routinely used to determine deamination in peptide mixtures, the effects of the choice of ionisation source have not yet been investigated. In particular, matrix-assisted laser desorption/ionisation (MALDI) has become a popular tool with which to measure levels of glutamine deamidation in ancient proteins. Here we use model synthetic peptides to rigorously compare MALDI and electrospray ionisation (ESI). METHODS: We used two synthetic peptides, with glutamine (Q) in one substituted for glutamic acid (E) in the other, to investigate the suitability of MALDI and ESI sources for the assessment of deamidation in peptides using MS. We also compared measurements of the same Q- and E-containing peptide mixtures using two different mass analysers (time-of-flight (TOF) and Fourier transform ion cyclotron resonance (FT-ICR)). RESULTS: When standard mixtures of the Q- and E-containing peptides were analysed using MALDI, under-representation of the E-containing peptide was observed. This observation was consistent between analyses carried out using either TOF or FT-ICR-MS. When the same mixtures were analysed using ESI FT-ICR-MS, no ionisation bias was observed. CONCLUSIONS: MALDI may not be a suitable ionisation method for the determination of deamidation in peptide mixtures. However, ESI was successfully used to determine the ratio in known mixtures of Q- and E-containing peptides. These preliminary observations warrant further investigation into ionisation bias when measuring deamidation in other peptide sequences.


Subject(s)
Peptides/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Amino Acid Sequence , Cyclotrons , Fourier Analysis , Glutamic Acid/chemistry , Glutamine/chemistry
3.
Org Biomol Chem ; 16(15): 2735-2740, 2018 04 18.
Article in English | MEDLINE | ID: mdl-29594310

ABSTRACT

The marine bacterium Pseudoalteromonas tunicata produces the bipyrrole antibiotic tambjamine YP1. This natural product is built from common amino acid and fatty acid building blocks in a biosynthetic pathway that is encoded in the tam operon which contains 19 genes. The exact role that each of these Tam proteins plays in tambjamine biosynthesis is not known. Here, we provide evidence that TamA initiates the synthesis and controls the chain length of the essential tambjamine fatty amine tail. Sequence analysis suggests the unusual TamA is comprised of an N-terminal adenylation (ANL) domain fused to a C-terminal acyl carrier protein (ACP). Mass spectrometry analysis of recombinant TamA revealed the surprising presence of bound C11 and C12 acyl-adenylate intermediates. Acylation of the ACP domain was observed upon attachment of the phosphopantetheine (4'-PP) arm to the ACP. We also show that TamA can transfer fatty acids ranging in chain length from C6-C13 to an isolated ACP domain. Thus TamA bridges the gap between primary and secondary metabolism by linking fatty acid and pyrrole biosynthetic pathways.


Subject(s)
Adenylate Kinase/metabolism , Anti-Bacterial Agents/biosynthesis , Bacterial Proteins/metabolism , Biological Products/metabolism , Fatty Acids/biosynthesis , Pseudoalteromonas/metabolism , Pyrroles/metabolism , Acyl Carrier Protein/genetics , Acylation , Adenylate Kinase/genetics , Bacterial Proteins/genetics , Biological Products/chemistry , Biosynthetic Pathways , Multigene Family , Pyrroles/chemistry
4.
Eur J Anaesthesiol ; 33(12): 906-912, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27259093

ABSTRACT

BACKGROUND: High-volume fluid resuscitation and the administration of sodium bicarbonate and diuretics have a theoretical renoprotective role in patients at high risk of acute kidney injury (AKI) following rhabdomyolysis. Abnormally elevated creatine kinase has previously been used as a biological marker for the identification of patients at high risk of AKI following rhabdomyolysis. OBJECTIVE: To assess the sensitivity and specificity of plasma creatine kinase (admission and peak values) for the prediction of AKI requiring renal replacement therapy (RRT) or of death in patients with confirmed rhabdomyolysis. To compare the diagnostic performance of creatine kinase with the McMahon score. DESIGN: Retrospective observational study. Data collection included McMahon and Acute Physiology and Chronic Health Evaluation II (APACHE II) scores; daily creatine kinase; daily creatinine and electrolytes; ICU length of stay and mortality. SETTING: Neurosciences and Trauma Critical Care Unit (Cambridge, UK). PATIENTS: In total, 232 adults with confirmed rhabdomyolysis (creatine kinase > 1000 Ul) admitted to Neurosciences and Trauma Critical Care Unit between 2002 and 2012. MAIN OUTCOME MEASURES: AKI, RRT and mortality. RESULTS: Forty-five (19%) patients developed AKI and 29 (12.5%) patients required RRT. Mortality was significantly higher in patients who developed AKI (62 vs. 18%, P < 0.001). Average creatine kinase on admission was 5009 (range 69-157 860) Ul. Creatine kinase peaked between the day of admission and day 3 in 91% of cases. PEAK creatine kinase of at least 5000 Ul is 55% specific and 83% sensitive for the prediction of AKI requiring RRT. A McMahon Score of at least 6 calculated on admission is 68% specific and 86% sensitive for RRT. CONCLUSIONS: Creatine kinase is not a specific or early predictor of AKI in patients with rhabdomyolysis. Although a PEAK creatine kinase of at least 5000 Ul has sensitivity acceptable for screening purposes, this is often a delayed finding. A McMahon score of at least 6 calculated on admission allows for a more sensitive, specific and timely identification of patients who may benefit from high-volume fluid resuscitation.


Subject(s)
APACHE , Acute Kidney Injury/blood , Acute Kidney Injury/diagnosis , Creatine Kinase/blood , Rhabdomyolysis/blood , Rhabdomyolysis/diagnosis , Acute Kidney Injury/epidemiology , Adult , Aged , Biomarkers/blood , Cohort Studies , Female , Humans , Male , Middle Aged , Prognosis , Reproducibility of Results , Retrospective Studies , Rhabdomyolysis/epidemiology , Time Factors
5.
MethodsX ; 12: 102728, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948242

ABSTRACT

Chromatography combined with mass spectrometry is a gold standard technique for steroid measurement, however the type of sample preparation, the dynamic range and reliability of the calibration curve, the chromatographic separation and mass spectrometry settings ultimately determine the success of the method. The steroid biosynthetic pathway is conserved in higher mammals and literature demonstrates that the concentration ranges of different steroid groups are relatively comparable across species. We sought to develop a robust and reliable multi steroid targeted analysis method for blood that would have wide application across higher mammals. The method was developed following bioanalytical method validation guidelines to standards typically applied to human clinical studies, including isotopically labelled internal standards where at all possible. Here we describe the practical approach to a 96-well supported liquid extraction (SLE) method of extraction from plasma (200 µL) using an Extrahera liquid handling robot (Biotage, Sweden), including quality control samples, followed by a comprehensive separation and targeted LC-MS/MS analysis of 18 steroids in plasma (pregnenolone, progesterone, 17α-hydroxyprogesterone, 11-deoxycorticosterone, corticosterone, 11-dehydrocorticosterone, aldosterone, 11-deoxycortisol, 21-deoxycortisol, cortisol, cortisone, androstenedione, testosterone, 5α-dihydrotestosterone, dehydroepiandrosterone, estrone, 17ß-estradiol and estriol). •SLE in a 96-well format of up to 74 biological plasma samples, enriched with multiple isotopically labelled internal standards, a 12-point aqueous calibration curve, and 6 serum quality controls, designed to monitor long-term performance of the method•Chromatographic separation of multiple steroids along the gradient, with ammonium fluoride mobile phase additive to improve sensitivity, followed by electrospray ionisation and constant polarity switching•Aqueous calibration standards that cover physiologically relevant ranges - high nanomolar glucocorticoids, low nanomolar androgens and picomolar ranges for estrogens and steroid intermediates.

6.
Cell Rep ; 43(3): 113936, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38489269

ABSTRACT

Osteoclasts play a central role in cancer-cell-induced osteolysis, but the molecular mechanisms of osteoclast activation during bone metastasis formation are incompletely understood. By performing RNA sequencing on a mouse breast carcinoma cell line with higher bone-metastatic potential, here we identify the enzyme CYP11A1 strongly upregulated in osteotropic tumor cells. Genetic deletion of Cyp11a1 in tumor cells leads to a decreased number of bone metastases but does not alter primary tumor growth and lung metastasis formation in mice. The product of CYP11A1 activity, pregnenolone, increases the number and function of mouse and human osteoclasts in vitro but does not alter osteoclast-specific gene expression. Instead, tumor-derived pregnenolone strongly enhances the fusion of pre-osteoclasts via prolyl 4-hydroxylase subunit beta (P4HB), identified as a potential interaction partner of pregnenolone. Taken together, our results demonstrate that Cyp11a1-expressing tumor cells produce pregnenolone, which is capable of promoting bone metastasis formation and osteoclast development via P4HB.


Subject(s)
Bone Neoplasms , Breast Neoplasms , Humans , Female , Osteogenesis , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Cell Line, Tumor , Bone Neoplasms/metabolism , Osteoclasts/metabolism , Pregnenolone/metabolism , Breast Neoplasms/pathology , Cell Differentiation
7.
J Endocrinol ; 262(2)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38829241

ABSTRACT

Glucocorticoids modulate glucose homeostasis, acting on metabolically active tissues such as liver, skeletal muscle, and adipose tissue. Intracellular regulation of glucocorticoid action in adipose tissue impacts metabolic responses to obesity. ATP-binding cassette family C member 1 (ABCC1) is a transmembrane glucocorticoid transporter known to limit the accumulation of exogenously administered corticosterone in adipose tissue. However, the role of ABCC1 in the regulation of endogenous glucocorticoid action and its impact on fuel metabolism has not been studied. Here, we investigate the impact of Abcc1 deficiency on glucocorticoid action and high-fat-diet (HFD)-induced obesity. In lean male mice, deficiency of Abcc1 increased endogenous corticosterone levels in skeletal muscle and adipose tissue but did not impact insulin sensitivity. In contrast, Abcc1-deficient male mice on HFD displayed impaired glucose and insulin tolerance, and fasting hyperinsulinaemia, without alterations in tissue corticosterone levels. Proteomics and bulk RNA sequencing revealed that Abcc1 deficiency amplified the transcriptional response to an obesogenic diet in adipose tissue but not in skeletal muscle. Moreover, Abcc1 deficiency impairs key signalling pathways related to glucose metabolism in both skeletal muscle and adipose tissue, in particular those related to OXPHOS machinery and Glut4. Together, our results highlight a role for ABCC1 in regulating glucose homeostasis, demonstrating diet-dependent effects that are not associated with altered tissue glucocorticoid concentrations.


Subject(s)
Adipose Tissue , Corticosterone , Diet, High-Fat , Insulin Resistance , Multidrug Resistance-Associated Proteins , Muscle, Skeletal , Obesity , Animals , Male , Diet, High-Fat/adverse effects , Mice , Obesity/metabolism , Obesity/genetics , Obesity/etiology , Adipose Tissue/metabolism , Insulin Resistance/physiology , Corticosterone/blood , Corticosterone/metabolism , Muscle, Skeletal/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Multidrug Resistance-Associated Proteins/genetics , Mice, Knockout , Mice, Inbred C57BL , Glucose/metabolism
8.
Metabolites ; 13(2)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36837884

ABSTRACT

A number of steroids, including glucocorticoids and sex hormones, have been associated with neurodegenerative and cardiovascular conditions common in aging populations. The application of liquid chromatography tandem mass spectrometry (LC-MS/MS) steroid analysis offers an opportunity to conduct simultaneous multiplex steroid analysis within a given sample. In this paper, we describe the application of an LC-MS/MS steroid analysis method for the assessment of reference ranges of steroids in human saliva samples (200 µL) collected from older adults (age 50 years and above) enrolled in a European cohort investigating the risk for Alzheimer's dementia. Saliva samples were prepared using supported liquid extraction (SLE) along with a calibration curve and analysed using a Waters I-Class UPLC (Ultra Performance Liquid Chromatography) and a Sciex QTrap 6500+ mass spectrometer. Mass spectrometry parameters of steroids were optimised for each steroid and a method for the chromatographic separation of 19 steroids was developed. Lower limits of quantitation (LLOQs), linearity and other method criteria were assessed. In total, data from 125 participants (500 samples) were analysed and assessed for reference ranges (64 male, 61 female). A total of 19 steroids were detected in saliva within the range of the method. There were clear diurnal patterns in most of the steroid hormones detected. Sex differences were observed for androstenedione (A4), testosterone (T), cortisone (E) and aldosterone (Aldo). In the first sample of the day, dehydroepiandrosterone (DHEA) was significantly higher in healthy volunteers compared to those with Alzheimer's disease biomarkers. This LC-MS/MS method is suitable for the analysis of 19 steroids in saliva in adults.

9.
J Inflamm (Lond) ; 20(1): 20, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37291548

ABSTRACT

BACKGROUND: Uncontrolled inflammation contributes to the progression of organ damage in acute conditions, such as acetaminophen-induced acute liver injury (APAP-ALI) and there are limited treatments for this condition. AT7519, a cyclic-dependent kinase inhibitor (CDKI), has been used successfully in several conditions, to resolve inflammation and return tissue homeostatic functions. AT7519 has not been assessed in APAP-ALI and its effect on APAP metabolism is unknown. Targeted chromatography and mass spectrometry can be used to assess multiple compounds simultaneously and this approach has not been applied yet to measure APAP and AT7519 in a mouse model. RESULTS: We show an optimised simple and sensitive LC-MS/MS method for determining concentrations of AT7519 and APAP in low volumes of mouse serum. Using positive ion mode electrospray ionisation, separation of AT7519 and APAP and their corresponding isotopically labelled internal standards [2H]8-AT16043M (d8-AT7519) and [2H]8-APAP (d4-APAP), was achieved on an Acquity UPLC BEH C18 column (100 × 2.1 mm; 1.7µm). A gradient mobile phase system of water and methanol was delivered at a flow rate of 0.5 mL/min with a run time of 9 min. Calibration curves were linear, intra-day and inter-day precision and accuracy were acceptable and the covariates of all standards and quality control replicates were less than 15%. The method was successfully applied to evaluate AT7519 and APAP levels 20 h post AT7519 (10 mg/mg) in C57Bl6J wild type mouse serum treated with either vehicle or APAP. Serum AT7519 was significantly higher in mice that had received APAP compared to control, but there was no correlation between APAP and AT7519 quantification. There was also no correlation of AT7519 and hepatic damage or proliferation markers. CONCLUSION: We optimised an LC-MS/MS method to quantify both AT7519 and APAP in mouse serum (50 µL), using labelled internal standards. Application of this method to a mouse model of APAP toxicity proved effective in accurately measuring APAP and AT7519 concentrations after i.p. dosing. AT7519 was significantly higher in mice with APAP toxicity, indicating hepatic metabolism of this CDKI, but there was no correlation with markers of hepatic damage or proliferation, demonstrating that this dose of AT7519 (10 mg/kg) does not contribute to hepatic damage or repair. This optimised method can be used for future investigations of AT7519 in APAP in mice.

10.
Nat Metab ; 5(8): 1319-1336, 2023 08.
Article in English | MEDLINE | ID: mdl-37537371

ABSTRACT

Activation of brown adipose tissue (BAT) in humans is a strategy to treat obesity and metabolic disease. Here we show that the serotonin transporter (SERT), encoded by SLC6A4, prevents serotonin-mediated suppression of human BAT function. RNA sequencing of human primary brown and white adipocytes shows that SLC6A4 is highly expressed in human, but not murine, brown adipocytes and BAT. Serotonin decreases uncoupled respiration and reduces uncoupling protein 1 via the 5-HT2B receptor. SERT inhibition by the selective serotonin reuptake inhibitor (SSRI) sertraline prevents uptake of extracellular serotonin, thereby potentiating serotonin's suppressive effect on brown adipocytes. Furthermore, we see that sertraline reduces BAT activation in healthy volunteers, and SSRI-treated patients demonstrate no 18F-fluorodeoxyglucose uptake by BAT at room temperature, unlike matched controls. Inhibition of BAT thermogenesis may contribute to SSRI-induced weight gain and metabolic dysfunction, and reducing peripheral serotonin action may be an approach to treat obesity and metabolic disease.


Subject(s)
Adipose Tissue, Brown , Metabolic Diseases , Humans , Mice , Animals , Adipose Tissue, Brown/metabolism , Serotonin/metabolism , Sertraline/metabolism , Sertraline/pharmacology , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin Plasma Membrane Transport Proteins/pharmacology , Obesity/metabolism , Thermogenesis/physiology , Metabolic Diseases/metabolism
11.
J Chromatogr A ; 1640: 461933, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33588275

ABSTRACT

Liquid Chromatography tandem mass spectrometry (LC-MS/MS) is the gold-standard approach for androgen analysis in biological fluids, superseding immunoassays in selectivity, particularly at low concentrations. While LC-MS/MS is established for analysis of testosterone and androstenedione, 5α-dihydrotestosterone (DHT) presents greater analytical challenges. DHT circulates at low nanomolar concentrations in men and lower in women, ionizing inefficiently and suffering from isobaric interference from other androgens. Even using current LC-MS/MS technology, large plasma volumes (>0.5 mL) are required for detection, undesirable clinically and unsuitable for animals. This study investigated derivatization approaches using hydrazine-based reagents to enhance ionization efficiency and sensitivity of analysis of DHT by LC-MS/MS. Derivatization of DHT using 2-hydrazino-1-methylpyridine (HMP) and 2-hydrazino-4-(trifluoromethyl)-pyrimidine (HTP) were compared. A method was validated using an UHPLC interfaced by electrospray with a triple quadruple mass spectrometer , analyzing human plasma (male and post-menopausal women) following solid-phase extraction. HMP derivatives were selected for validation affording greater sensitivity than those formed with HTP. HMP derivatives were detected by selected reaction monitoring (DHT-HMP m/z 396→108; testosterone-HMP m/z 394→108; androstenedione-HMP m/z 392→108). Chromatographic separation of androgen derivatives was optimized, carefully separating isobaric interferents and acceptable outputs for precision and trueness achieved following injection of 0.4 pg on column (approximately 34 pmol/L). HMP derivatives of all androgens tested could be detected in low plasma volumes: male (100 µL) and post-menopausal female (200 µL), and derivatives were stable over 30 days at -20°C. In conclusion, HMP derivatization, in conjunction with LC-MS/MS, is suitable for quantitative analysis of DHT, testosterone and androstenedione in low plasma volumes, offering advantages in sensitivity over current methodologies.


Subject(s)
Dihydrotestosterone/blood , Hydrazines/chemistry , Pyridines/chemistry , Tandem Mass Spectrometry/methods , Adult , Androgens/blood , Androstenedione/blood , Biological Assay , Calibration , Chromatography, Liquid , Female , Humans , Hydrazines/chemical synthesis , Male , Pyridines/chemical synthesis , Reference Standards , Reproducibility of Results , Testosterone/blood
13.
Med Image Anal ; 36: 61-78, 2017 02.
Article in English | MEDLINE | ID: mdl-27865153

ABSTRACT

We propose a dual pathway, 11-layers deep, three-dimensional Convolutional Neural Network for the challenging task of brain lesion segmentation. The devised architecture is the result of an in-depth analysis of the limitations of current networks proposed for similar applications. To overcome the computational burden of processing 3D medical scans, we have devised an efficient and effective dense training scheme which joins the processing of adjacent image patches into one pass through the network while automatically adapting to the inherent class imbalance present in the data. Further, we analyze the development of deeper, thus more discriminative 3D CNNs. In order to incorporate both local and larger contextual information, we employ a dual pathway architecture that processes the input images at multiple scales simultaneously. For post-processing of the network's soft segmentation, we use a 3D fully connected Conditional Random Field which effectively removes false positives. Our pipeline is extensively evaluated on three challenging tasks of lesion segmentation in multi-channel MRI patient data with traumatic brain injuries, brain tumours, and ischemic stroke. We improve on the state-of-the-art for all three applications, with top ranking performance on the public benchmarks BRATS 2015 and ISLES 2015. Our method is computationally efficient, which allows its adoption in a variety of research and clinical settings. The source code of our implementation is made publicly available.


Subject(s)
Brain Injuries, Traumatic/diagnostic imaging , Brain Ischemia/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Brain/diagnostic imaging , Brain/pathology , Neural Networks, Computer , Brain Injuries, Traumatic/pathology , Brain Ischemia/pathology , Brain Neoplasms/pathology , Humans , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL